
TO REFEREE #2 1 

Thank you very much for all your suggestions and comments. Next, we respond all your 2 

suggestions in order. 3 

1. With respect to the differences found between the use of Normal distributions and 4 

GEV distributions, could authors affirm that such differences are statistically 5 

significant?: 6 

We recognize the limitations of this study in the selected time period. We were 7 

limited to work with 16 years and approximately 96 observations per RV. However, 8 

we have found that observed NDVI distributions are mainly asymmetric in spring 9 

and autumn, inconsistent with symmetric Normal fitting. 10 

In addition, we have included that the level of significance of the Chi-Square fit was 11 

fixed to 5% for all the candidates (this information did not appear in the first 12 

version and it will be included now). 13 

Anyway, the objective of this study is to generate some reasonable doubts about 14 

the convenience of using Normal distributions in all cases, and to notice that 15 

others alternatives to Normal distributions could exist. GEV distribution is an 16 

example of better fit than Normal one with the limitations explained above. 17 

2. Did the authors apply this methodology on geographic areas of different 18 

characteristics with respect to the characteristics of the area analyzed in the 19 

present study? 20 

In this study we have only focused on pasture and methodology applicable to 21 

calculate damaged pasture thresholds. However, we also think this methodology 22 

could be extrapolated to other types of vegetation in further researches. 23 

3. Minor comments: 24 

a) We have homogenized the term “Normal distribution” to uppercase. 25 

b) Page 1, line 22: We have inserted Moderate Resolution Imaging 26 

Spectroradiometer before MODIS in the Abstract. 27 

c) Page 4, line 151: We have deleted the definition of MODIS. 28 

d) Page 6, line 235: We have deleted the definition of MODIS. 29 

e) Page 7, line 263: We have added mm after 360. 30 

f) Page 8, line 275: We have inserted “,”. 31 

g) Page 8, Table 1: We have deleted the dot. 32 

h) Page 10, line 346: We have modified the equation (7). 33 

i) Page 11, line 358: We have modified the graphs and included the scale and 34 

name of axis. 35 

j) Page 14, line 435: We have also modified this graph and the figure caption. 36 

k) We have reviewed the format references.  37 



Statistical Analysis for Satellite Index-Based Insurance to 38 

define Damaged Pasture Thresholds  39 

 40 

Juan José Martín-Sotoca
1
*, Antonio Saa-Requejo

2,3
, Rubén Moratiel

2,3
, Nicolas Dalezios

4
, Ioannis Faraslis

5
, 41 

and Ana María Tarquis
2,6 42 

jmartinsotoca@gmail.com, antonio.saa@upm.es, ruben.moratiel@upm.es, dalezios.n.r@gmail.com, 43 
faraslisgiannis@yahoo.gr, anamaria.tarquis@upm.es 44 

 45 
1
 Data Science Laboratory. European University, Madrid, Spain. 46 

2
 CEIGRAM, Research Centre for the Management of Agricultural and Environmental Risks, Madrid, Spain. 47 

3 
Dpto. Producción Agraria. Universidad Politécnica de Madrid, Spain. 48 

4
 Department of Civil Engineering. University of Thessaly, Volos, Greece. 49 

5
 Department of Planning and Regional Development. University of Thessaly, Volos, Greece. 50 

6 
Grupo de Sistemas Complejos. Universidad Politécnica de Madrid, Spain. 51 

 52 
* Correspondence to: jmartinsotoca@gmail.com 53 

Abstract: Vegetation indices based on satellite images, such as Normalized Difference Vegetation Index 54 
(NDVI), have been used in countries like USA, Canada and Spain for damaged pasture and forage insurance 55 
for the last years. This type of agricultural insurance is called “satellite index-based insurance” (SIBI). In 56 
SIBI, the occurrence of damage is defined through NDVI thresholds mainly based on statistics derived from 57 
Normal distributions. In this work a pasture area at the north of Community of Madrid (Spain) has been 58 
delimited by means of Moderate Resolution Imaging Spectroradiometer (MODIS) images. A statistical 59 
analysis of NDVI histograms was applied to seek for the best statistical distribution using maximum 60 
likelihood method. The results show that the Normal distribution is not the optimal representation and the 61 
General Extreme Value (GEV) distribution presents a better fit through the year. A comparison between 62 
Normal and GEV are showed respect to the probability under a NDVI threshold value along the year. This 63 
suggests that a priori distribution should not be selected and a percentile methodology should be used to 64 
define a NDVI damage threshold rather than the average and standard deviation, typically of Normal 65 
distributions. 66 

Keywords: NDVI, pasture insurance, GEV distribution, MODIS. 67 
 68 

Highlights 69 

 General Extreme Value (GEV) distribution provides the best fit to the NDVI 70 

historical observations. 71 

 Difference between Normal and GEV distributions are higher during spring and 72 

autumn, transition periods in the precipitation regimen. 73 

 NDVI damage threshold shows evident differences using Normal and GEV 74 

distributions covering both the same probability (24.20%).  75 



 NDVI damage threshold values based on percentiles calculation is proposed as an 76 

improvement in the index based insurance in damaged pasture. 77 

 78 

1. Introduction 79 

Agricultural insurance addresses the reduction of the risk associated with crop 80 

production and animal husbandry. The concept of index-based insurance (IBI) attempts to 81 

achieve settlements based on the value taken by an objective index rather than on a case-82 

by-case assessment of crop or livestock losses (Gommes and Kayitakier, 2013). Indeed, the 83 

goal of IBI policy remains to develop an affordable tool to all producers, including 84 

smallholders. Specifically, IBI can constitute a safety net against weather-related risks for 85 

all members of the farming community, thereby increasing food security and reducing the 86 

vulnerability of rural populations to weather extremes. Moreover, IBI can be associated 87 

with credits for insured smallholders, due to the fact that the risk of non-repayment for 88 

lenders is reduced, which encourages the use of agricultural inputs and equipment, 89 

leading to increased and more stable crop production. Over the past decade, the 90 

importance of weather index-based insurances (WIBI) for agriculture has been increasing, 91 

mainly in developing countries (Gommes and Kayitakier, 2013). This interest can be 92 

explained by the potential that IBI constitutes a risk management instrument for small 93 

farmers. Indeed, it can be considered within the context of renewed attention to 94 

agricultural development as one of the milestones of poverty reduction and increased 95 

food security, as well as the accompanying efforts from various stakeholders to develop 96 

agricultural risk management instruments, including agricultural insurance products. 97 

