

1 **TO REFEREE #2**

2 Thank you very much for all your suggestions and comments. Next, we respond all your
3 suggestions in order.

4 1. With respect to the differences found between the use of Normal distributions and
5 GEV distributions, could authors affirm that such differences are statistically
6 significant?:

7 We recognize the limitations of this study in the selected time period. We were
8 limited to work with 16 years and approximately 96 observations per RV. However,
9 we have found that observed NDVI distributions are mainly asymmetric in spring
10 and autumn, inconsistent with symmetric Normal fitting.

11 In addition, we have included that the level of significance of the Chi-Square fit was
12 fixed to 5% for all the candidates (this information did not appear in the first
13 version and it will be included now).

14 Anyway, the objective of this study is to generate some reasonable doubts about
15 the convenience of using Normal distributions in all cases, and to notice that
16 others alternatives to Normal distributions could exist. GEV distribution is an
17 example of better fit than Normal one with the limitations explained above.

18 2. Did the authors apply this methodology on geographic areas of different
19 characteristics with respect to the characteristics of the area analyzed in the
20 present study?

21 In this study we have only focused on pasture and methodology applicable to
22 calculate damaged pasture thresholds. However, we also think this methodology
23 could be extrapolated to other types of vegetation in further researches.

24 3. Minor comments:

25 a) We have homogenized the term “Normal distribution” to uppercase.
26 b) Page 1, line 22: We have inserted Moderate Resolution Imaging
27 Spectroradiometer before MODIS in the Abstract.
28 c) Page 4, line 151: We have deleted the definition of MODIS.
29 d) Page 6, line 235: We have deleted the definition of MODIS.
30 e) Page 7, line 263: We have added mm after 360.
31 f) Page 8, line 275: We have inserted “.”.
32 g) Page 8, Table 1: We have deleted the dot.
33 h) Page 10, line 346: We have modified the equation (7).
34 i) Page 11, line 358: We have modified the graphs and included the scale and
35 name of axis.
36 j) Page 14, line 435: We have also modified this graph and the figure caption.
37 k) We have reviewed the format references.

38 **Statistical Analysis for Satellite Index-Based Insurance to**
39 **define Damaged Pasture Thresholds**

40

41 **Juan José Martín-Sotoca^{1*}, Antonio Saa-Requejo^{2,3}, Rubén Moratiel^{2,3}, Nicolas Dalezios⁴, Ioannis Faraslis⁵,**
42 **and Ana María Tarquis^{2,6}**

43 **jmartinsotoca@gmail.com, antonio.saa@upm.es, ruben.moratiel@upm.es, dalezios.n.r@gmail.com,**
44 **faraslisgiannis@yahoo.gr, anamaria.tarquis@upm.es**

45

46 ¹ Data Science Laboratory. European University, Madrid, Spain.

47 ² CEIGRAM, Research Centre for the Management of Agricultural and Environmental Risks, Madrid, Spain.

48 ³ Dpto. Producción Agraria. Universidad Politécnica de Madrid, Spain.

49 ⁴ Department of Civil Engineering. University of Thessaly, Volos, Greece.

50 ⁵ Department of Planning and Regional Development. University of Thessaly, Volos, Greece.

51 ⁶ Grupo de Sistemas Complejos. Universidad Politécnica de Madrid, Spain.

52

53 * Correspondence to: jmartinsotoca@gmail.com

54 **Abstract:** Vegetation indices based on satellite images, such as Normalized Difference Vegetation Index
55 (NDVI), have been used in countries like USA, Canada and Spain for damaged pasture and forage insurance
56 for the last years. This type of agricultural insurance is called “satellite index-based insurance” (SIBI). In
57 SIBI, the occurrence of damage is defined through NDVI thresholds mainly based on statistics derived from
58 Normal distributions. In this work a pasture area at the north of Community of Madrid (Spain) has been
59 delimited by means of **Moderate Resolution Imaging Spectroradiometer** (MODIS) images. A statistical
60 analysis of NDVI histograms was applied to seek for the best statistical distribution using maximum
61 likelihood method. The results show that the Normal distribution is not the optimal representation and the
62 General Extreme Value (GEV) distribution presents a better fit through the year. A comparison between
63 Normal and GEV are showed respect to the probability under a NDVI threshold value along the year. This
64 suggests that a priori distribution should not be selected and a percentile methodology should be used to
65 define a NDVI damage threshold rather than the average and standard deviation, typically of Normal
66 distributions.

67 **Keywords:** NDVI, pasture insurance, GEV distribution, MODIS.

68

69 **Highlights**

70

- 71 **General Extreme Value (GEV) distribution provides the best fit to the NDVI historical observations.**

72

- 73 **Difference between Normal and GEV distributions are higher during spring and autumn, transition periods in the precipitation regimen.**

74

- 75 **NDVI damage threshold shows evident differences using Normal and GEV distributions covering both the same probability (24.20%).**

76 • **NDVI damage threshold values based on percentiles calculation is proposed as an**
77 **improvement in the index based insurance in damaged pasture.**

78

79 **1. Introduction**

80 Agricultural insurance addresses the reduction of the risk associated with crop
81 production and animal husbandry. The concept of index-based insurance (IBI) attempts to
82 achieve settlements based on the value taken by an objective index rather than on a case-
83 by-case assessment of crop or livestock losses (Gommes and Kayitakier, 2013). Indeed, the
84 goal of IBI policy remains to develop an affordable tool to all producers, including
85 smallholders. Specifically, IBI can constitute a safety net against weather-related risks for
86 all members of the farming community, thereby increasing food security and reducing the
87 vulnerability of rural populations to weather extremes. Moreover, IBI can be associated
88 with credits for insured smallholders, due to the fact that the risk of non-repayment for
89 lenders is reduced, which encourages the use of agricultural inputs and equipment,
90 leading to increased and more stable crop production. Over the past decade, the
91 importance of weather index-based insurances (WIBI) for agriculture has been increasing,
92 mainly in developing countries (Gommes and Kayitakier, 2013). This interest can be
93 explained by the potential that IBI constitutes a risk management instrument for small
94 farmers. Indeed, it can be considered within the context of renewed attention to
95 agricultural development as one of the milestones of poverty reduction and increased
96 food security, as well as the accompanying efforts from various stakeholders to develop
97 agricultural risk management instruments, including agricultural insurance products.

98

99 Farmers need to protect their land and crops specifically from drought in arid and
100 semi-arid countries, since their production may directly depend mainly on the impacts of
101 this particular natural hazard. Insurance for drought-damaged lands and crops is currently
102 the main instrument and tool that farmers can resort in order to deal with agricultural
103 production losses due to drought. Many of these insurances are using satellite vegetation
104 indices (Rao, 2010), thus they are also called “satellite index-based insurances” (SIBI). SIBI
105 have some advantages over WIBI, such as cost-effective information and acceptable
106 spatial and temporal resolution. They do not, however, resolve the issue of basis risk, i.e.
107 potential unfairness to insurance takers (Leblois, 2012). Moreover, the very nature of an
108 index-based product creates the chance that an insured party may not be paid when they
109 suffer loss. For this reason, in some countries (Spain) they have named this SIBI as
110 “damaged in pasture” to cover not only drought even this one is the main cause.

111

112 It is highly recognized that shortage of water has many implications to agriculture,
113 society, economy and ecosystems. Specifically, its impact on water supply, crop
114 production and rearing of livestock is substantial in agriculture. Knowing the likelihood of
115 drought is essential for impact prevention (Dalezios, 2013). Drought severity assessment
116 can be approached in different ways: through conventional indices based on
117 meteorological data, such as temperature, rainfall, moisture, etc. (Niemeyer, 2008), as
118 well as through remote sensing indices based on images usually taken by artificial
119 satellites (Lovejoy et al., 2008) or drones. In the second group they are found Satellite
120 Vegetation Indices (SVI), which can quantify “green vegetation”, and soil moisture through
121 Soil Water Index (Gouveia et al., 2009) combining different spectral reflectances. Thus,
122 they are one of the main ways to quantitatively assess drought severity.

123

124 At the present time, several satellites (NOAA, TERRA, DEIMOS, etc.) can provide this
125 spectral information with different spatial resolution. Some series with a high temporal
126 frequency are freely available, those from NOAA satellites and Terra. The most widely
127 known SVI is the Normalized Difference Vegetation Index (NDVI). It follows the principle
128 that healthy vegetation mainly reflects the near-infrared frequency band. There are
129 several other important SVI, such as Soil Adjusted Vegetation Index (SAVI) and Enhanced
130 Vegetation Index (EVI) that incorporate soil effects and atmospheric impacts, respectively.
131 An important point of this class of insurance is “when damage occurs”. To measure this, a
132 SVI threshold value is defined mainly based on statistics that apply to Normal distributed
133 variables: average and standard deviation. When current SVI values are bellow this
134 threshold value for a period of time, insurance recognizes that a damage is occurring,
135 most of the times drought, and then it begins to pay compensations to farmers.

136

137 WIBI aims to protect farmers against weather-based disasters such as droughts, frosts
138 and floods. A WIBI policy links possible insurance payouts with the weather requirements
139 of the crop being insured: the insurer pays an indemnity whenever the realized value of
140 the weather index meets a specified threshold. Whereas payouts in traditional insurance
141 programs are related to actual crop damages, a farmer insured under a WIBI contract may
142 receive a payout. A current difficulty to the wide implementation of WIBI is the weakness
143 of indices. Indeed, there is certainly a need for more efficient indices based on the
144 additional experience gained from the implementation of WIBI products in the developing
145 world. Current trends in index technology are exciting and they actuate high expectations,
146 especially the development of yield indices and the use of remote sensing inputs. Risk
147 protection and insurance illiteracy constitute another difficulty, which has to be addressed
148 by training and awareness-raising at all levels, from farmers to farmers' associations,
149 micro-insurance partners, as well as senior decision-makers in insurance, banking, and

150 politics (Bailey, 2013). It is essential that all stakeholders (especially the insured) perfectly
151 understand the principles of IBI, as otherwise the insurer, even the whole concept of
152 insurance, is at risk of reputation loss for years or decades.

