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Abstract: Fires are an important factor involved in the disturbance of forest ecosystems, causing 7 

resource damage and the loss of human life. Evaluating forest fire probability can provide an effective 8 

method to minimize these losses. In this study, a comprehensive method that integrates remote-sensing 9 

data and geographic information systems is proposed to evaluate forest fire probability. In our analysis, 10 

we selected four probability indicators: drought index, vegetation condition, topographical factors and 11 

anthropogenic factors. To evaluate the influence of anthropogenic factors on fire probability, a distance 12 

analysis from fire locations to settlements or roads was conducted to see which distance was associated 13 

with a higher probability. The forest fire probability index (FFPI) was calculated to assess the 14 

probability level in Heilongjiang Province, China. According to the FFPI, five classes were identified: 15 

very low, low, moderate, high, and very high. A receiver operating characteristics (ROC) curve was 16 

used as the validation method, and the results of the ROC analysis showed that the proposed model 17 

performed well in terms of forest fire probability prediction. The results of this study provide a 18 

technical framework for the Department of Forest Resource Management to predict occurrence of fires.  19 

 20 

Keywords: Forest fire probability; Geographic information system; Remote sensing; Natural hazards.  21 

 22 

1. Introduction 23 

Fire is considered to be one of the most important factors that disturb forest ecosystems (Cyr et al., 24 

2007; Lecomte et al., 2006). Fires have both positive (Wagner and Fraterrigo, 2015) and negative 25 

(Sivrikaya et al., 2014; Somashekar et al., 2009) influences on forest ecosystems. In terms of positive 26 

aspects, fires can control understory growth (Burton et al., 2011), promote the growth of native plants 27 

and the recruitment of non-native species (Kuppinger et al., 2010). Regarding negative aspects, fires 28 

cause serious destruction to forest ecosystems, including the loss of biodiversity (Saranya et al., 2014), 29 

damage to landscape (Alencar et al., 2015), and alter vegetation structure and function (Pausas and 30 

Keeley, 2009). Additionally, forest fires can cause economic losses for people, including loss of 31 

property (Merlo et al., 2000), damage to agriculture, and even loss of human life (Pourghasemi et al., 32 

2016). Considering the negative effects of fires, fires risks should be mitigated in some areas, and to 33 
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achieve this, it is necessary to evaluate forest fire probability, which is an effective approach to monitor 34 

where and when a fire is more likely to happen (Chuvieco et al., 2014). As such, forest fire probability 35 

maps are helpful tools for forest managers, fire fighters and decision makers.  36 

Many studies have conducted fire risk estimations in areas that are seriously affected by fires 37 

(Alonso-Betanzos et al., 2003; Brillinger et al., 2003; Chuvieco et al., 2010; Dong et al., 2005b; Yin et 38 

al., 2004). Several methods have been used to evaluate forest fire probability, such as analytical 39 

hierarchy processes (Eskandari, 2017; Sharma et al., 2012; Vadrevu et al., 2010), fuzzy logic models 40 

(Iliadis et al., 2002; Yi et al., 2013), support vector machines (Koetz et al., 2008; Zhao et al., 2011), and 41 

system dynamics (Collins et al., 2013). The development of geographical information systems (GISs) 42 

and remote-sensing (RS) data have provided a comprehensive tool to develop forest fire probability 43 

assessment methods. GIS is an effective tool to analyze complicated spatial problems (Jaiswal et al., 44 

2003), which is widely used in forest fire probability mapping (Alemu and Suryabhagavan, 2015; 45 

Eugenio et al., 2016; Kumar et al., 2015; Said et al., 2017). RS data provide fundamental information 46 

regarding which parameters need to be considered when mapping forest fire probability, including 47 

forest structure (Lim et al., 2003), land use and land cover (Joshi et al., 2016), land surface temperature 48 

(Caselles, 2011), vegetation moisture content (Wang et al., 2013), etc. The integration of GISs and RS 49 

data is widely used in fire probability estimation, and is considered to be one of the most cost-effective 50 

and most-appropriate methods for mapping forest fire probability (Ardakani et al., 2010). 51 