 98 

Farmers need to protect their land and crops specifically from drought in arid and 99 

semi-arid countries, since their production may directly depend mainly on the impacts of 100 

this particular natural hazard. Insurance for drought-damaged lands and crops is currently 101 

the main instrument and tool that farmers can resort in order to deal with agricultural 102 

production losses due to drought. Many of these insurances are using satellite vegetation 103 

indices (Rao, 2010), thus they are also called “satellite index-based insurances” (SIBI). SIBI 104 

have some advantages over WIBI, such as cost-effective information and acceptable 105 

spatial and temporal resolution. They do not, however, resolve the issue of basis risk, i.e. 106 

potential unfairness to insurance takers (Leblois, 2012). Moreover, the very nature of an 107 

index-based product creates the chance that an insured party may not be paid when they 108 

suffer loss. For this reason, in some countries (Spain) they have named this SIBI as 109 

“damaged in pasture” to cover not only drought even this one is the main cause. 110 

 111 



It is highly recognized that shortage of water has many implications to agriculture, 112 

society, economy and ecosystems. Specifically, its impact on water supply, crop 113 

production and rearing of livestock is substantial in agriculture. Knowing the likelihood of 114 

drought is essential for impact prevention (Dalezios, 2013). Drought severity assessment 115 

can be approached in different ways: through conventional indices based on 116 

meteorological data, such as temperature, rainfall, moisture, etc. (Niemeyer, 2008), as 117 

well as through remote sensing indices based on images usually taken by artificial 118 

satellites (Lovejoy et al., 2008) or drones. In the second group they are found Satellite 119 

Vegetation Indices (SVI), which can quantify “green vegetation”, and soil moisture through 120 

Soil Water Index (Gouveia et al., 2009) combining different spectral reflectances. Thus, 121 

they are one of the main ways to quantitatively assess drought severity. 122 

 123 

At the present time, several satellites (NOAA, TERRA, DEIMOS, etc.) can provide this 124 

spectral information with different spatial resolution. Some series with a high temporal 125 

frequency are freely available, those from NOAA satellites and Terra. The most widely 126 

known SVI is the Normalized Difference Vegetation Index (NDVI). It follows the principle 127 

that healthy vegetation mainly reflects the near-infrared frequency band. There are 128 

several other important SVI, such as Soil Adjusted Vegetation Index (SAVI) and Enhanced 129 

Vegetation Index (EVI) that incorporate soil effects and atmospheric impacts, respectively. 130 

An important point of this class of insurance is “when damage occurs”. To measure this, a 131 

SVI threshold value is defined mainly based on statistics that apply to Normal distributed 132 

variables: average and standard deviation. When current SVI values are bellow this 133 

threshold value for a period of time, insurance recognizes that a damage is occurring, 134 

most of the times drought, and then it begins to pay compensations to farmers. 135 

 136 

WIBI aims to protect farmers against weather-based disasters such as droughts, frosts 137 

and floods. A WIBI policy links possible insurance payouts with the weather requirements 138 

of the crop being insured: the insurer pays an indemnity whenever the realized value of 139 

the weather index meets a specified threshold. Whereas payouts in traditional insurance 140 

programs are related to actual crop damages, a farmer insured under a WIBI contract may 141 

receive a payout. A current difficulty to the wide implementation of WIBI is the weakness 142 

of indices. Indeed, there is certainly a need for more efficient indices based on the 143 

additional experience gained from the implementation of WIBI products in the developing 144 

world. Current trends in index technology are exciting and they actuate high expectations, 145 

especially the development of yield indices and the use of remote sensing inputs. Risk 146 

protection and insurance illiteracy constitute another difficulty, which has to be addressed 147 

by training and awareness-raising at all levels, from farmers to farmers’ associations, 148 

micro-insurance partners, as well as senior decision-makers in insurance, banking, and 149 



politics (Bailey, 2013). It is essential that all stakeholders (especially the insured) perfectly 150 

understand the principles of IBI, as otherwise the insurer, even the whole concept of 151 

insurance, is at risk of reputation loss for years or decades. 152 

 153 

There is currently a lack of technical capacity in the insurance sectors of most 154 

developing countries, which is a constraint to the scaling up and further development of 155 

WIBI (Gommes and Kayitakire, 2012). Specifically, although it is possible to design an index 156 

product and assist in roll-out, marketing, and sales, such assistance is not possible on a 157 

wide scale, simply because there is lack of qualified expertise. Indeed, it usually requires 158 

mathematical modeling, data manipulation, and expertise in crop simulation to design an 159 

index. Nevertheless, it is possible to structure insurance with multiple indices, but this 160 

increases the complexity of the product and makes it difficult for farmers to comprehend 161 

it. ‘Basis risk’ is also a particular problem for index products, which is frequently caused by 162 

the fact that measurements of a particular variable, such as rain, may differ at the 163 

insurer’s measurement site and in the farmer’s field. This also creates problems for 164 

insurance providers. Indeed, part of the reason the scaling up of index products has failed 165 

is that both insurers and farmers suffer from this basis risk. 166 

 167 

Currently, to mitigate impacts of climate-related reduced productivity of French 168 

grasslands, several studies have been developed to design new insurance scheme bases 169 

indemnity payouts to farmers on a forage production index (FPI) (Rumiguié et al., 2015; 170 

2017). Two examples of SIBIs are presented in two different countries: USA and Spain. In 171 

particular, in USA there are several insurance programs for pasture, rangeland and forage, 172 

which use various indexing systems (rainfall and vegetation indices), and are promoted by 173 

Unites States Department of Agriculture (USDA) (Maples et al., 2016; USDA, 2018). NDVI is 174 

the index chosen in the vegetation index program and it is obtained from AVHRR 175 