153

154 There is currently a lack of technical capacity in the insurance sectors of most
155 developing countries, which is a constraint to the scaling up and further development of
156 WIBI (Gommes and Kayitakire, 2012). Specifically, although it is possible to design an index
157 product and assist in roll-out, marketing, and sales, such assistance is not possible on a
158 wide scale, simply because there is lack of qualified expertise. Indeed, it usually requires
159 mathematical modeling, data manipulation, and expertise in crop simulation to design an
160 index. Nevertheless, it is possible to structure insurance with multiple indices, but this
161 increases the complexity of the product and makes it difficult for farmers to comprehend
162 it. 'Basis risk' is also a particular problem for index products, which is frequently caused by
163 the fact that measurements of a particular variable, such as rain, may differ at the
164 insurer's measurement site and in the farmer's field. This also creates problems for
165 insurance providers. Indeed, part of the reason the scaling up of index products has failed
166 is that both insurers and farmers suffer from this basis risk.

167

168 Currently, to mitigate impacts of climate-related reduced productivity of French
169 grasslands, several studies have been developed to design new insurance scheme bases
170 indemnity payouts to farmers on a forage production index (FPI) (Rumiguié et al., 2015;
171 2017). Two examples of SIBIs are presented in two different countries: USA and Spain. In
172 particular, in USA there are several insurance programs for pasture, rangeland and forage,
173 which use various indexing systems (rainfall and vegetation indices), and are promoted by
174 Unites States Department of Agriculture (USDA) (Maples et al., 2016; USDA, 2018). NDVI is
175 the index chosen in the vegetation index program and it is obtained from AVHRR
176 (Advanced Very High Resolution Radiometer) sensor onboard NOAA satellites. Average,
177 maximum and minimum NDVI values are obtained from a historical series with the aim of
178 calculating a trigger value. Insurer decides the quantity of compensation comparing this
179 trigger with current value. On the other hand, in Spain there exists the "Insurance for
180 Damaged Pasture" from "Spanish System of Agricultural Insurance" (BOE, 2013). This
181 insurance defines damage event through NDVI values obtained from MODIS sensor
182 onboard TERRA satellite of NASA. In this insurance, NDVI threshold values ($NDVI_{th}$) are
183 calculated subtracting several times ($k = 0.7$ or $k = 1.5$) standard deviation to average
184 within a homogeneous area:

185

$$186 \quad NDVI_{th} = \mu - k \cdot \sigma \quad (1)$$

187

188 where μ, σ are average and standard deviation of NDVI respectively. Average and standard
189 deviation come of supposing Normal distributions in the historical data (Goward et al.,
190 1985; Hobbs, 1995; Fuller, 1998; Al-Bakri and Taylor, 2003; Turvey et al., 2012; De Leeuw
191 et al. 2014).

192

193 The aim of this paper is to find **a more realistic** statistical NDVI distribution without
194 the “*a priori*” assumption that variables follow a Normal distribution, typically for current
195 SIBI methodology. In order to achieve this, the Maximum Likelihood Method (MLM) is
196 fitted to a historical series of NDVI values in a pasture land area in Spain (Community of
197 Madrid). Different types of **asymmetrical distributions** are examined with the aim to find a
198 **better fit than Normal**. To eliminate some noise in the historical series, an original method
199 is applied consisting of using Hue-Saturation-Lightness (HSL) color model. Finally, Chi-
200 square test (χ^2 test) has been used to check the goodness of fit for all considered
201 distributions.

202

203

204 **2. Materials and Methods**

205 **2.1 Vegetation Index**

206 The differences of the reflectance of green vegetation in parts of the electromagnetic
207 radiation spectrum, namely, visible and near infrared, provide an innovative method for
208 monitoring surface vegetation from space. Specifically, the spectral behavior of vegetation
209 cover in the visible (0.4-0.7mm) and near infrared (0.74-1.1mm, 1.3-2.5mm) offers the
210 possibility to monitor from space the changes in the different stages of cultivated and
211 uncultivated plants taking also into account the corresponding behavior of the
212 surrounding microenvironment (Ortega-Farias et al., 2016). Indeed, from the visible part
213 of the electromagnetic radiation spectrum it is possible to draw conclusions about the
214 rate photosynthesis, whereas from near infrared inferences are extracted about the
215 chlorophyll density and the amount of canopy in the plant mass, as well as the water
216 content in the leaves, which is also linked directly to the rate of transpiration with impacts
217 to physiological process of photosynthesis. Usually, data from NOAA/AVHRR series of
218 polar orbit meteorological satellites are used with low spatial resolution (1.1 km^2) and
219 recurrence interval at least twice daily from the same location. Several algorithms
220 combining channels of red (RED), near infrared (NIR) and green (GREEN) have been
221 proposed, which provide indices sensitive to green vegetation.

222

223 NDVI uses two frequency bands: red band (660 nm) and near-infrared band (860 nm).
224 Absorption of red band is related to photosynthetic activity and reflectance of near-
225 infrared band is related to presence of vegetation canopies (Flynn, 2006). In drought
226 periods, NDVI values can reduce significantly, therefore many researchers have used this
227 index to measure drought events in recent years (Dalezios et al., 2014). To calculate NDVI
228 we will use this mathematical formula:

229

$$230 \quad NDVI = \frac{IR-R}{IR+R} \quad (2)$$

231

232 where IR and R are reflectance values in Near-Infrared band and Red band, respectively.
233 NDVI values below zero indicate no photosynthetic activity and are characteristic of areas
234 with large accumulation of water, such as rivers, lakes, or reservoirs. The higher is the
235 NDVI value, the greater is the photosynthetic activity and vegetation canopies.

236

237 In this paper, the NDVI is used, which is widely known index with a multitude of
238 applications over time. The NDVI is suited for monitoring of total vegetation, since it partly
239 compensates the changes in light conditions, land slope and field of view (Kundu et al.,
240 2016). In addition, clouds, water and snow show higher reflectance in the visible than in
241 the near infrared, thus, they have negative NDVI values. Indeed, bare and rocky terrain
242 show vegetation index values close to zero. Moreover, the NDVI constitutes a measure of
243 the degree of absorption by chlorophyll in the red band of the electromagnetic spectrum.
244 In summary, the NDVI is a reliable index of the chlorophyll density on the leaves, as well as
245 the percentage of the leaf area density over land, thus, NDVI constitutes a credible
246 measure for the assessment of dry matter (biomass) in various species vegetation cover
247 (Dalezios, 2013). It is clear from the above that the NDVI is an index closely related to
248 growth and development of plants, which can effectively monitor surface vegetation from
249 space.

250

251 The continuous increase of the NDVI value during the growing season reflects the
252 vegetative and reproductive growth due to intense photosynthetic activity, as well as the
253 satisfactory correlation with the final biomass production at the end of a growing period.
254 On the other hand, gradual decrease of the NDVI values signifies stress due to lack of
255 water or extremely high temperatures for the plants, leading to a reduction of the
256 photosynthetic rate and ultimately a qualitative and quantitative degradation of plants.
257 NDVI values above zero indicate the existence of green vegetation (chlorophyll), or bare
258 soil (values around zero), whereas values below zero indicate the existence of water,
259 snow, ice and clouds.

260

261 **2.2 Database**

262 Scientific research satellite Terra (EOS AM-1) has been chosen to provide necessary
263 information to calculate NDVI in the study area. This satellite was launched into orbit by
264 NASA on December 18, 1999. MODIS sensor aboard this satellite collects information of
265 different reflectance bands. MODIS information is organized by "products". The product
266 used in this study was MOD09A1 (LP DAAC, 2014). MOD09A1 incorporates seven
267 frequency bands: Band 1 (620-670 nm), band 2 (841-876 nm), band 3 (459-479 nm), band
268 4 (545-565 nm), 5 band (1230-1250 nm), band 6 (1628-1652 nm) and band 7 (2105-2155
269 nm). The bands used to calculate NDVI are: band 1 for red frequency and band 2 for near-
270 infrared frequency. MOD09A1 provides georeferenced images with pixel resolution of
271 500m x 500m. This product has a mix of the best reflectance measures of each pixel in an
272 8-days period. The period of time selected on this study was from 2002 to 2017.

273

274 Daily data from a **principal station** of the meteorological network were utilized during
275 the period studied (2002 – 2017). Meteorological station is located in 40°41'46"N
276 3°45'54"W (elevation 1004 m a.s.l.), less than 2 km from the study area (AEMET, 2017).

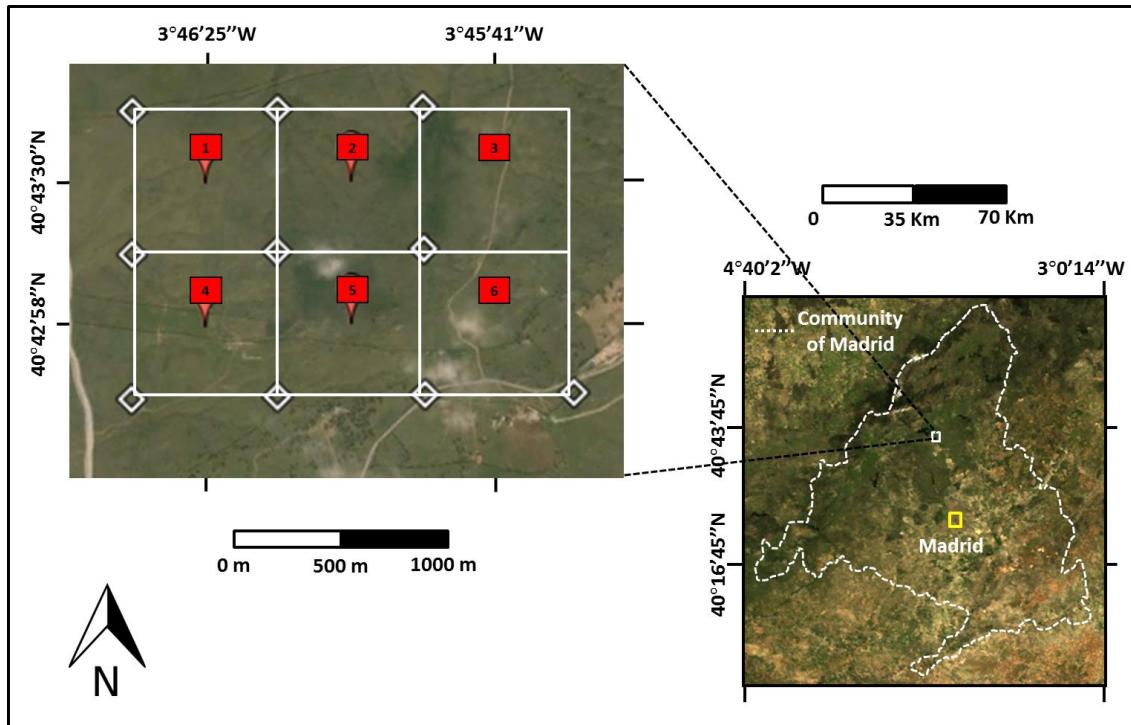
277

278 **2.3 Site description**

279 Six pixels (500m x 500m) are considered located in a pasture area at the north of the
280 Community of Madrid (Spain) between the municipalities of "Soto del Real" and
281 "Colmenar Viejo". The study area is located between meridians 3° 45' 00" and 3° 47' 00"
282 W and parallels 40° 42' 00" and 40° 44' 00" N approximately (see Fig. 1).