Forest fire probability depends on many environmental factors. Tree species can affect the 52 

probability of fire ignition (Pellegrini et al., 2016), where, for example, coniferous trees pose more of a 53 

fire probability than deciduous trees. Vegetation structures (Carmel et al., 2009), humidity (Huesca et 54 

al., 2009), temperature (Guangmeng and Mei, 2004), and topographical features (Satir et al., 2016) are 55 

all factors that can affect forest fire probability and provide the potential for fires to arise. Human 56 

activities (anthropogenic variables) also play an important role in the occurrence of forest fires, and 57 

they are considered to be the main ignitor of forest fires in areas with intense human activities (Adab et 58 

al., 2013).   59 

The objective of this research was to establish a comprehensive model for mapping forest fire 60 

probability. Four influential factors were considered, including drought index, topography, vegetation 61 

condition and anthropogenic variables. The influence of human activities were analyzed based on forest 62 

fire statistics, while accurate distance values were obtained via a distance analysis.  63 

 64 

2. Methodology 65 

2.1 Study area 66 

Heilongjiang Province was selected as the study area, and is located in the northern part of China 67 

between E 121°11′—135°05′, and N 43°26′—53°33′with a total area of 45.19×10
4
 km

2
. 68 
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The forest-covered area in the study area is 16.44×10
4
 km

2
, which accounts for 36.38% of the total area

 69 

(Fig. 1). Heilongjiang Province experiences a continental monsoon climate with an extremely cold and 70 

dry winter, a windy spring and autumn, and a short, mild and moist summer. The average annual 71 

temperature is between -5 
o
C and 4 

o
C. The average precipitation varies in the region, being higher in 72 

the eastern part and lower in the western part. Sixty percent of the precipitation is concentrated between 73 

June and August, while precipitation in the winter accounts for only 17% of the annual total. Abundant 74 

vegetation cover and climatic conditions such as strong winds and droughts make the study area 75 

susceptible to fires. The fire season is from March to November. Forests are considered natural 76 

resources to support the economic development in the province, and the occurrence of fires can cause 77 

great damage to these forest resources. Statistics show that 528 fires have occurred during the past 10 78 

years, and the total burned area reached 13.8×10
4 
hm

2
. As a hectare of trees lost to fire can cause a loss 79 

of 4398.93 yuan (Zhang et al., 2001), the total economic losses reached 607 million yuan. Due to these 80 

enormous losses, the study area is considered as an important area for forest fire prevention in China.      81 

 82 

Figure 1: Location and land cover types of Heilongjiang Province 83 

 84 

2.2 Index system 85 

Several influencing factors were considered to assess forest fire probability. The indicators 86 

selected in the study are shown in Table 1.  87 

Table 1. Indicators employed to evaluate fire probability in Heilongjiang Province 88 

Influence factor Variables Data source 

Drought index 
Percentage of 

precipitation anomaly 

Monthly precipitation data from meteorological stations 

Topographical 

factors 

DEM ASTER 

Slope Calculated from DEM 

Aspect Calculated from DEM 
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Vegetation 

condition 

Fractional vegetation 

cover 
Calculated based on MOD13Q1 

Vegetation type MCD12Q1 

Anthropogenic 

factors 

Distance from 

settlement (km) 

Settlements obtained by a visual-interpretation method 

based on Landsat TM data 

Distance from road 

(km) 
Roads were digitized from the traffic map 

 89 

2.2.1 Drought index 90 

The percentage of precipitation anomaly (PPA) is an important indicator that represents the 91 

distribution and variation of drought (Wei and Ma, 2003). To calculate PPA, monthly precipitation data 92 

were obtained from 83 meteorological stations (Fig. 3) in Heilongjiang province from March to 93 

November. An inverse distance weighted interpolation method was used to generate the spatial data. 94 

Fires are more likely to arise under drought conditions. The calculation formula of PPA was: 95 