(Advanced Very High Resolution Radiometer) sensor onboard NOAA satellites. Average, 176 

maximum and minimum NDVI values are obtained from a historical series with the aim of 177 

calculating a trigger value. Insurer decides the quantity of compensation comparing this 178 

trigger with current value. On the other hand, in Spain there exists the “Insurance for 179 

Damaged Pasture” from “Spanish System of Agricultural Insurance” (BOE, 2013). This 180 

insurance defines damage event through NDVI values obtained from MODIS sensor 181 

onboard TERRA satellite of NASA. In this insurance, NDVI threshold values (      ) are 182 

calculated subtracting several times (              ) standard deviation to average 183 

within a homogeneous area: 184 

 185 

                      (1) 186 

 187 



where     are average and standard deviation of NDVI respectively. Average and standard 188 

deviation come of supposing Normal distributions in the historical data (Goward et al., 189 

1985; Hobbs, 1995; Fuller, 1998; Al-Bakri and Taylor, 2003; Turvey et al., 2012; De Leeuw 190 

et al. 2014). 191 

 192 

The aim of this paper is to find a more realistic statistical NDVI distribution without 193 

the “a priori” assumption that variables follow a Normal distribution, typically for current 194 

SIBI methodology. In order to achieve this, the Maximum Likelihood Method (MLM) is 195 

fitted to a historical series of NDVI values in a pasture land area in Spain (Community of 196 

Madrid). Different types of asymmetrical distributions are examined with the aim to find a 197 

better fit than Normal. To eliminate some noise in the historical series, an original method 198 

is applied consisting of using Hue-Saturation-Lightness (HSL) color model. Finally, Chi-199 

square test (   test) has been used to check the goodness of fit for all considered 200 

distributions. 201 

 202 

 203 

2. Materials and Methods  204 

2.1 Vegetation Index 205 

The differences of the reflectance of green vegetation in parts of the electromagnetic 206 

radiation spectrum, namely, visible and near infrared, provide an innovative method for 207 

monitoring surface vegetation from space. Specifically, the spectral behavior of vegetation 208 

cover in the visible (0.4-0.7mm) and near infrared (0.74-1.1mm, 1.3-2.5mm) offers the 209 

possibility to monitor from space the changes in the different stages of cultivated and 210 

uncultivated plants taking also into account the corresponding behavior of the 211 

surrounding microenvironment (Ortega-Farias et al., 2016). Indeed, from the visible part 212 

of the electromagnetic radiation spectrum it is possible to draw conclusions about the 213 

rate photosynthesis, whereas from near infrared inferences are extracted about the 214 

chlorophyll density and the amount of canopy in the plant mass, as well as the water 215 

content in the leaves, which is also linked directly to the rate of transpiration with impacts 216 

to physiological process of photosynthesis. Usually, data from NOAA/AVHRR series of 217 

polar orbit meteorological satellites are used with low spatial resolution (1.1 km2) and 218 

recurrence interval at least twice daily from the same location. Several algorithms 219 

combining channels of red (RED), near infrared (NIR) and green (GREEN) have been 220 

proposed, which provide indices sensitive to green vegetation. 221 

  222 



NDVI uses two frequency bands: red band (660 nm) and near-infrared band (860 nm). 223 

Absorption of red band is related to photosynthetic activity and reflectance of near-224 

infrared band is related to presence of vegetation canopies (Flynn, 2006). In drought 225 

periods, NDVI values can reduce significantly, therefore many researchers have used this 226 

index to measure drought events in recent years (Dalezios et al., 2014). To calculate NDVI 227 

we will use this mathematical formula: 228 

 229 

     
    

    
              (2) 230 

 231 

where IR and R are reflectance values in Near-Infrared band and Red band, respectively. 232 

NDVI values below zero indicate no photosynthetic activity and are characteristic of areas 233 

with large accumulation of water, such as rivers, lakes, or reservoirs. The higher is the 234 

NDVI value, the greater is the photosynthetic activity and vegetation canopies. 235 

 236 

In this paper, the NDVI is used, which is widely known index with a multitude of 237 

applications over time. The NDVI is suited for monitoring of total vegetation, since it partly 238 

compensates the changes in light conditions, land slope and field of view (Kundu et al., 239 

2016). In addition, clouds, water and snow show higher reflectance in the visible than in 240 

the near infrared, thus, they have negative NDVI values. Indeed, bare and rocky terrain 241 

show vegetation index values close to zero. Moreover, the NDVI constitutes a measure of 242 

the degree of absorption by chlorophyll in the red band of the electromagnetic spectrum. 243 

In summary, the NDVI is a reliable index of the chlorophyll density on the leaves, as well as 244 

the percentage of the leaf area density over land, thus, NDVI constitutes a credible 245 

measure for the assessment of dry matter (biomass) in various species vegetation cover 246 

(Dalezios, 2013). It is clear from the above that the NDVI is an index closely related to 247 

growth and development of plants, which can effectively monitor surface vegetation from 248 

space.  249 

 250 

The continuous increase of the NDVI value during the growing season reflects the 251 

vegetative and reproductive growth due to intense photosynthetic activity, as well as the 252 

satisfactory correlation with the final biomass production at the end of a growing period. 253 

On the other hand, gradual decrease of the NDVI values signifies stress due to lack of 254 

water or extremely high temperatures for the plants, leading to a reduction of the 255 

photosynthetic rate and ultimately a qualitative and quantitative degradation of plants. 256 

NDVI values above zero indicate the existence of green vegetation (chlorophyll), or bare 257 

soil (values around zero), whereas values below zero indicate the existence of water, 258 

snow, ice and clouds. 259 



 260 

2.2 Database 261 

Scientific research satellite Terra (EOS AM-1) has been chosen to provide necessary 262 

information to calculate NDVI in the study area. This satellite was launched into orbit by 263 

NASA on December 18, 1999. MODIS sensor aboard this satellite collects information of 264 

different reflectance bands. MODIS information is organized by "products". The product 265 

used in this study was MOD09A1 (LP DAAC, 2014). MOD09A1 incorporates seven 266 

frequency bands: Band 1 (620-670 nm), band 2 (841-876 nm), band 3 (459-479 nm), band 267 