283

284



285

286 **Figure 1.** The study area is in the centre of the Iberian Peninsula (Community of Madrid). RGB
287 image of six pixels area used for case study is shown (Google Earth's and MODIS images).

288

289 The annual mean temperature ranges during the study period from 12.7°C to 13.8°C,
290 and annual mean precipitation ranges from 360 mm to 781 mm. The stations studied
291 were identified semi-arid (annual ratio P/ETo between 0.2 and 0.5) according to the global
292 aridity index developed by the United-Nations Convention to Combat Desertification
293 (UNEP, 1997). According to the climatic classification of Köppen (Kottek et al., 2006), this
294 area presents a continental Mediterranean climate temperate with dry and temperate
295 summer (type Csb). Temperature and precipitation of this site, based on 20 years, is
296 presented in Table 1.

297

298 Due to high soil moisture conditions, ash is the dominant tree, forming large
299 agroforestry systems ("dehesas") that are used for pasture. These are ecosystems with
300 high biodiversity.

301

302 **Table 1.** Monthly average of maximum temperature (Tmax), average temperature (Tavg),
303 minimum temperature (Tmin) and precipitation (P). **Study period from 1997 to 2017.**

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annual
Tmax (°C)	7.1	9.3	12.7	15.4	19.5	24.6	28.6	28.1	23.7	16.8	11.1	7.4	17.0
Tavg (°C)	3.6	4.8	7.7	10.1	13.7	18.4	22.0	21.7	17.9	12.3	7.1	4.1	12.0

Tmin (°C)	0.0	0.3	2.6	4.8	7.8	12.1	15.4	15.3	12.0	7.8	3.0	0.8	6.8
P (mm)	67.2	50.0	38.5	62.2	62.3	30.2	18.9	16.4	34.2	79.3	86.2	82.6	627.9

304

305 **2.4 HSL model**

306 There is no doubt that NDVI time-series from satellite sensors carry useful
 307 information, which can be used for characterizing seasonal dynamics of vegetation
 308 (Fensholt et al., 2012; Forkel et al., 2013). However, due to unfavorable atmospheric
 309 conditions during the data acquisition, NDVI time-series curve often contains noise
 310 (Motohka et al., 2011; Park, 2013). Although most of the NDVI data products are
 311 temporally composited through maximum value compositing (MVC) method (Holben,
 312 1986) to retain relatively cloud-free data, residual noise still exists in the data, which will
 313 affect the accuracy of the NDVI value.

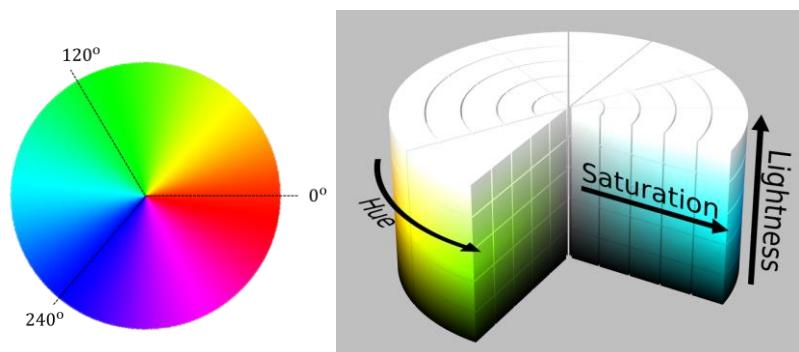
314

315 Therefore, usually it is necessary to reconstruct of NDVI time-series before extracting
 316 information from the noisy data. There are several techniques that have been applied to
 317 reduce noise and reconstruct NDVI series, a summary of these can be found in Wei et al.
 318 (2016). In this study we applied a simple filtering method based on the Hue-Saturation-
 319 Lightness (HSL) color model inspired by the work presented by Tackenberd (2007).

320

321 HSL color model is a cylindrical representation of RGB (Red-Green-Blue) points. Their
 322 components are Hue (color type), Saturation (level of color purity) and Lightness (color
 323 luminosity). Hue is the angular component and it is more intuitive for humans since it is
 324 directly related to the color wheel (see Fig. 2).

325



326

327 **Figure 2.** Colour wheel of Hue (on the left) and the HSL model (on the right).

328 Saturation is the radial component and near-zero values indicate grey colors.
 329 Lightness is the axial radial versus axial component, zero lightness produces black and full
 330 lightness produces white.

331
332 The NDVI series are filtered using the following HSL criterion: NDVI values are valid if
333 HSL Saturation is greater than 0.15. In this way, the values of the series that have grey
334 color correlate with pasture covered by clouds or snow are eliminated. This type of filter
335 based in HSL color space has been used on digital camera images monitoring vegetation
336 phenology (Tackenberg, 2007; Crimmins and Crimmins, 2008; Graham et al., 2009).
337 However, we have not found the use of this HSL criterion in the context of NDVI remote
338 sensing images.

339

340 **2.5 Maximum Likelihood Method (MLM)**

341 MLM estimates the set of parameters $\{\alpha, \beta, \mu, \sigma, \dots\}$ for a specific statistical
342 distribution that maximizes the “likelihood function” or the “joint density function”:

343
$$L = f(\mathbf{x}, \boldsymbol{\theta}) = \prod_{i=1}^n f(x_i; \alpha, \beta, \mu, \sigma, \dots) \quad (3)$$

344 where $\mathbf{x} = (x_1, \dots, x_n)$ is the set of data, $\boldsymbol{\theta} = (\alpha, \beta, \mu, \sigma, \dots)$ is the vector of parameters
345 and $f(x_i; \alpha, \beta, \mu, \sigma, \dots)$ is the density function of the statistical model.

346 When maximization with respect to the vector of parameters is carried out, the
347 estimated parameters $(\hat{\alpha}, \hat{\beta}, \hat{\mu}, \hat{\sigma}, \dots)$ for the proposed statistical distribution are obtained
348 (Larson, 1982). Properties of estimated parameters are: invariance, consistency and
349 asymptotically unbiased.

350 In the case of a Gaussian model, the estimated statistics μ and σ are defined by
351 accurate expressions as follows:

352
$$\hat{\mu} = \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i \quad \hat{\sigma} = s = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2} \quad (4)$$

353 where $\hat{\mu}$ is the sample mean and $\hat{\sigma}$ is the sample standard deviation of the data set.

354 In this study we will apply MLM to estimate the parameters for 4 probability density
355 functions (PDF). In Table 2, a brief description is presented of these PDF candidates:
356 Normal, Gamma, Beta and GEV. To do so, the following MATLAB functions have been
357 used: “normfit”, “gamfit”, “betafit” and “gevfit” (respectively).

358

359 **Table 2.** Candidate Probability Density Functions (PDF).

PDF NAME	PDF EXPRESSION	PDF PARAMETERS
----------	----------------	----------------

Normal	$f(x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}$	$\mu \equiv \text{average}$ $\sigma \equiv \text{standard deviation}$
Gamma	$f(x; \alpha, \beta) = \frac{1}{\beta^\alpha \Gamma(\alpha)} x^{\alpha-1} e^{-\frac{x}{\beta}}$	$\Gamma(\cdot) \equiv \text{gamma function}$ $\alpha \text{ and } \beta \equiv \text{parameters}$
Beta	$f(x; a, b) = \frac{\Gamma(a+b)}{\Gamma(a)\Gamma(b)} x^{a-1} (1-x)^{b-1}$	$\Gamma(\cdot) \equiv \text{gamma function}$ $a \text{ and } b \equiv \text{parameters}$
GEV	$f(x; \mu, \sigma, \xi) = \frac{1}{\sigma} t(x)^{\xi+1} e^{-t(x)}$ where $t(x) = \begin{cases} \left(1 + \left(\frac{x-\mu}{\sigma}\right)\xi\right)^{-1/\xi} & \text{if } \xi \neq 0 \\ e^{-(x-\mu)/\sigma} & \text{if } \xi = 0 \end{cases}$	$\mu \in \mathbb{R} \equiv \text{location param.}$ $\sigma > 0 \equiv \text{scale parameter}$ $\xi \in \mathbb{R} \equiv \text{shape parameter}$

360

361

362 **2.6 Goodness of fit (Chi-square test)**

363 χ^2 test can be used to determine to what extent observed frequencies differ from
 364 frequencies expected for a specific statistical model. The most important points of the
 365 theory are briefly presented in (Cochran, 1952).

366 Let $f(x, \theta)$ be a theoretical density function of a random variable X which depends on
 367 parameters $\theta = (\alpha, \beta, \mu, \sigma, \dots)$ and let x_1, \dots, x_n be a sample of X grouped into k classes with n_i
 368 data per class i .

369 Firstly, the following hypothesis is set:

370 (H_0) observed data fit theoretical distribution $f(x, \theta)$.

371 Then the test statistic χ^2_c is defined as:

$$372 \quad \chi^2_c = \sum_{i=0}^k \frac{(n_i - e_i)^2}{e_i} \quad (5)$$

373 where n_i is the number of data or observed frequency and $e_i = n \cdot P(\text{class } i)$ is the
 374 expected frequency for class i . $P(\text{class } i)$ is the theoretical interval probability defined for
 375 class i .

376 A level of significance is also set as:

$$377 \quad \alpha = P(\text{Reject } H_0 / H_0 \text{ is true}) \quad (6)$$

378 Finally, the following decision rule is applied: "reject the theoretical distribution at
 379 significance level α if:

$$380 \quad \chi^2_c > \chi^2_{(k-m-1, 1-\alpha)} \quad (7)$$

381 where $\chi^2_{(k-m-1, 1-\alpha)}$ is a χ^2 distribution with $k-m-1$ degrees of freedom (m is the number of
382 parameters, k is the number of classes).