𝐷𝑝 =
𝑃−�̅�

�̅�
× 100%                                (1) 96 

where Dp was the PPA, P was the amount of precipitation during the fire season, and �̅� was the 97 

multi-year average precipitation during the fire season.  98 

2.2.2 Topographical factors 99 

Topography is often measured in terms of elevation, slope and aspect (Jung et al., 2013). Elevation 100 

is highly associated with moisture, temperature, wind and vegetation structure (Lin et al., 2013); 101 

therefore, it has an important influence on fire occurrences. Slope is a key parameter that influences the 102 

spread of fires (Weise and Biging, 1997). Aspect affects the amount of received solar energy, which 103 

results in different degrees of fuel moisture levels (Adab et al., 2013). These topographical factors were 104 

obtained from ASTER (the Advanced Spaceborne Thermal Emission and Reflection radiometer) and 105 

GDEM (Global Digital Elevation Model) Version 2.  106 

2.2.3 Vegetation conditions 107 

The vegetation conditions were measured using the vegetation types and the fractional vegetation 108 

cover (FVC). According to existing research (Deng et al., 2012), vegetation types were classified into 109 

five grades, where coniferous forests are considered as very high probability, mixed forests, 110 

broad-leaved forests and shrublands as high probability, grasslands as moderate probability, farmlands 111 

as low probability, and other vegetation types are considered as very low probability. The vegetation 112 

types were obtained from the MODIS land cover type product MCD12Q1.  113 

FVC represented the vegetation density, where high FVC values indicated areas with high 114 

probabilities of fire. FVC was calculated by: 115 

𝐹𝑉𝐶 =
𝑁𝐷𝑉𝐼−𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥−𝑁𝐷𝑉𝐼𝑚𝑖𝑛
                                    (2) 116 
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where NDVI was the Normalized Difference Vegetation Index, and NDVImin and NDVImax represented 117 

its minimum and maximum values, respectively. NDVI was obtained from the MODIS vegetation 118 

index product MOD13Q1 every 16 days. Eighteen NDVI data from March to November in 2017 were 119 

downloaded, and the mean values were calculated and used in the FVC calculation.  120 

2.2.4 Anthropogenic factors 121 

Settlements were obtained with a visual-interpretation method based on Landsat TM data. Roads 122 

were obtained based on a traffic map of the study area, which included national roads, provincial roads 123 

and country roads (Fig. 2). 124 

 125 

Figure 2: Roads and settlements in the study area 126 

For anthropogenic variables, numerous studies have used the distance from roads and settlements 127 

to represent the influence of human activities (Dong et al., 2005a; Hernandez-Leal et al., 2009; Sağlam 128 

et al., 2008). The key point of this method is how far the distance from roads and settlements should be 129 

set with regards to high or low forest fire probability. A distance analysis was employed to see which 130 

distance has the highest associated fire probability. Fire numbers and density were calculated for every 131 

integer kilometer from settlements and roads. The fire density was calculated as follows: 132 

𝐷𝑖 =
𝑁𝑖

𝐴𝑖
                                  (3) 133 

where Di was the fire density in the i
th

 range, Ni was the number of ignition events in the i
th

 range, and 134 

Ai was the area of the i
th

 range. 135 

To finish this process reasonably, field data from 2000 to 2005 were employed, including 136 

coordinates, ignition locations, time, burned area, fire reason, vegetation type in the burned area and 137 

other information of each forest fire that occurred during this period (Fig. 3). According to the field 138 

data, 992 forest fires occurred from 2000–2005. Among those fires, 234 were caused by lightning 139 

strikes, and the other 758 fires (76.41% of the total) were caused by human activities. This clearly 140 

indicated that human activities are one of the most important causes of forest fires. According to the 141 
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purpose of this study, human-caused fires were used in the model construction and validation. Seventy 142 

percent (531) of human-caused fires were used in the distances analysis. The rest (227) were used as 143 

validation data for the subsequent forest fire probability evaluation. 144 

 145 

Figure 3: Forest fire locations and Meteorological stations in the study area  146 

 147 

2.3 Forest fire probability model  148 

2.3.1 Indicator weights 149 

An analytic hierarchy process (AHP) method, which is commonly used in GIS-based analyses 150 