4 (545-565 nm), 5 band (1230-1250 nm), band 6 (1628-1652 nm) and band 7 (2105-2155 268 

nm). The bands used to calculate NDVI are: band 1 for red frequency and band 2 for near-269 

infrared frequency. MOD09A1 provides georeferenced images with pixel resolution of 270 

500m x 500m. This product has a mix of the best reflectance measures of each pixel in an 271 

8-days period. The period of time selected on this study was from 2002 to 2017. 272 

 273 

Daily data from a principal station of the meteorological network were utilized during 274 

the period studied (2002 – 2017). Meteorological station is located in 40°41'46"N 275 

3°45'54"W (elevation 1004 m a.s.l.), less than 2 km from the study area (AEMET, 2017). 276 

 277 

2.3 Site description 278 

Six pixels (500m x 500m) are considered located in a pasture area at the north of the 279 

Community of Madrid (Spain) between the municipalities of “Soto del Real” and 280 

“Colmenar Viejo”. The study area is located between meridians 3° 45' 00" and 3° 47' 00" 281 

W and parallels 40° 42' 00" and 40° 44' 00" N approximately (see Fig. 1). 282 

 283 

 284 



 285 

Figure 1. The study area is in the centre of the Iberian Peninsula (Community of Madrid). RGB 286 

image of six pixels area used for case study is shown (Google Earth´s and MODIS images). 287 

 288 

The annual mean temperature ranges during the study period from 12.7°C to 13.8°C, 289 

and annual mean precipitation ranges from 360 mm to 781 mm.  The stations studied 290 

were identified semi-arid (annual ratio P/ETo between 0.2 and 0.5) according to the global 291 

aridity index developed by the United-Nations Convention to Combat Desertification 292 

(UNEP, 1997). According to the climatic classification of Köppen (Kottek et al., 2006), this 293 

area presents a continental Mediterranean climate temperate with dry and temperate 294 

summer (type Csb). Temperature and precipitation of this site, based on 20 years, is 295 

presented in Table 1. 296 

 297 

Due to high soil moisture conditions, ash is the dominant tree, forming large 298 

agroforestry systems ("dehesas") that are used for pasture. These are ecosystems with 299 

high biodiversity. 300 

 301 

Table 1. Monthly average of maximum temperature (Tmax), average temperature (Tavg), 302 

minimum temperature (Tmin) and precipitation (P). Study period from 1997 to 2017. 303 

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Tmax (ºC) 7.1 9.3 12.7 15.4 19.5 24.6 28.6 28.1 23.7 16.8 11.1 7.4 17.0 

Tavg (ºC) 3.6 4.8 7.7 10.1 13.7 18.4 22.0 21.7 17.9 12.3 7.1 4.1 12.0 



Tmin (ºC) 0.0 0.3 2.6 4.8 7.8 12.1 15.4 15.3 12.0 7.8 3.0 0.8 6.8 

P (mm) 67.2 50.0 38.5 62.2 62.3 30.2 18.9 16.4 34.2 79.3 86.2 82.6 627.9 

 304 

2.4 HSL model 305 

There is no doubt that NDVI time-series from satellite sensors carry useful 306 

information, which can be used for characterizing seasonal dynamics of vegetation 307 

(Fensholt et al., 2012; Forkel et al., 2013). However, due to unfavorable atmospheric 308 

conditions during the data acquisition, NDVI time-series curve often contains noise 309 

(Motohka et al., 2011; Park, 2013). Although most of the NDVI data products are 310 

temporally composited through maximum value compositing (MVC) method (Holben, 311 

1986) to retain relatively cloud-free data, residual noise still exists in the data, which will 312 

affect the accuracy of the NDVI value. 313 

 314 

Therefore, usually it is necessary to reconstruct of NDVI time-series before extracting 315 

information from the noisy data. There are several techniques that have been applied to 316 

reduce noise and reconstruct NDVI series, a summary of these can be found in Wei et al. 317 

(2016). In this study we applied a simple filtering method based on the Hue-Saturation-318 

Lightness (HSL) color model inspired by the work presented by Tackenberd (2007). 319 

 320 

HSL color model is a cylindrical representation of RGB (Red-Green-Blue) points. Their 321 

components are Hue (color type), Saturation (level of color purity) and Lightness (color 322 

luminosity). Hue is the angular component and it is more intuitive for humans since it is 323 

directly related to the color wheel (see Fig. 2). 324 

 325 

 326 

Figure 2. Colour wheel of Hue (on the left) and the HSL model (on the right). 327 

Saturation is the radial component and near-zero values indicate grey colors. 328 

Lightness is the axial radial versus axial component, zero lightness produces black and full 329 

lightness produces white. 330 



 331 

The NDVI series are filtered using the following HSL criterion: NDVI values are valid if 332 

HSL Saturation is greater than 0.15. In this way, the values of the series that have grey 333 

color correlate with pasture covered by clouds or snow are eliminated. This type of filter 334 

based in HSL color space has been used on digital camera images monitoring vegetation 335 

phenology (Tackenberg, 2007; Crimmins and Crimmins, 2008; Graham et al., 2009). 336 

However, we have not found the use of this HSL criterion in the context of NDVI remote 337 

sensing images. 338 

 339 

2.5 Maximum Likelihood Method (MLM) 340 

MLM estimates the set of parameters {         } for a specific statistical 341 

distribution that maximizes the “likelihood function” or the “joint density function”: 342 

   (   )  ∏  (   
 
            )      (3) 343 

where   (       ) is the set of data,   (         ) is the vector of parameters 344 

and  (            ) is the density function of the statistical model. 345 

When maximization with respect to the vector of parameters is carried out, the 346 

estimated parameters ( ̂  ̂  ̂  ̂  ) for the proposed statistical distribution are obtained 347 