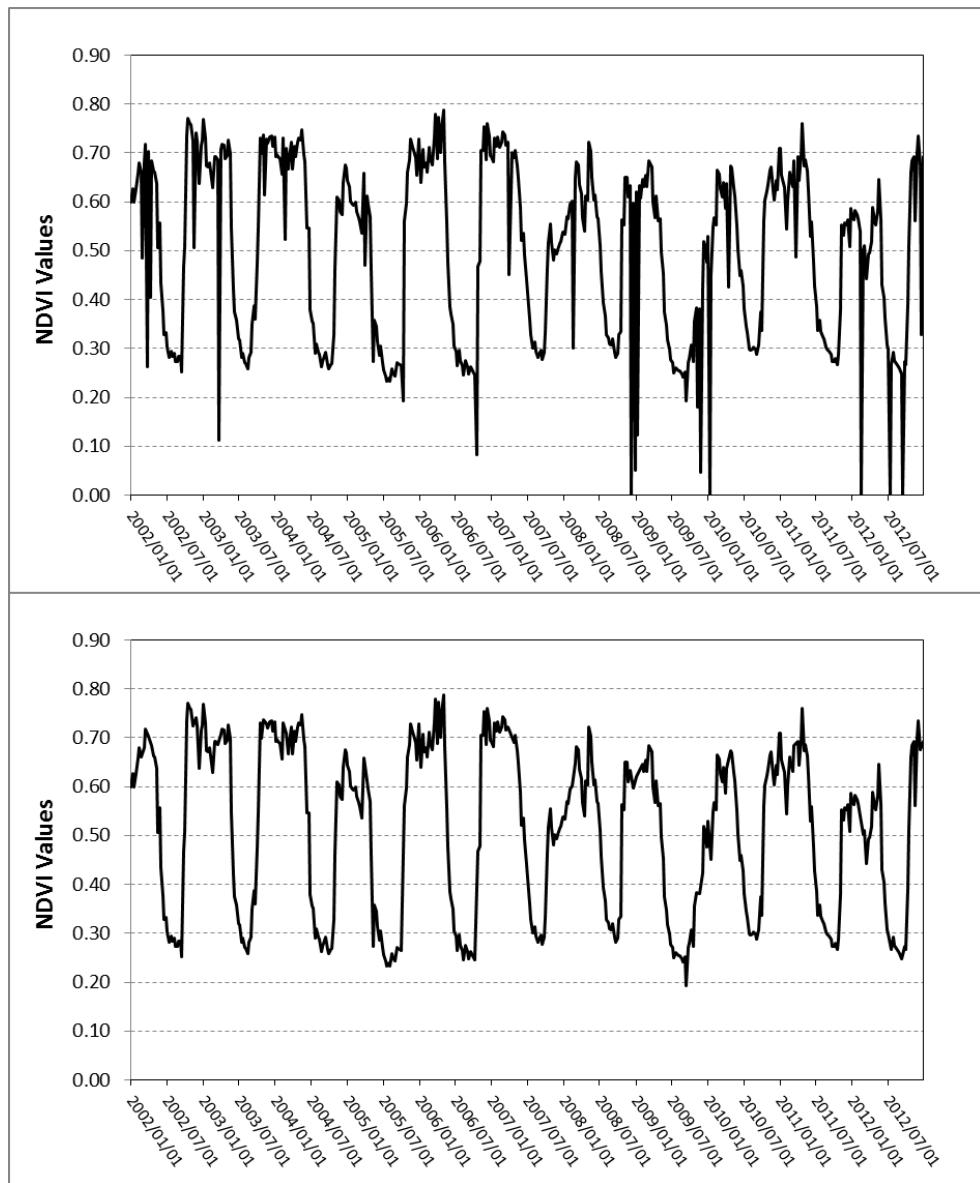
383

384

385 **3. Results and Discussion**

386 ***3.1 HSL filtering criterion***

387 NDVI series (from 2002 to 2017) were obtained for each pixel of the study area using
388 frequency bands provided by MODIS product named MOD09A1. These series contain
389 some irregular values that can skew NDVI pattern. Therefore, the six series (six pixels)
390 were filtered using the HSL criterion. **In Fig. 3 is shown an example of how HSL filtering**
391 **criterion works with a 10 years NDVI series (from 2002 to 2012).**



392

393 **Figure 3.** HSL filtering criterion applied to a 10 years NDVI series. Top graph shows the real NDVI
 394 series. Bottom graph shows the HSL filtered NDVI series.

395 The abrupt changes in the NDVI values, mainly observed during raining seasons such
 396 as autumn and winter, are efficiently eliminated. Not to be a high computational
 397 demanding method is one of the main advantages of HSL filtering method. Therefore, this
 398 method will allow us to obtain more robust NDVI values to be used in the statistical
 399 analysis.

400

401 **3.2 Maximum Likelihood Method (MLM) and Chi square test**

402 NDVI values were obtained consecutively every 8 days from MODIS product starting
403 at 1st of January of every year, in such a way that 46 NDVI observations were considered
404 for each year. Therefore, 46 Random Variables (RV) were defined when taking into
405 account all the years of this study.

406 In Table 3, every RV (named as “Interval”) can be seen together with the number of
407 available NDVI observations. Each RV collects the observations coming from the six
408 selected pixels. The start intervals of each season are: interval 45 for winter, interval 11
409 for spring, interval 23 for summer and interval 34 for autumn.

410

411 **Table 3.** Number of observations for every RV (named as Interval).

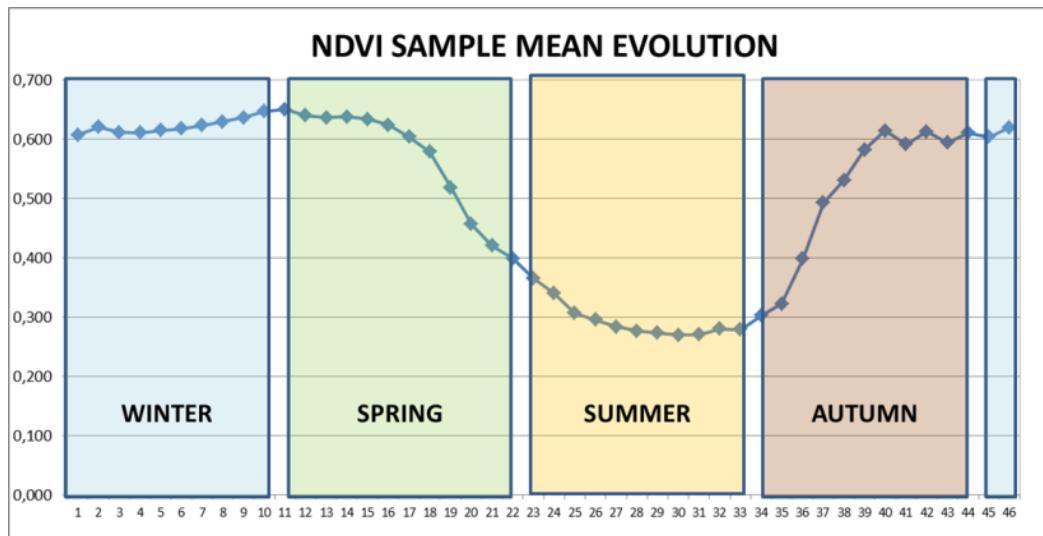
RANDOM VARIABLE	# OBSERVATIONS
Interval 1	85
Interval 2	84
Interval 3	96
Interval 4	96
Interval 5	95
Interval 6	90
Interval 7	86
Interval 8	83
Interval 9	96
Interval 10	96
Interval 11	74
Interval 12	88
Interval 13	88
Interval 14	88
Interval 15	96
Interval 16	92
Interval 17	88
Interval 18	96
Interval 19	95
Interval 20	96
Interval 21	95
Interval 22	96
Interval 23	96
Interval 24	96
Interval 25	96
Interval 26	96
Interval 27	96
Interval 28	96
Interval 29	96
Interval 30	96
Interval 31	96
Interval 32	96
Interval 33	94
Interval 34	96
Interval 35	96
Interval 36	85
Interval 37	90
Interval 38	96
Interval 39	92
Interval 40	90
Interval 41	96
Interval 42	89
Interval 43	95
Interval 44	88
Interval 45	90
Interval 46	90

412

413

414 In Fig. 4, a plot with NDVI sample means of all RV with a start and end reference of
415 the astronomical seasons is shown. The typical evolution of the NDVI along a year can be
416 seen.

417



418

419 **Figure 4.** NDVI sample means of 46 random variables (RV) are shown as well as start and end
420 reference of every season. Study period from 2002 to 2017.

421

422 The observed evolution of NDVI through the different seasons is typical of the pasture
423 in this area. The summer presents the lowest mean values which begin to increase in
424 autumn achieving a maximum mean value of 0.60 or 0.65 during winter. In the middle of
425 the spring NDVI decrease again, approaching the lowest mean value of 0.28
426 approximately.

427

428 Taking into account these values, dense vegetation, in this study pasture, is found
429 from middle of October (interval 37) till the end of May (interval 19). It is in this period
430 where the precipitation concentrates (see Table 1). During the summer, the NDVI mean
431 values are lower than 0.3 corresponding with low precipitation and high temperatures.

432

433 Following the work of Escribano-Rodriguez et al. (2014), there is a relationship of
434 pasture damage and a NDVI value around 0.40. Even if the authors point out that this
435 value is highly variable depending on the location, we can see that summer season in this
436 case study is under this value (see Fig. 4). This can explain that “Insurances for Damaged
437 Pasture” usually do not apply in these dates due to the arid environment (BOE, 2013).