(Al-Abadi et al., 2016), was employed to obtain the weight of each indicator. AHP is an effective 151 

method to rank decision alternatives. A numerical score can be developed to rank each decision 152 

alternative. In forest fire probability estimation, every indicator can be considered as a single 153 

information layer for the comprehensive analysis. The relative importance of each indicator to fire 154 

probability is the main reference point when setting the weights. Vegetation conditions were considered 155 

with the highest importance which provide the fuels of fires(Deng et al., 2012). Anthropogenic factors 156 

were considered with second importance which is the main ignition of the study area(Jia, 2018).  157 

2.3.2 Models 158 

The variables were divided into five probability ranks: very low, low, moderate, high and very 159 

high, as shown in Table 2. The PPA, topographical factors and FVC were divided into five classes 160 

using a natural breaks method in ArcGIS. 161 

Table 2. Ranks and weights of the influence factors and variables 162 

Influence 

factor 
Weight Variables Weight 

Rank of fire 

probability 

Description of fire 

probability 
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Drought  

index 
0.15 PPA 1 1,2,3,4,5 

Very low, low, 

moderate, high, very 

high 

Topographical 

factors 
0.15 

Elevation (m) 0.34 1,2,3,4,5 

Very low, low, 

moderate, high, very 

high 

Slope (
o
) 0.33 1,2,3,4,5 

Very low, low, 

moderate, high, very 

high 

Aspect (
o
) 0.33 1,2,3,4,5 

Very low, low, 

moderate, high, very 

high 

Vegetation 

condition 
0.4 

Fraction vegetation 

cover 
0.5 1,2,3,4,5 

Very low, low, 

moderate, high, very 

high 

Vegetation type 0.5 1,2,3,4,5 

Very low, low, 

moderate, high, very 

high 

Anthropogenic 

factors 
0.3 

Distance from 

settlement (km) 
0.6 1,2,3,4,5 

Very low, low, 

moderate, high, very 

high 

Distance from road 

(km) 
0.4 1,2,3,4,5 

Very low, low, 

moderate, high 

 163 

For a quantitative measurements, each influencing factor was obtained by a weighted model as 164 

follows: 165 

𝑌 = ∑ 𝑤𝑖𝑥𝑖
𝑛
𝑖=1                                       (2) 166 

where Y represented the four influence factors, xi (i=1,2,3,…,n) contained the variables used for the 167 

evaluation of each influence factor, and wi was the weight of each variable. 168 

To measure forest fire probability, the FFPI was calculated as:  169 

𝐹𝐹𝑃𝐼 = 0.4 × 𝑉 + 0.3 × 𝐴 + 0.15 × 𝑇 + 0.15 × 𝑀                   (3) 170 

where V was the vegetation condition, A was an anthropogenic factor, T was a topographical factor and 171 

M was a meteorological factor.  172 

2.3.3 Validation method 173 

A receiver operating characteristics (ROC) curve, which is a frequently used technique for 174 

accuracy validation, was employed to validate the accuracy of the proposed model. The area under the 175 

ROC Curve (AUC) represented the performance of the model. AUC values usually range from 0.5 to 1, 176 

where a value close to one indicates that the performance of the model is excellent, while a value close 177 

to 0.5 indicates poor performance. 178 

3. Results 179 

3.1 Results of the distance analysis 180 

The distance of each fire location to the nearest settlement was calculated. The results showed that 181 

the minimum distance was 58 m and the maximum distance was 28,750 m. The medium distance was 182 

4,000 m, whereafter the fire numbers declined as the distance increased. As shown in Fig. 4, the 183 
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number of fires relative to the distance to the nearest settlement presented a trend of first increasing, 184 

reaching a peak, and then decreasing.  185 

Within 1 km of settlements, 41 fires occurred, which accounts for 7.72% of the total fires. More 186 

fires occurred between 1 and 6 km, where the number of fires exceeded 55 and a percentage of over 10% 187 

for each 1 km distance. Most fires occurred between 3 and 4 km, where the number of fires reached 75, 188 

and accounted for 14.12% of the total fires. Within a distance of 10 km, 469 fires occurred, which 189 