(Larson, 1982). Properties of estimated parameters are: invariance, consistency and 348 

asymptotically unbiased. 349 

In the case of a Gaussian model, the estimated statistics   and   are defined by 350 

accurate expressions as follows: 351 
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where   ̂ is the sample mean and  ̂ is the sample standard deviation of the data set. 353 

In this study we will apply MLM to estimate the parameters for 4 probability density 354 

functions (PDF). In Table 2, a brief description is presented of these PDF candidates: 355 

Normal, Gamma, Beta and GEV. To do so, the following MATLAB functions have been 356 

used: “normfit”, “gamfit”, “betafit” and “gevfit” (respectively). 357 

 358 

Table 2. Candidate Probability Density Functions (PDF). 359 

PDF NAME PDF EXPRESSION PDF PARAMETERS 
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 361 

2.6 Goodness of fit (Chi-square test) 362 

   test can be used to determine to what extent observed frequencies differ from 363 

frequencies expected for a specific statistical model. The most important points of the 364 

theory are briefly presented in (Cochran, 1952). 365 

Let  (   ) be a theoretical density function of a random variable   which depends on 366 

parameters   (         ) and let         be a sample of   grouped into k classes with    367 

data per class i. 368 

Firstly, the following hypothesis is set: 369 

(H0) observed data fit theoretical distribution  (   ). 370 

Then the test statistic   
   is defined as: 371 

  
  ∑

(     )
 

  

 
           (5) 372 

where    is the number of data or observed frequency and       (       ) is the 373 

expected frequency for class i.  (       ) is the theoretical interval probability defined for 374 

class i. 375 

A level of significance is also set as: 376 

   (                     )      (6) 377 

Finally, the following decision rule is applied: “reject the theoretical distribution at 378 

significance level   if: 379 

  
   (         )

       (7) 380 



where  (         )
 is a    distribution with k-m-1 degrees of freedom (m is the number of 381 

parameters, k is the number of classes). 382 

 383 

 384 

3. Results and Discussion 385 

3.1 HSL filtering criterion 386 

NDVI series (from 2002 to 2017) were obtained for each pixel of the study area using 387 

frequency bands provided by MODIS product named MOD09A1. These series contain 388 

some irregular values that can skew NDVI pattern. Therefore, the six series (six pixels) 389 

were filtered using the HSL criterion. In Fig. 3 is shown an example of how HSL filtering 390 

criterion works with a 10 years NDVI series (from 2002 to 2012). 391 



 392 

Figure 3. HSL filtering criterion applied to a 10 years NDVI series. Top graph shows the real NDVI 393 

series. Bottom graph shows the HSL filtered NDVI series. 394 

The abrupt changes in the NDVI values, mainly observed during raining seasons such 395 

as autumn and winter, are efficiently eliminated. Not to be a high computational 396 

demanding method is one of the main advantages of HSL filtering method. Therefore, this 397 

method will allow us to obtain more robust NDVI values to be used in the statistical 398 

analysis. 399 

 400 

3.2 Maximum Likelihood Method (MLM) and Chi square test 401 



NDVI values were obtained consecutively every 8 days from MODIS product starting 402 

at 1st of January of every year, in such a way that 46 NDVI observations were considered 403 

for each year. Therefore, 46 Random Variables (RV) were defined when taking into 404 

account all the years of this study. 405 

In Table 3, every RV (named as “Interval”) can be seen together with the number of 406 

available NDVI observations. Each RV collects the observations coming from the six 407 

selected pixels. The start intervals of each season are: interval 45 for winter, interval 11 408 

for spring, interval 23 for summer and interval 34 for autumn. 409 

 410 

Table 3. Number of observations for every RV (named as Interval). 411 

RANDOM 
VARIABLE 

# 
OBSERVATIONS 

  
RANDOM 
VARIABLE 

# 
OBSERVATIONS 

Interval 1 85   Interval 24 96 

Interval 2 84   Interval 25 96 

Interval 3 96   Interval 26 96 

Interval 4 96   Interval 27 96 

Interval 5 95   Interval 28 96 

Interval 6 90   Interval 29 96 

Interval 7 86   Interval 30 96 

Interval 8 83   Interval 31 96 

Interval 9 96   Interval 32 96 

Interval 10 96   Interval 33 94 

Interval 11 74   Interval 34 96 

Interval 12 88   Interval 35 96 

Interval 13 88   Interval 36 85 

Interval 14 88   Interval 37 90 

Interval 15 96   Interval 38 96 

Interval 16 92   Interval 39 92 

Interval 17 88   Interval 40 90 

Interval 18 96   Interval 41 96 

Interval 19 95   Interval 42 89 

Interval 20 96   Interval 43 95 

Interval 21 95   Interval 44 88 

Interval 22 96   Interval 45 90 

Interval 23 96   Interval 46 90 

 412 

 413 



In Fig. 4, a plot with NDVI sample means of all RV with a start and end reference of 414 

the astronomical seasons is shown. The typical evolution of the NDVI along a year can be 415 

seen. 416 

 417 

 418 

Figure 4. NDVI sample means of 46 random variables (RV) are shown as well as start and end 419 

reference of every season. Study period from 2002 to 2017. 420 

 421 

The observed evolution of NDVI through the different seasons is typical of the pasture 422 

in this area. The summer presents the lowest mean values which begin to increase in 423 

autumn achieving a maximum mean value of 0.60 or 0.65 during winter. In the middle of 424 

the spring NDVI decrease again, approaching the lowest mean value of 0.28 425 

approximately. 426 

 427 

Taking into account these values, dense vegetation, in this study pasture, is found 428 

from middle of October (interval 37) till the end of May (interval 19). It is in this period 429 

where the precipitation concentrates (see Table 1). During the summer, the NDVI mean 430 

values are lower than 0.3 corresponding with low precipitation and high temperatures. 431 

  432 

Following the work of Escribano-Rodriguez et al. (2014), there is a relationship of 433 

pasture damage and a NDVI value around 0.40. Even if the authors point out that this 434 

value is highly variable depending on the location, we can see that summer season in this 435 

case study is under this value (see Fig. 4). This can explain that “Insurances for Damaged 436 