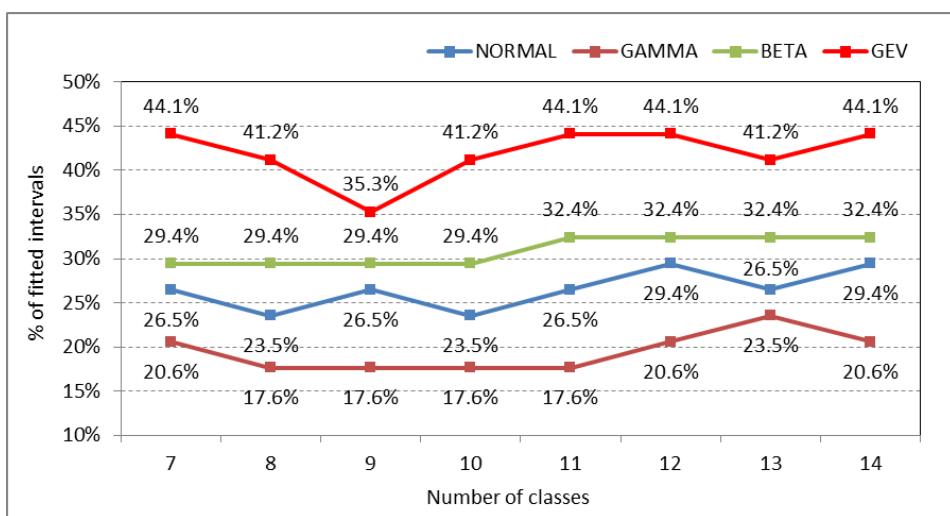
438

439 MLM has been applied to model these 46 RV. Parameters have been calculated for 4
440 PDF (see Table 2) which are the candidates to be the best fit. To check the goodness of the

441 fit of PDF candidates, Chi square test (χ^2 test) has been used from 7 classes to 14 classes
442 meeting the requirement that each class has at least five observations. **The level of**
443 **significance (α) was fixed to 5% for all the candidates.**

444

445 Twelve intervals (from 23 to 34) corresponding to months of July, August and
446 September have been excluded of this analysis since these intervals fall into the dry
447 season in the study area, normally not cover by any SIBI. **Therefore, calculations were**
448 **carried out over 34 intervals**. Fig. 5 shows the percentage of intervals that fit for every PDF
449 candidate. The number of classes used in χ^2 test is represented at X-axis (from 7 to 14
450 classes).



451

452 **Figure 5.** Percentage of fitted intervals (Y axis) for each PDF candidate (Normal, Gamma, Beta and
453 GEV distributions) in function of the number of classes (X axis).

454

455 Fig. 5 indicates that GEV distributions explain more intervals (more than 40% for the
456 majority of the class analysis) than Normal, Gamma or Beta distributions. An important
457 difference between the Normal distribution and the rest of the PDF used in this work is its
458 symmetry and kurtosis. Many of the observed NDVI distributions present a clear
459 asymmetry and long tails in one or both sides that causes Normal distribution not to be
460 the optimal fit.

461

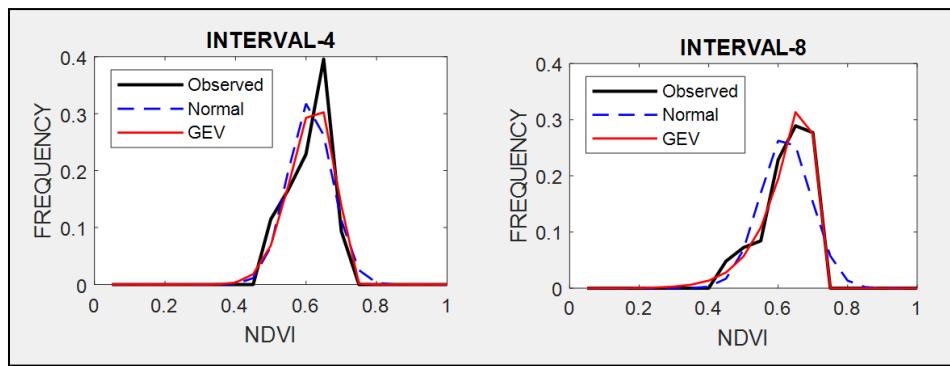
462 There is a relationship between seasons and the number of intervals that fit correctly.
463 We found that GEV distributions explain better some intervals of spring and autumn since
464 their observed distributions are very asymmetric. On the other hand, we did not find an
465 important difference in winter, since its observed distributions are mainly symmetric.

466 Therefore, the methodology using the NDVI Normal assumption applied to design an
467 index-based insurance will not be feasible in many intervals of this study.

468

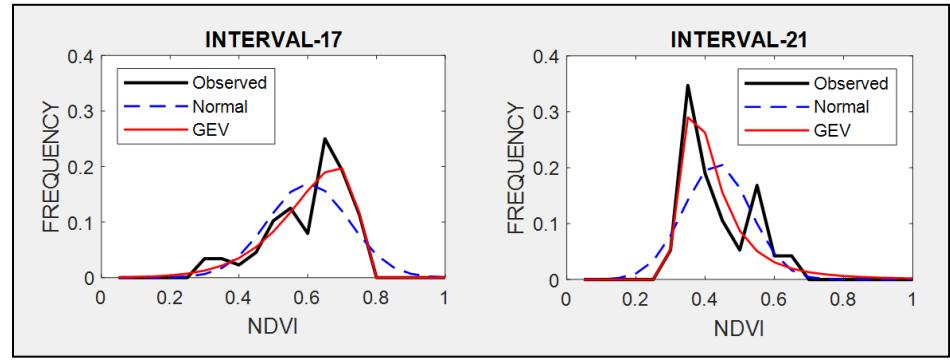
469 Table A1 at Appendix A shows the estimated parameters for each PDF and each
470 interval calculated by the MLM. These parameters ~~were~~ used to compare the estimated
471 PDF with the NDVI observed values on different times through the seasons. The following
472 intervals are shown as examples of better GEV fit: interval 4 and 8 (for winter, see Fig. 6),
473 interval 17 and 21 (for spring, see Fig. 7) and interval 36 and 40 (for autumn, see Fig. 8). In
474 these plots, observed frequency is compared versus Normal and GEV density distributions
475 calculated by MLM.

476



477

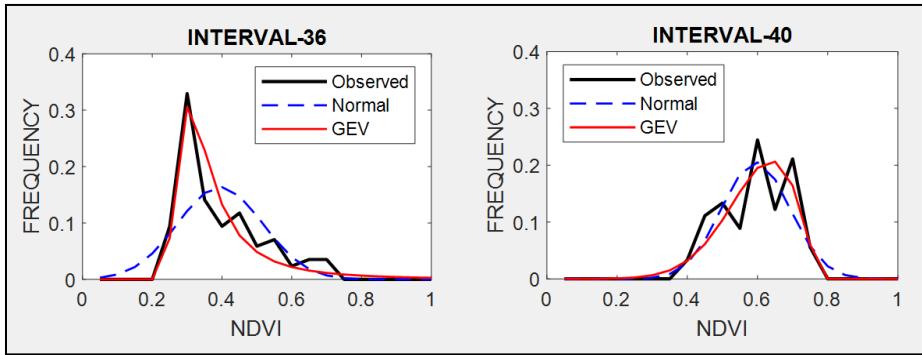
478 **Figure 6.** Comparison between observed NDVI frequency, GEV and Normal probability
479 density functions (PDF) on two different dates. Intervals 4 and 8 are examples for winter.



480

481 **Figure 7.** Comparison between observed NDVI frequency, GEV and Normal probability
482 density functions (PDF) on two different dates. Intervals 17 and 21 are examples for spring.

483



484
485 **Figure 8.** Comparison between observed NDVI frequency, GEV and Normal probability density
486 functions (PDF) on two different times. Intervals 36 and 41 are examples for autumn.

487 During winter (see Fig. 6) the observed NDVI distribution presents negative skewness.
488 Then, there is a higher frequency of high NDVI values corresponding with significant
489 precipitation. During spring an evolution in the skewness is observed passing from
490 negative to positive, and so, the lower NDVI values become the higher probable. Finally,
491 during autumn precipitation begins and from positive pass to negative skewness and
492 higher NDVI values are possible. We can observe that Normal distribution has no flexibility
493 to follow this dynamic in the distributions on each time. This comparison is done in a
494 sequential order for the whole of intervals in Figures A1, A2, A3 and A4 at Appendix A.
495

496 The more skewness and kurtosis depart from those of the Normal distribution the
497 larger the errors affecting the insurance designed based on (Turvey et al., 2012). It is an
498 expected result as pasture scenario is quite different from the development of a crop,
499 where Normal distributions in the NDVI values are more expected. This high heterogeneity
500 in time and space of NDVI estimated on pasture has been pointed out in several works
501 (Martin-Sotoca et al, 2018). At the same time, more different is the observed NDVI
502 frequency from a Normal distribution less representative is the average, and so, the
503 median becomes a more representative value.
504

505 **3.3 Insurance context**

506 The use of NDVI thresholds in damaged pasture context was presented in the
507 introduction section, being an example of using the "Insurance for Damaged Pasture" in
508 Spain. We have chosen this last insurance to compare the results between applying
509 Normal and GEV distribution methodologies. In this particular case the NDVI threshold
510 ($NDVI_{th}$) was calculated using the expression $NDVI_{th} = \mu - k \cdot \sigma$ (where μ, σ are average and
511 standard deviation of NDVI distributions respectively, assuming the Normal hypothesis).
512

513 The probability of being below $NDVI_{th}$ (using $k = 0.7$, first damage level in the
 514 insurance) at every interval has been calculated assuming the Normal hypothesis. As it
 515 was expected, this value is always 24.2% (see third column in Table 4). The probability of
 516 being below $NDVI_{th}$ has also been calculated using GEV distributions obtained in this
 517 study. The probability obtained by GEV distributions is mostly lower than the Normal
 518 distributions in spring, autumn and winter (see Table 4) that is the working period of the
 519 insurance.

520

521 Observing where in time are localized the highest relative error in probabilities (fifth
 522 column in Table 4), in absolute values, intervals corresponding to the end of winter,
 523 second middle of spring and the beginning of autumn present errors higher than 10%. This
 524 could explain why it is in spring and autumn when more disagreements exist between
 525 farmers and insurance company in claims.

526

527 **Table 4 – First column:** time intervals of approximately 8 days along the year. **Second column:** NDVI
 528 thresholds ($NDVI_{th}$) based on a Normal distribution applying $\mu = 0.7 \times \sigma$. **Third column:** percentages of
 529 area below the $NDVI_{th}$ when Normal distributions are applied. **Fourth column:** percentages of area
 530 below the $NDVI_{th}$ when GEV distributions are applied. **Fifth column:** relative area error of GEV
 531 compared to the Normal distribution.