accounted for 88.32% of the total fires.  190 

 191 

Figure 4: Distance analysis of fire locations to settlements 192 

 193 

The distance of each fire location to the nearest road was also calculated. The results showed that 194 

the minimum distance was 26 m and the maximum distance was 31,087 m. As shown in Fig. 4, there 195 

was an obvious trend of declining fire numbers as the distance increased. Forty-nine fires  arose 196 

within 1 km from roads, which accounted for 9.23% of the total fires. Most fires (355) occurred within 197 

a 10-km distance, which accounted for 66.86%. At distances greater than 10 km, the fire numbers 198 

declined dramatically. When the distance increased to 21 km, the number of fires reached 515, which 199 

accounted for 96.97% of the total fires. The fire density also did not show a regular trend as the 200 

distance increased. 201 

 202 

41 

58 
60 

75 

55 
57 

34 

37 
32 

20 
14 

8 

10 

3 3 
4 4 5 

3 3 
1 2 1 1 

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

F
ir

e 
n

u
m

b
er

s 

Distance to settlement (km) 

https://doi.org/10.5194/nhess-2019-338
Preprint. Discussion started: 13 January 2020
c© Author(s) 2020. CC BY 4.0 License.



9 
 

 203 

Figure 5: Distance analysis from fire locations to roads 204 

 205 

The fire numbers and percentages were considered as the main factors that determine the 206 

probability rank of anthropogenic factors. By comprehensively considering the distance analysis result, 207 

a rating of fire probability due to anthropogenic factors was set (Table 3). 208 

 209 

Table 3. The rating of fire probability of anthropogenic factors 210 

Distance to settlements (km) <1 1–6 6–9 9–15 15–20 >20 

The rating of fire probability 4 5 4 3 2 1 

Distance to road (km) <2 2–6 6–10 10-20 >20  

The rating of fire probability 5 4 3 2 1  

 211 

3.2 Forest fire probability evaluation  212 

According to the method mentioned above, the FFPIs of the study area were calculated and split 213 

into five probability classes as shown in Fig. 6, including very low, low, moderate, high and very high. 214 
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 215 

Figure 6: Forest fire probability distribution in Heilongjiang Province 216 

 217 

The forest fire probability grade represents the possibility of a fire occurring. The results show that 218 

high probability areas cover 13.10×10
6 
hectares, or 28.99% of the total area, which is the largest area. 219 

Very high probability areas cover 11.00×10
6 

hectares, which account for 24.35% of the total area. 220 

Medium probability areas cover 9.46×10
6 
hectares, or 20.94% of the total area. Low probability areas 221 

cover 7.84×10
6 
hectares, or 17.45% of the total area. Finally, very low probability areas cover 3.74×222 

10
6 
hectares, or 8.28% of the total area.  223 

The high and very high probability areas exceeded 50% of the total area, meaning that 224 

Heilongjiang Province is a forest fire-prone area. However, the distribution of fire probability was quite 225 

heterogeneous. As shown in Fig. 6 and Table 4, most high and very high probability areas are 226 

distributed in the Great Khingan Region, Heihe City, Yichun City, Harbin City and Mudanjiang City, 227 

which respectively account for 20.90%, 15.02%,12.17%,11.71% and 14.12% of the total high and very 228 

high areas. Other cities, such as Qitaihe City and Daqing City, high and very high areas only account 229 

for 1.35% and 0.77%, respectively. 230 

 231 

Table 4. Areas of different fire probability in Heilongjiang province (Unit: 10
4
 hectares) 232 

City Very low Low Medium High Very High 

Great Khingan Region 14.61 39.75 86.41 269.60 234.08 

Heihe City 29.66 105.27 171.45 266.64 95.46 

Yichun City 2.08 8.77 24.02 108.71 184.64 

Hegang City 7.89 29.07 31.36 35.80 41.76 

Jiamusi City 23.61 82.73 114.68 81.17 24.64 
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Shuangyashan City 7.33 37.81 56.08 67.75 51.62 