Pasture” usually do not apply in these dates due to the arid environment (BOE, 2013). 437 

 438 

MLM has been applied to model these 46 RV. Parameters have been calculated for 4 439 

PDF (see Table 2) which are the candidates to be the best fit. To check the goodness of the 440 



fit of PDF candidates, Chi square test (χ2 test) has been used from 7 classes to 14 classes 441 

meeting the requirement that each class has at least five observations. The level of 442 

significance ( ) was fixed to 5% for all the candidates. 443 

 444 

Twelve intervals (from 23 to 34) corresponding to months of July, August and 445 

September have been excluded of this analysis since these intervals fall into the dry 446 

season in the study area, normally not cover by any SIBI. Therefore, calculations were 447 

carried out over 34 intervals. Fig. 5 shows the percentage of intervals that fit for every PDF 448 

candidate. The number of classes used in χ2 test is represented at X-axis (from 7 to 14 449 

classes). 450 

 451 

Figure 5. Percentage of fitted intervals (Y axis) for each PDF candidate (Normal, Gamma, Beta and 452 

GEV distributions) in function of the number of classes (X axis). 453 

 454 

Fig. 5 indicates that GEV distributions explain more intervals (more than 40% for the 455 

majority of the class analysis) than Normal, Gamma or Beta distributions. An important 456 

difference between the Normal distribution and the rest of the PDF used in this work is its 457 

symmetry and kurtosis. Many of the observed NDVI distributions present a clear 458 

asymmetry and long tails in one or both sides that causes Normal distribution not to be 459 

the optimal fit. 460 

 461 

There is a relationship between seasons and the number of intervals that fit correctly. 462 

We found that GEV distributions explain better some intervals of spring and autumn since 463 

their observed distributions are very asymmetric. On the other hand, we did not find an 464 

important difference in winter, since its observed distributions are mainly symmetric. 465 



Therefore, the methodology using the NDVI Normal assumption applied to design an 466 

index-based insurance will not be feasible in many intervals of this study. 467 

  468 

Table A1 at Appendix A shows the estimated parameters for each PDF and each 469 

interval calculated by the MLM. These parameters were used to compare the estimated 470 

PDF with the NDVI observed values on different times through the seasons. The following 471 

intervals are shown as examples of better GEV fit: interval 4 and 8 (for winter, see Fig. 6), 472 

interval 17 and 21 (for spring, see Fig. 7) and interval 36 and 40 (for autumn, see Fig. 8). In 473 

these plots, observed frequency is compared versus Normal and GEV density distributions 474 

calculated by MLM. 475 

 476 

 477 

Figure 6. Comparison between observed NDVI frequency, GEV and Normal probability density 478 

functions (PDF) on two different dates. Intervals 4 and 8 are examples for winter. 479 

 480 

Figure 7. Comparison between observed NDVI frequency, GEV and Normal probability density 481 

functions (PDF) on two different dates. Intervals 17 and 21 are examples for spring. 482 

 483 



 484 

Figure 8. Comparison between observed NDVI frequency, GEV and Normal probability density 485 

functions (PDF) on two different times. Intervals 36 and 41 are examples for autumn. 486 

During winter (see Fig. 6) the observed NDVI distribution presents negative skewness. 487 

Then, there is a higher frequency of high NDVI values corresponding with significant 488 

precipitation. During spring an evolution in the skewness is observed passing from 489 

negative to positive, and so, the lower NDVI values become the higher probable. Finally, 490 

during autumn precipitation begins and from positive pass to negative skewness and 491 

higher NDVI values are possible. We can observe that Normal distribution has no flexibility 492 

to follow this dynamic in the distributions on each time. This comparison is done in a 493 

sequential order for the whole of intervals in Figures A1, A2, A3 and A4 at Appendix A. 494 

 495 

The more skewness and kurtosis depart from those of the Normal distribution the 496 

larger the errors affecting the insurance designed based on (Turvey et al., 2012). It is an 497 

expected result as pasture scenario is quite different from the development of a crop, 498 

where Normal distributions in the NDVI values are more expected. This high heterogeneity 499 

in time and space of NDVI estimated on pasture has been pointed out in several works 500 

(Martin-Sotoca et al, 2018). At the same time, more different is the observed NDVI 501 

frequency from a Normal distribution less representative is the average, and so, the 502 

median becomes a more representative value. 503 

 504 

3.3 Insurance context 505 

The use of NDVI thresholds in damaged pasture context was presented in the 506 

introduction section, being an example of using the "Insurance for Damaged Pasture" in 507 

Spain. We have chosen this last insurance to compare the results between applying 508 

Normal and GEV distribution methodologies. In this particular case the NDVI threshold 509 

(      ) was calculated using the expression              (where     are average and 510 

standard deviation of NDVI distributions respectively, assuming the Normal hypothesis). 511 

 512 



The probability of being below        (using        , first damage level in the 513 

insurance) at every interval has been calculated assuming the Normal hypothesis. As it 514 

was expected, this value is always 24.2% (see third column in Table 4). The probability of 515 

being below        has also been calculated using GEV distributions obtained in this 516 

study. The probability obtained by GEV distributions is mostly lower than the Normal 517 

distributions in spring, autumn and winter (see Table 4) that is the working period of the 518 

insurance. 519 

 520 

Observing where in time are localized the highest relative error in probabilities (fifth 521 

column in Table 4), in absolute values, intervals corresponding to the end of winter, 522 

second middle of spring and the beginning of autumn present errors higher than 10%. This 523 

could explain why it is in spring and autumn when more disagreements exist between 524 

farmers and insurance company in claims.   525 

 526 

Table 4 – First column: time intervals of approximately 8 days along the year. Second column: NDVI 527 

thresholds (NDVIth) based on a Normal distribution applying        . Third column: percentages of 528 

area below the NDVIth when Normal distributions are applied. Fourth column: percentages of area 529 

below the NDVIth when GEV distributions are applied. Fifth column: relative area error of GEV 530 

compared to the Normal distribution. 531 

 532 

RANDOM 
VARIABLE 

NORMAL GEV 

NDVIth Prob. Prob. Error (%) 