532

RANDOM VARIABLE	NORMAL		GEV	
	$NDVI_{th}$	Prob.	Prob.	Error (%)
Interval 1	0.535	24.20%	24.37%	0.70%
Interval 2	0.541	24.20%	23.18%	-4.21%
Interval 3	0.541	24.20%	23.27%	-3.84%
Interval 4	0.543	24.20%	23.27%	-3.84%
Interval 5	0.545	24.20%	24.17%	-0.12%
Interval 6	0.534	24.20%	21.48%	-11.24%
Interval 7	0.528	24.20%	24.01%	-0.79%
Interval 8	0.546	24.20%	20.70%	-14.46%
Interval 9	0.555	24.20%	21.30%	-11.98%
Interval 10	0.561	24.20%	22.28%	-7.93%
Interval 11	0.567	24.20%	23.49%	-2.93%
Interval 12	0.572	24.20%	23.75%	-1.86%
Interval 13	0.571	24.20%	23.20%	-4.13%
Interval 14	0.570	24.20%	24.29%	0.37%
Interval 15	0.571	24.20%	23.47%	-3.02%

Interval 16	0.560	24.20%	23.26%	-3.88%
Interval 17	0.495	24.20%	21.29%	-12.02%
Interval 18	0.484	24.20%	21.58%	-10.83%
Interval 19	0.442	24.20%	23.06%	-4.71%
Interval 20	0.381	24.20%	27.20%	12.40%
Interval 21	0.342	24.20%	29.46%	21.74%
Interval 22	0.323	24.20%	28.84%	19.17%
Interval 35	0.257	24.20%	18.98%	-21.57%
Interval 36	0.285	24.20%	28.57%	18.06%
Interval 37	0.333	24.20%	25.90%	7.02%
Interval 38	0.398	24.20%	24.27%	0.29%
Interval 39	0.454	24.20%	23.79%	-1.69%
Interval 40	0.503	24.20%	22.81%	-5.74%
Interval 41	0.491	24.20%	23.23%	-4.01%
Interval 42	0.517	24.20%	24.66%	1.90%
Interval 43	0.507	24.20%	23.13%	-4.42%
Interval 44	0.514	24.20%	23.49%	-2.93%
Interval 45	0.515	24.20%	23.70%	-2.07%
Interval 46	0.509	24.20%	23.33%	-3.60%

533

534 In Table 4, Normal $NDVI_{th}$ have been used to calculate the probability in GEV distributions.
 535 An alternative calculation can be the use of Normal probability (24.2%) to calculate new
 536 $NDVI_{th}$ based on GEV (see Table 5). It can be seen that new $NDVI_{th}$ obtained by GEV
 537 distributions are mostly upper than thresholds using Normal distributions in spring,
 538 autumn and winter. Considering these results we find that damage thresholds calculated
 539 by GEV methodology are mostly above that one's calculated by Normal methodology.

540 Again, intervals corresponding to the end of winter, second middle of spring and the
 541 beginning of autumn present $NDVI_{th}$ relative errors higher than 1% in absolute values
 542 (fourth column in Table 5).

543

544 **Table 5 - First column:** time intervals of approximately 8 days along the year. **Second column:** NDVI
 545 thresholds ($NDVI_{th}$) based on a Normal distribution (Normal) applying $\mu - 0.7 \times \sigma$. **Third column:**
 546 $NDVI_{th}$ based on a GEV distribution (GEV) using 24.2% as the area below the $NDVI_{th}$. **Fourth column:**
 547 relative $NDVI_{th}$ error of GEV compared to the Normal distribution.

548

RANDOM VARIABLE	NDVI _{Th}		Error (%)
	Normal	GEV	
Interval 1	0.535	0.534	-0,19%
Interval 2	0.541	0.543	0,37%
Interval 3	0.541	0.543	0,37%
Interval 4	0.543	0.545	0,37%
Interval 5	0.545	0.545	0,00%
Interval 6	0.534	0.543	1,69%
Interval 7	0.528	0.528	0,00%
Interval 8	0.546	0.558	2,20%
Interval 9	0.555	0.563	1,44%
Interval 10	0.561	0.567	1,07%
Interval 11	0.567	0.569	0,35%
Interval 12	0.572	0.574	0,35%
Interval 13	0.571	0.574	0,53%
Interval 14	0.570	0.569	-0,18%
Interval 15	0.571	0.573	0,35%
Interval 16	0.560	0.563	0,54%
Interval 17	0.495	0.510	3,03%
Interval 18	0.484	0.498	2,89%
Interval 19	0.442	0.447	1,13%
Interval 20	0.381	0.374	-1,84%
Interval 21	0.342	0.334	-2,34%
Interval 22	0.323	0.318	-1,55%
Interval 35	0.257	0.262	1,95%
Interval 36	0.285	0.278	-2,46%
Interval 37	0.333	0.327	-1,80%
Interval 38	0.398	0.398	0,00%
Interval 39	0.454	0.455	0,22%
Interval 40	0.503	0.508	0,99%
Interval 41	0.491	0.494	0,61%
Interval 42	0.517	0.516	-0,19%
Interval 43	0.507	0.510	0,59%
Interval 44	0.514	0.516	0,39%
Interval 45	0.515	0.516	0,19%
Interval 46	0.509	0.511	0,39%

552 According to the results obtained in the study area using MLM and χ^2 test, it can be
553 concluded that Normal distributions are not the best fit to the NDVI observations, and
554 GEV distributions provide a better approximation.

555

556 The difference between Normal and GEV assumption is more evident in the transition
557 from winter to summer (spring), where NDVI values decrease, and then from summer to
558 winter (autumn) presenting the opposite behavior of increasing NDVI values. In both
559 periods asymmetrical distributions were found, negative skewness for the spring
560 transition and positive skewness for the autumn transition. During both periods the
561 variability in precipitation and temperatures were higher in this location.

562

563 We have found differences if GEV assumption is selected instead of the Normal one
564 when defining damaged pasture thresholds ($NDVI_{th}$). The use of these different
565 assumptions should be taken into account in future insurance implementations due to the
566 important consequences of supposing a damage event or not. We propose the use of
567 **quantiles** in observed NDVI distributions instead of average and standard deviation,
568 typically of Normal distributions, to calculate new $NDVI_{th}$.

569

570

571

572

573 **Acknowledgements**

574 This research has been partially supported by funding from MINECO under contract No.
575 MTM2015-63914-P and CICYT PCIN-2014-080.

576

577 **Appendix A**

578

579

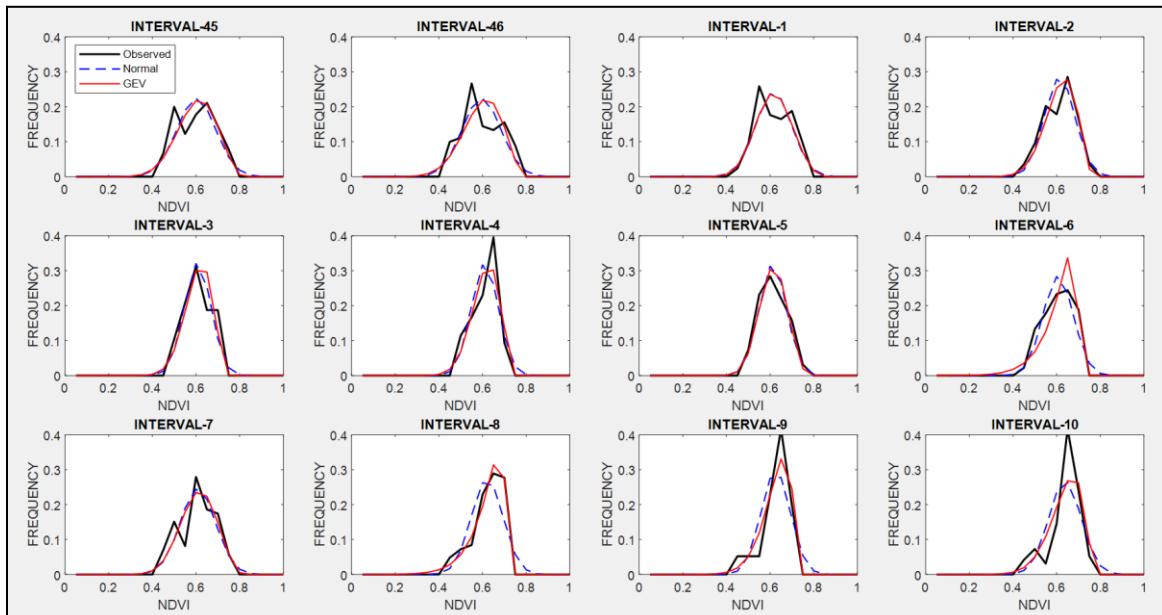
Table A1 - Maximum Likelihood parameters calculated for 4 PDF.