Qiqihar City 85.02 150.83 115.82 67.97 1.85 

Shuihua City 58.81 110.83 91.78 60.07 27.58 

Qitaihe City 2.80 11.13 16.09 18.92 13.51 

Daqing City 79.65 72.28 40.93 17.65 0.83 

Jixi City 18.81 31.32 55.54 74.17 43.18 

Harbin City 41.27 98.41 108.80 132.68 149.66 

Mudanjiang City 2.57 10.22 33.29 108.90 231.38 

 233 

3.3 Model validation 234 

Two hundred and twenty-seven forest fires that occurred during 2000–2005 in Heilongjiang 235 

Province were used as validation data to measure the accuracy of the proposed model. The number of 236 

fires occurring at the different levels of forest fire probability were calculated, as shown in Table 5. The 237 

results show that most fires happened in high and very high probability zones, with fewer in low 238 

probability zones. Indeed, over sixty-eight percent of the fires occurred in high and very high 239 

probability zones. 240 

 241 

Table 5. Number of fires in each probability zone 242 

Level of fire probability: Very low Low Moderate High Very high 

Number of fires 6 19 46 82 74 

Percentage 2.63% 8.33% 20.18% 35.96% 32.46% 

 243 

In this study, we found an AUC value of 0.790, at the 95% confidence level (Fig. 7), meaning that 244 

the model showed good performance. 245 

 246 

 247 
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Figure 7: ROC curve and AUC value of the forest fire probability model 248 

 249 

4. Discussion and conclusions 250 

4.1 Influence of human activities on fire probability 251 

The influence of human activities on fire probability, which were represented by the distances 252 

from roads and settlements, was estimated by a distance analysis. Fire numbers, percentages and 253 

densities were calculated in each 1 km range. The results show that fire risk declined as the distance to 254 

roads increased, where those within 2 km were faced with the highest risk. In terms of the distance to 255 

settlements, the highest fire numbers and percentages occurred from 1 to 6 km, but not within 1 km. 256 

This suggests a lower fire probability within 1 km, and a higher fire probability from 1 to 6 km. This 257 

result is different to previous studies (Hong et al., 2017; Matin et al., 2017) that considered that the 258 

nearer one is to a settlement, the greater the fire probability becomes.  259 

4.2 Different fire risk distributions at the city scale 260 

At the city scale, according to the percentage of high and very high probability areas in the city, 261 

the fire risk could be divided into three grades (Fig.8). The high risk cities include Yichun City, Great 262 

Khingan Region and Mudanjiang City, where the high and very high areas account for 89.38%, 78.16% 263 

and 88.07% of the total city area, respectively. The medium risk cities include Heihe City, Hegang city, 264 

Shuangyashan City, Qitaihe City, Jixi City and Harbin City, where the high and very high area 265 

percentages are between 50% and 55% of the total city area. Other cities, including Jiamusi City, 266 

Qiqihar City, Shuihua City and Daqing City, are faced with low fire risk, where the percentage is 267 

32.38%, 16.57%, 25.11% and 8.74%, respectively. 268 

 269 

Figure 8: Forest fire risk at the city scale in Heilongjiang Province 270 

 271 

In this study we proposed a synthetic method for evaluating forest fire probability based on 272 

assessing the influence of human activities. The variables used in the study were relatively fewer and 273 
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easily obtained from existing datasets, which makes the method easily repeatable for other years in the 274 

study area. The main conclusions are as follows:  275 

(1) The influencing distance to settlements and roads is mainly within 10 km. The most influential 276 

distance to roads is within 2 km, and the most influential distance to settlement is from 1 to 6 km. 277 

Areas within these distances face more risk of fire and should been defined as vigilance priority areas. 278 

We consider that the influencing distance should increase as traffic conditions improve, especially for 279 

the distance to settlements.  280 

2) The distribution of fire probability in Heilongjiang province is heterogeneous. Yichun City, 281 

Great Khingan Region and Mudanjiang City are faced with high fire risks, which should been given 282 

priority for surveillance.  283 

Our results can help governments and forest managers to readily identify high forest fire 284 

probability locations easily, and to take actions or form policies to avoid future loss of resources, 285 

properties and human life.  286 
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