Interval 1 0.535 24.20% 24.37% 0.70% 

Interval 2 0.541 24.20% 23.18% -4.21% 

Interval 3 0.541 24.20% 23.27% -3.84% 

Interval 4 0.543 24.20% 23.27% -3.84% 

Interval 5 0.545 24.20% 24.17% -0.12% 

Interval 6 0.534 24.20% 21.48% -11.24% 

Interval 7 0.528 24.20% 24.01% -0.79% 

Interval 8 0.546 24.20% 20.70% -14.46% 

Interval 9 0.555 24.20% 21.30% -11.98% 

Interval 10 0.561 24.20% 22.28% -7.93% 

Interval 11 0.567 24.20% 23.49% -2.93% 

Interval 12 0.572 24.20% 23.75% -1.86% 

Interval 13 0.571 24.20% 23.20% -4.13% 

Interval 14 0.570 24.20% 24.29% 0.37% 

Interval 15 0.571 24.20% 23.47% -3.02% 



Interval 16 0.560 24.20% 23.26% -3.88% 

Interval 17 0.495 24.20% 21.29% -12.02% 

Interval 18 0.484 24.20% 21.58% -10.83% 

Interval 19 0.442 24.20% 23.06% -4.71% 

Interval 20 0.381 24.20% 27.20% 12.40% 

Interval 21 0.342 24.20% 29.46% 21.74% 

Interval 22 0.323 24.20% 28.84% 19.17% 

Interval 35 0.257 24.20% 18.98% -21.57% 

Interval 36 0.285 24.20% 28.57% 18.06% 

Interval 37 0.333 24.20% 25.90% 7.02% 

Interval 38 0.398 24.20% 24.27% 0.29% 

Interval 39 0.454 24.20% 23.79% -1.69% 

Interval 40 0.503 24.20% 22.81% -5.74% 

Interval 41 0.491 24.20% 23.23% -4.01% 

Interval 42 0.517 24.20% 24.66% 1.90% 

Interval 43 0.507 24.20% 23.13% -4.42% 

Interval 44 0.514 24.20% 23.49% -2.93% 

Interval 45 0.515 24.20% 23.70% -2.07% 

Interval 46 0.509 24.20% 23.33% -3.60% 

 533 

In Table 4, Normal        have been used to calculate the probability in GEV distributions. 534 

An alternative calculation can be the use of Normal probability (24.2%) to calculate new 535 

       based on GEV (see Table 5). It can be seen that new        obtained by GEV 536 

distributions are mostly upper than thresholds using Normal distributions in spring, 537 

autumn and winter. Considering these results we find that damage thresholds calculated 538 

by GEV methodology are mostly above that one’s calculated by Normal methodology. 539 

Again, intervals corresponding to the end of winter, second middle of spring and the 540 

beginning of autumn present        relative errors higher than 1% in absolute values 541 

(fourth column in Table 5). 542 

 543 

Table 5 - First column: time intervals of approximately 8 days along the year. Second column: NDVI 544 

thresholds (NDVITh) based on a Normal distribution (Normal) applying        . Third column: 545 

NDVITh based on a GEV distribution (GEV) using 24.2% as the area below the NDVITh. Fourth column: 546 

relative NDVITh error of GEV compared to the Normal distribution. 547 

 548 



RANDOM 
VARIABLE 

NDVITh  

Normal GEV Error (%) 

Interval 1 0.535 0.534 -0,19% 

Interval 2 0.541 0.543 0,37% 

Interval 3 0.541 0.543 0,37% 

Interval 4 0.543 0.545 0,37% 

Interval 5 0.545 0.545 0,00% 

Interval 6 0.534 0.543 1,69% 

Interval 7 0.528 0.528 0,00% 

Interval 8 0.546 0.558 2,20% 

Interval 9 0.555 0.563 1,44% 

Interval 10 0.561 0.567 1,07% 

Interval 11 0.567 0.569 0,35% 

Interval 12 0.572 0.574 0,35% 

Interval 13 0.571 0.574 0,53% 

Interval 14 0.570 0.569 -0,18% 

Interval 15 0.571 0.573 0,35% 

Interval 16 0.560 0.563 0,54% 

Interval 17 0.495 0.510 3,03% 

Interval 18 0.484 0.498 2,89% 

Interval 19 0.442 0.447 1,13% 

Interval 20 0.381 0.374 -1,84% 

Interval 21 0.342 0.334 -2,34% 

Interval 22 0.323 0.318 -1,55% 

Interval 35 0.257 0.262 1,95% 

Interval 36 0.285 0.278 -2,46% 

Interval 37 0.333 0.327 -1,80% 

Interval 38 0.398 0.398 0,00% 

Interval 39 0.454 0.455 0,22% 

Interval 40 0.503 0.508 0,99% 

Interval 41 0.491 0.494 0,61% 

Interval 42 0.517 0.516 -0,19% 

Interval 43 0.507 0.510 0,59% 

Interval 44 0.514 0.516 0,39% 

Interval 45 0.515 0.516 0,19% 

Interval 46 0.509 0.511 0,39% 

 549 

 550 

4. Conclusions 551 



According to the results obtained in the study area using MLM and    test, it can be 552 

concluded that Normal distributions are not the best fit to the NDVI observations, and 553 