RANDOM VARIABLE	NORMAL		GAMMA		BETA		GEV		
	μ	σ	α	β	a	b	μ	σ	ξ
Interval 1	0.591	0.081	53.31	0.011	21.45	14.82	0.563	0.080	-0.297
Interval 2	0.589	0.069	71.14	0.008	30.62	21.40	0.571	0.073	-0.477
Interval 3	0.583	0.060	94.15	0.006	39.56	28.34	0.567	0.063	-0.457
Interval 4	0.585	0.060	91.88	0.006	39.58	28.05	0.570	0.064	-0.468
Interval 5	0.588	0.061	93.92	0.006	38.83	27.25	0.568	0.061	-0.340
Interval 6	0.582	0.068	70.28	0.008	30.67	22.05	0.577	0.083	-0.846
Interval 7	0.584	0.080	52.52	0.011	22.16	15.82	0.559	0.082	-0.366
Interval 8	0.596	0.071	65.37	0.009	28.89	19.59	0.591	0.081	-0.833
Interval 9	0.601	0.066	76.02	0.008	34.31	22.84	0.590	0.070	-0.652
Interval 10	0.613	0.073	63.83	0.010	27.80	17.62	0.598	0.079	-0.572
Interval 11	0.621	0.078	58.72	0.011	24.33	14.86	0.600	0.083	-0.451
Interval 12	0.624	0.073	68.33	0.009	28.01	16.94	0.603	0.078	-0.431
Interval 13	0.624	0.075	66.22	0.009	26.23	15.85	0.604	0.080	-0.476
Interval 14	0.631	0.088	50.23	0.013	18.71	10.92	0.603	0.090	-0.342
Interval 15	0.630	0.084	53.60	0.012	21.17	12.45	0.607	0.089	-0.448
Interval 16	0.627	0.096	38.75	0.016	16.08	9.59	0.602	0.103	-0.474
Interval 17	0.577	0.117	20.47	0.028	10.24	7.58	0.560	0.127	-0.692
Interval 18	0.568	0.120	20.52	0.028	9.71	7.42	0.552	0.136	-0.718
Interval 19	0.523	0.116	19.46	0.027	9.52	8.68	0.495	0.125	-0.493
Interval 20	0.452	0.101	20.99	0.022	10.98	13.31	0.401	0.077	0.078
Interval 21	0.409	0.095	19.94	0.021	11.18	16.13	0.354	0.060	0.325
Interval 22	0.379	0.080	24.66	0.015	14.41	23.52	0.333	0.046	0.385
Interval 23	0.353	0.073	26.54	0.013	15.85	29.01	0.311	0.036	0.456
Interval 24	0.328	0.056	38.36	0.009	24.22	49.65	0.298	0.033	0.287
Interval 25	0.305	0.044	53.52	0.006	35.62	81.20	0.282	0.028	0.210
Interval 26	0.298	0.034	78.93	0.004	54.47	128.55	0.283	0.029	-0.064
Interval 27	0.289	0.026	126.85	0.002	88.33	217.15	0.278	0.021	-0.030
Interval 28	0.282	0.022	166.17	0.002	119.50	305.03	0.274	0.022	-0.322
Interval 29	0.278	0.021	179.09	0.002	127.93	332.63	0.269	0.018	-0.085
Interval 30	0.273	0.019	203.11	0.001	147.67	393.21	0.266	0.019	-0.247
Interval 31	0.272	0.022	166.83	0.002	120.11	321.95	0.262	0.018	-0.059
Interval 32	0.280	0.034	75.63	0.004	52.36	134.30	0.264	0.023	0.118
Interval 33	0.285	0.034	82.05	0.004	54.90	137.68	0.270	0.020	0.122
Interval 34	0.295	0.057	33.26	0.009	21.15	50.37	0.268	0.024	0.363

Interval 35	0.312	0.079	19.70	0.016	11.83	25.94	0.275	0.038	0.300
Interval 36	0.369	0.121	10.81	0.034	6.11	10.33	0.298	0.063	0.480
Interval 37	0.432	0.141	9.45	0.046	5.21	6.81	0.370	0.120	-0.080
Interval 38	0.487	0.128	13.88	0.035	7.25	7.63	0.445	0.127	-0.321
Interval 39	0.529	0.107	23.56	0.022	11.39	10.16	0.497	0.110	-0.390
Interval 40	0.570	0.096	34.02	0.017	15.10	11.40	0.548	0.105	-0.533
Interval 41	0.554	0.090	36.42	0.015	16.90	13.64	0.531	0.096	-0.471
Interval 42	0.583	0.095	37.29	0.016	15.56	11.11	0.551	0.094	-0.295
Interval 43	0.574	0.097	34.27	0.017	14.93	11.07	0.550	0.103	-0.482
Interval 44	0.572	0.083	47.13	0.012	20.40	15.26	0.549	0.086	-0.425
Interval 45	0.576	0.088	42.59	0.014	18.17	13.36	0.550	0.090	-0.396
Interval 46	0.570	0.088	41.98	0.014	18.11	13.66	0.546	0.092	-0.445

580

581



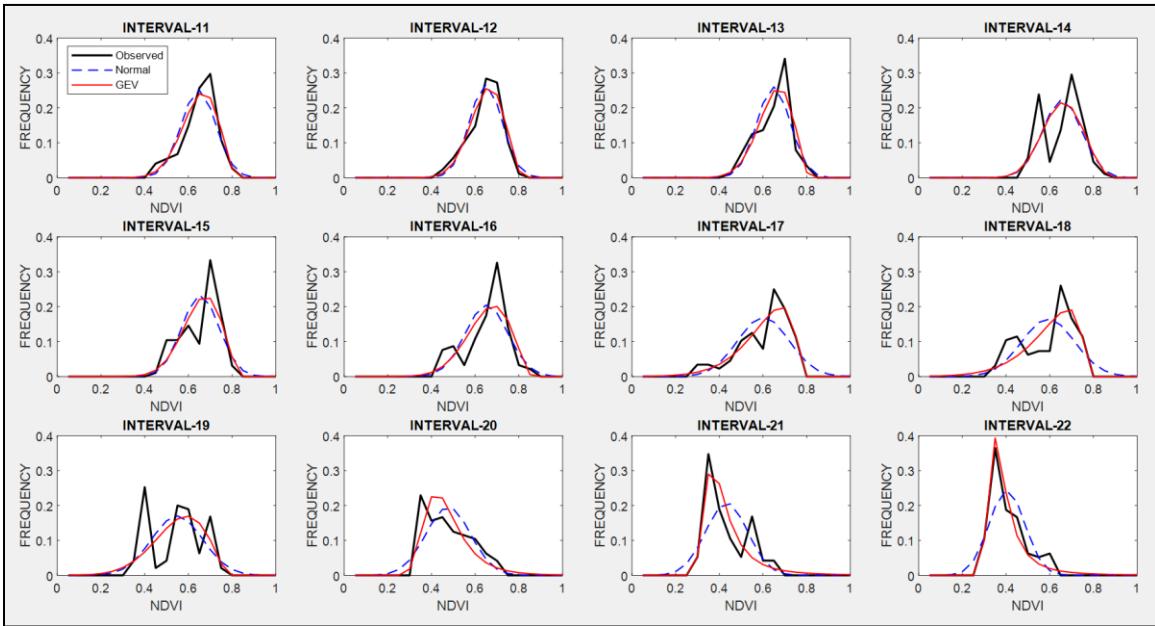
582

Figure A1. Observed NDVI, GEV and Normal probability density functions (PDF) from interval 45 to interval 10 (from 19 December to 21 March) representing winter.

583

584

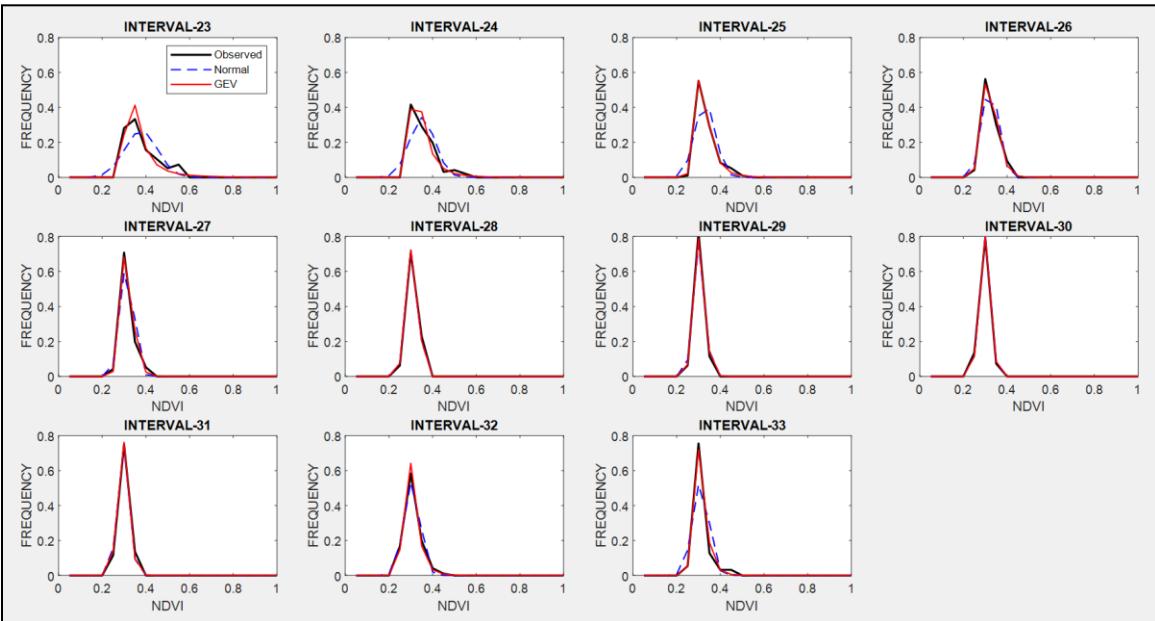
585



586

587 **Figure A2.** Observed NDVI, GEV and Normal probability density functions (PDF) from interval 11 to
 588 interval 22 (from 22 March to 25 June) representing spring.

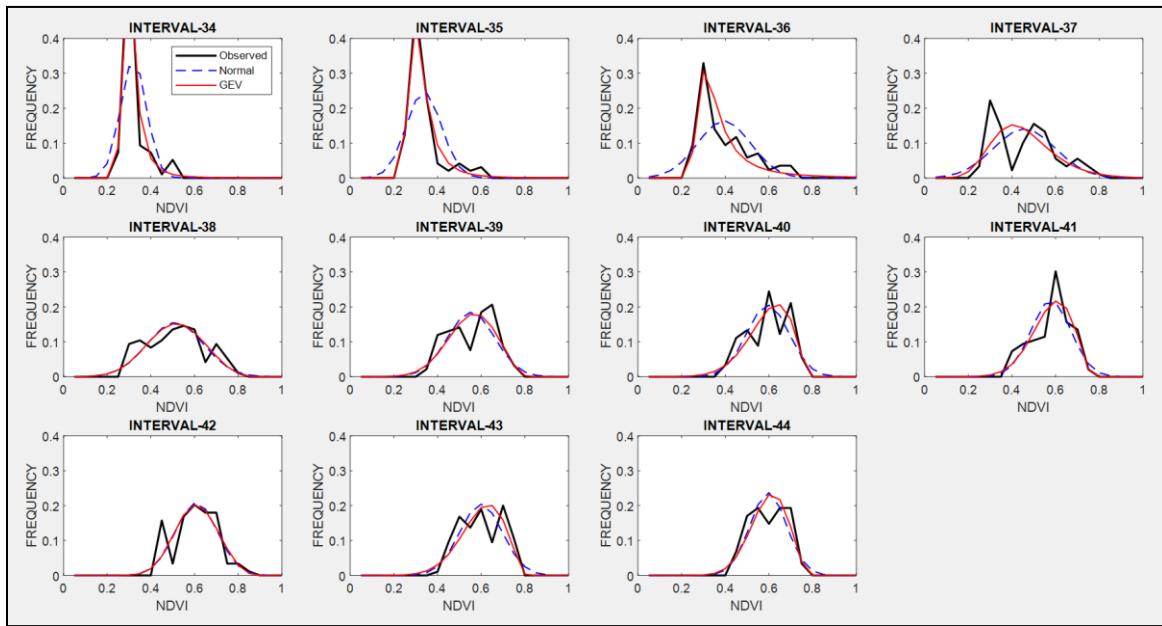
589



590

591 **Figure A3.** Observed NDVI, GEV and Normal probability density functions (PDFs) from interval 23
 592 to interval 33 (from 26 June to 21 September) representing summer.