GEV distributions provide a better approximation. 554 

 555 

The difference between Normal and GEV assumption is more evident in the transition 556 

from winter to summer (spring), where NDVI values decrease, and then from summer to 557 

winter (autumn) presenting the opposite behavior of increasing NDVI values. In both 558 

periods asymmetrical distributions were found, negative skewness for the spring 559 

transition and positive skewness for the autumn transition. During both periods the 560 

variability in precipitation and temperatures were higher in this location. 561 

 562 

We have found differences if GEV assumption is selected instead of the Normal one 563 

when defining damaged pasture thresholds (      ). The use of these different 564 

assumptions should be taken into account in future insurance implementations due to the 565 

important consequences of supposing a damage event or not. We propose the use of 566 

quantiles in observed NDVI distributions instead of average and standard deviation, 567 

typically of Normal distributions, to calculate new       . 568 

 569 

 570 
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Appendix A 577 

 578 

Table A1 - Maximum Likelihood parameters calculated for 4 PDF. 579 

RANDOM 
VARIABLE 

NORMAL GAMMA BETA GEV 

    a b   

Interval 1 0.591 0.081 53.31 0.011 21.45 14.82 0.563 0.080 -0.297 

Interval 2 0.589 0.069 71.14 0.008 30.62 21.40 0.571 0.073 -0.477 

Interval 3 0.583 0.060 94.15 0.006 39.56 28.34 0.567 0.063 -0.457 

Interval 4 0.585 0.060 91.88 0.006 39.58 28.05 0.570 0.064 -0.468 

Interval 5 0.588 0.061 93.92 0.006 38.83 27.25 0.568 0.061 -0.340 

Interval 6 0.582 0.068 70.28 0.008 30.67 22.05 0.577 0.083 -0.846 

Interval 7 0.584 0.080 52.52 0.011 22.16 15.82 0.559 0.082 -0.366 

Interval 8 0.596 0.071 65.37 0.009 28.89 19.59 0.591 0.081 -0.833 

Interval 9 0.601 0.066 76.02 0.008 34.31 22.84 0.590 0.070 -0.652 

Interval 10 0.613 0.073 63.83 0.010 27.80 17.62 0.598 0.079 -0.572 

Interval 11 0.621 0.078 58.72 0.011 24.33 14.86 0.600 0.083 -0.451 

Interval 12 0.624 0.073 68.33 0.009 28.01 16.94 0.603 0.078 -0.431 

Interval 13 0.624 0.075 66.22 0.009 26.23 15.85 0.604 0.080 -0.476 

Interval 14 0.631 0.088 50.23 0.013 18.71 10.92 0.603 0.090 -0.342 

Interval 15 0.630 0.084 53.60 0.012 21.17 12.45 0.607 0.089 -0.448 

Interval 16 0.627 0.096 38.75 0.016 16.08 9.59 0.602 0.103 -0.474 

Interval 17 0.577 0.117 20.47 0.028 10.24 7.58 0.560 0.127 -0.692 

Interval 18 0.568 0.120 20.52 0.028 9.71 7.42 0.552 0.136 -0.718 

Interval 19 0.523 0.116 19.46 0.027 9.52 8.68 0.495 0.125 -0.493 

Interval 20 0.452 0.101 20.99 0.022 10.98 13.31 0.401 0.077 0.078 

Interval 21 0.409 0.095 19.94 0.021 11.18 16.13 0.354 0.060 0.325 

Interval 22 0.379 0.080 24.66 0.015 14.41 23.52 0.333 0.046 0.385 

Interval 23 0.353 0.073 26.54 0.013 15.85 29.01 0.311 0.036 0.456 

Interval 24 0.328 0.056 38.36 0.009 24.22 49.65 0.298 0.033 0.287 

Interval 25 0.305 0.044 53.52 0.006 35.62 81.20 0.282 0.028 0.210 

Interval 26 0.298 0.034 78.93 0.004 54.47 128.55 0.283 0.029 -0.064 

Interval 27 0.289 0.026 126.85 0.002 88.33 217.15 0.278 0.021 -0.030 

Interval 28 0.282 0.022 166.17 0.002 119.50 305.03 0.274 0.022 -0.322 

Interval 29 0.278 0.021 179.09 0.002 127.93 332.63 0.269 0.018 -0.085 

Interval 30 0.273 0.019 203.11 0.001 147.67 393.21 0.266 0.019 -0.247 

Interval 31 0.272 0.022 166.83 0.002 120.11 321.95 0.262 0.018 -0.059 

Interval 32 0.280 0.034 75.63 0.004 52.36 134.30 0.264 0.023 0.118 

Interval 33 0.285 0.034 82.05 0.004 54.90 137.68 0.270 0.020 0.122 

Interval 34 0.295 0.057 33.26 0.009 21.15 50.37 0.268 0.024 0.363 



Interval 35 0.312 0.079 19.70 0.016 11.83 25.94 0.275 0.038 0.300 

Interval 36 0.369 0.121 10.81 0.034 6.11 10.33 0.298 0.063 0.480 

Interval 37 0.432 0.141 9.45 0.046 5.21 6.81 0.370 0.120 -0.080 

Interval 38 0.487 0.128 13.88 0.035 7.25 7.63 0.445 0.127 -0.321 

Interval 39 0.529 0.107 23.56 0.022 11.39 10.16 0.497 0.110 -0.390 

Interval 40 0.570 0.096 34.02 0.017 15.10 11.40 0.548 0.105 -0.533 

Interval 41 0.554 0.090 36.42 0.015 16.90 13.64 0.531 0.096 -0.471 

Interval 42 0.583 0.095 37.29 0.016 15.56 11.11 0.551 0.094 -0.295 

Interval 43 0.574 0.097 34.27 0.017 14.93 11.07 0.550 0.103 -0.482 

Interval 44 0.572 0.083 47.13 0.012 20.40 15.26 0.549 0.086 -0.425 

Interval 45 0.576 0.088 42.59 0.014 18.17 13.36 0.550 0.090 -0.396 

Interval 46 0.570 0.088 41.98 0.014 18.11 13.66 0.546 0.092 -0.445 

 580 

 581 

 582 

Figure A1. Observed NDVI, GEV and Normal probability density functions (PDF) from interval 45 to 583 
interval 10 (from 19 December to 21 March) representing winter. 584 

 585 



 586 

Figure A2. Observed NDVI, GEV and Normal probability density functions (PDF) from interval 11 to 587 
interval 22 (from 22 March to 25 June) representing spring. 588 

 589 

 590 

Figure A3. Observed NDVI, GEV and Normal probability density functions (PDFs) from interval 23 591 
to interval 33 (from 26 June to 21 September) representing summer. 592 

 593 



 594 

Figure A4. Observed NDVI, GEV and Normal PDFs from interval 34 to interval 44 (from 22 595 

September to 18 December) representing autumn. 596 

597 
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