593



594

595 **Figure A4.** Observed NDVI, GEV and Normal PDFs from interval 34 to interval 44 (from 22
 596 September to 18 December) representing autumn.

597

598 **References**

599

600 Agencia Estatal de Meteorología (AEMET). Available at: www.aemet.es, 2017.

601 Al-Bakri, J. T., and Taylor, J. C.: Application of NOAA AVHRR for monitoring vegetation
602 conditions and biomass in Jordan, *J. Arid Environ.*, 54, 579–593, 2003.

603 Bailey, S.: The Impact of Cash Transfers on Food Consumption in Humanitarian Settings: A
604 review of evidence, Study for the Canadian Foodgrains Bank, May 2013.

605 Boletín Oficial del Estado (BOE, 6638 - Orden AAA/1129/2013. Nº 145, III, p-46077, 2013.

606 Cochran, William G.: The Chi-square Test of Goodness of Fit, *Annals of Mathematical
607 Statistics*. 23: 315–345, 1952.

608 Crimmins, M. A., and Crimmins T. M.: Monitoring plant phenology using digital repeat
609 photography, *Environ. Manage.* 41, 949-958, 2008.

610 Dalezios, N. R., Blanta, A., Spyropoulos, N. V., and Tarquis A. M.: Risk identification of
611 agricultural drought for sustainable Agroecosystems, *Nat. Hazards Earth Syst. Sci.*, 14,
612 2435–2448, 2014.

613 Dalezios, N. R.: The Role of Remotely Sensed Vegetation Indices in Contemporary
614 Agrometeorology. Invited paper in Honorary Special Volume in memory of late Prof. A.
615 Flokas. Publisher: Hellenic Meteorological Association, 33-44, 2013.

616 De Leeuw, J., Vrielink, A., Shee, A., Atzberger, C., Hadgu, K. M., Biradar, C. M., Humphrey
617 Keah, H., and Turvey, C.: The Potential and Uptake of Remote Sensing in Insurance: A
618 Review, *Remote Sens.*, 6(11), 10888-10912, 2014.

619 Escribano Rodríguez, J. Agustín, Díaz-Ambrona, Carlos Gregorio H., and Tarquis Alfonso,
620 Ana María: Selection of vegetation indices to estimate pasture production in Dehesas,
621 *PASTOS*, 44(2), 6-18, 2014.

622 Fensholt, R., and Proud, S. R.: Evaluation of earth observation based global long term
623 vegetation trends - comparing GIMMS and MODIS global NDVI time series, *Remote
624 Sens. Environ.*, 119, 131–147, 2012.

625 Flynn E. S.: Using NDVI as a pasture management tool. Master Thesis, University of
626 Kentucky, 2006.

627 Forkel, M., Carvalhais, N., Verbesselt, J., Mahecha, M.D., Neigh, C. S., and Reichstein, M.:
628 Trend change detection in NDVI time series: effects of inter-annual variability and
629 methodology, *Remote Sens.*, 5, pp, 2113–2144, 2013.

630 Fuller, D.O.: Trends in NDVI time series and their relation to rangeland and crop production
631 in Senegal, 1987–1993, *Int. J. Remote Sens.*, 19, 2013–2018, 1998.

632 Gommes, R., and Kayitakire, F.: The challenges of index-based insurance for food security
633 in developing countries. Proceedings, Technical Workshop, JRC, Ispra, 2-3 May 2012.
634 Publisher: JRC-EC, p. 276, 2013.

635 Gouveia, C., Trigo, R. M., and Da Camara, C. C.: Drought and vegetation stress monitoring
636 in Portugal using satellite data, *Nat. Hazards Earth Syst. Sci.*, 9, 185-195, 2009.

637 Goward, S. N., Tucker, C. J., and Dye, D.G.: North-American vegetation patterns observed
638 with the NOAA-7 advanced very high-resolution radiometer. *Vegetation*, 64, 3–14,
639 1985.

640 Graham, E. A., Yuen, E. M., Robertson, G. F., Kaiser, W. J., Hamilton, M. P., and Rundel, P.
641 W.: Budburst and leaf area expansion measured with a novel mobile camera system
642 and simple color thresholding, *Environ. Exp. Bot.*, 65, 238-244, 2009.

643 Hobbs, T. J.: The use of NOAA-AVHRR NDVI data to assess herbage production in the arid
644 rangelands of central Australia, *Int. J. Remote Sens.*, 16, 1289–1302, 1995.

645 Holben, B. N.: Characteristics of maximum-value composite images from temporal AVHRR
646 data, *Int. J. Remote Sens.*, 7, 1417–1434, 1986.

647 Kotttek, M., Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of the Köppen-Geiger
648 climate classification updated, *Meteorologische Zeitschrift*, 15, 259-263, 2006.

649 Kundu, A., Dwivedi, S., and Dutta, D.: Monitoring the vegetation health over India during
650 contrasting monsoon years using satellite remote sensing indices, *Arab J Geosci.*, 9,
651 144, 2016.

652 Land Processes Distributed Active Archive Center (LP DAAC): Surface Reflectance 8-Day L3
653 Global 500m. NASA and USGS. Available at:
654 https://lpdaac.usgs.gov/products/modis_products_Table/mod09a1. 2014.

655 Larson, H. J.: *Introduction to Probability Theory and Statistical Inference* (3rd edition). New
656 York, John Wiley and Sons, 1982.

657 Leblois, A.: Weather index-based insurance in a cash crop regulated sector: ex ante
658 evaluation for cotton producers in Cameroon. Paper presented at the JRC/IRI
659 workshop on The Challenges of Index-Based Insurance for Food Security in Developing
660 Countries, Ispra, 2-3, May, 2012.

661 Lovejoy, S., Tarquis, A. M., Gaonac'h, H., and Schertzer, D.: Single and Multiscale remote
662 sensing techniques, multifractals and MODIS derived vegetation and soil moisture.
663 *Vadose Zone J.*, 7, 533-546, 2008.

664 Maples, J. G., Brorsen, B. W., and Biermaches, J. T.: The rainfall Index Annual Forage pilot
665 program as a risk management tool for cool-season forage. *J. Agr. Appl Econ.*, 48(1),
666 29–51, 2016.

667 Martin-Sotoca, J. J., Saa-Requejo, A., Orondo J. B., and Tarquis, A. M.: Singularity maps
668 applied to a vegetation index. *Bio. Eng.* 168, 42-53, 2018.

669 Motohka, T., Nasahara, K. N., Murakami, K., and Nagai, S.: Evaluation of sub-pixel cloud
670 noises on MODIS daily spectral indices based on in situ measurements, *Remote Sens.*,
671 3, 1644–1662, 2011.

672 Niemeyer, S.: New drought indices, First Int. Conf. on Drought Management: Scientific and
673 Technological Innovations, Zaragoza, Spain. Joint Research Centre of the European
674 Commission, Available online at
675 <http://www.iamz.ciheam.org/medroplan/zaragoza2008/Sequia2008/Session3/S.Niemeyer.pdf>, 2008.

677 Ortega-Farias, S., Ortega-Salazar, S., Poblete, T., Kilic, A., Allen, R., Poblete-Echeverría, C.,
678 Ahumada-Orellana, L., Zuñiga, M., and Sepúlveda, D.: Estimation of Energy Balance
679 Components over a Drip-Irrigated Olive Orchard Using Thermal and Multispectral
680 Cameras Placed on a Helicopter-Based Unmanned Aerial Vehicle (UAV), *Remote Sens.*,
681 8, 638, pp 18, 2016.

682 Park, S.: Cloud and cloud shadow effects on the MODIS vegetation index composites of the
683 Korean Peninsula, *Int. J. Remote Sens.*, 34, 1234–1247, 2013.

684 Rao, K. N.: Index based Crop Insurance, *Agric. Agric. Sci. Proc.*, 1, 193–203, 2010.

685 Roumiguié, A., Sigel, G., Poilv  , H., Bouchard, B., Vrieling, A., and Jacquin, A.: Insuring
686 forage through satellites: testing alternative indices against grassland production
687 estimates for France, *Int. J. Remote Sens.*, 38, 1912-1939, 2017.

688 Roumigui  , A., Jacquin, A., Sigel, G., Poilv  , H., Lepoivre, B., and Hagolle, O.: Development
689 of an index-based insurance product: validation of a forage production index derived
690 from medium spatial resolution fCover time series, *GIScience Remote Sens.*, 52, 94-
691 113, 2015.

692 Tackenberg, Oliver: A New Method for Non-destructive Measurement of Biomass, Growth
693 Rates, Vertical Biomass Distribution and Dry Matter Content Based on Digital Image
694 Analysis, *Annals of Botany*, 99(4), 777–783, 2007.

695 Turvey, C. G., and Mcaurin, M. K.: Applicability of the Normalized Difference Vegetation
696 Index (NDVI) in Index-Based Crop Insurance Design, *Am. Meteorol. Soc.*, 4, 271-284,
697 2012.

698 UNEP Word Atlas of Desertification: Second Ed. United Nations Environment Programme,
699 Nairobi, 1997.

700 USDA. U.S. Department of Agriculture, Federal Crop Insurance Corporation, Risk
701 Management Agency: Rainfall Index Plan Annual Forage Crop Provisions. 16- RI-AF.
702 <http://www.rma.usda.gov/policies/ri-vi/2015/16riaf.pdf> 2013 (Accessed March 1,
703 2018).

704 Wei, W., Wu, W., Li, Z., Yang, P., and Qingbo Zhou, Q.: Selecting the Optimal NDVI Time-
705 Series Reconstruction Technique for Crop Phenology Detection, *Intell. Autom. Soft. Co.*
706 22, 237-247, 2016.

707

708

709

710