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Abstract. Critical gaps in the amount, quality, consistency, availability, and spatial distribution of 23 

rainfall data limit extreme precipitation analysis, and the application of gridded precipitation data 24 

are challenging because of their considerable biases. This study corrected Asian Precipitation Highly 25 

Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) 26 

in the Yarlung Tsangpo-Brahmaputra River Basin (YBRB) using two linear and two nonlinear 27 

methods, and assessed their influence on extreme precipitation indices. The results showed that the 28 

original APHRODITE data tended to underestimate precipitation during the summer monsoon 29 

season, especially in the topographically complex Himalayan belt. Bias correction using 30 

complementary rainfall observations to add spatial coverage in data-sparse regions greatly improved 31 

the performance of extreme precipitation analysis. Although all methods could correct mean 32 

precipitation, their ability to correct the wet-day frequency and coefficient of variation were 33 

substantially different, leading to considerable differences in extreme precipitation indices. 34 

Generally, higher-skill bias-corrected APHRODITE data are expected to perform better than those 35 

corrected by lower-skill approaches. This study would provide reference for using gridded 36 

precipitation data in extreme precipitation analysis and selecting bias-corrected method for rainfall 37 

products in data-sparse regions. 38 

 39 

1  Introduction 40 

Extreme precipitation often leads to floods, debris flows, and other secondary disasters (Wang 41 

et al., 2017), and changes in the frequency and intensity of extreme precipitation profoundly 42 

influence both natural environment and human society profoundly (Easterling et al., 2000; Yucel 43 

and Onen, 2014). Rainfall observations provide a primary foundation for comprehending their long-44 
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term variability and change in extreme precipitation (Alexander, 2016). Accurate rainfall data are 45 

necessary for flood protection and water resource management. However, due to scarce spatial 46 

coverage of rainfall stations, short-length rainfall records, and high proportions of missing data, 47 

observations currently available in some remote basins are clearly inadequate to capture their 48 

precipitation characteristics. In addition, observed rainfall data are usually difficult to collect in 49 

international river basins because many countries may not share or freely distribute data (Lakshmi 50 

et al., 2018). 51 

The Yarlung Tsangpo-Brahmaputra River is the fourth largest river in the world in terms of 52 

flow (Kamal-Heikman et al., 2007), which is influenced profoundly by complex atmospheric 53 

dynamics and regional climate processes (Immerzeel et al., 2010; Pervez and Henebry, 2015). 54 

Because its agriculture and economy rely heavily on monsoon precipitation, the basin is particularly 55 

vulnerable to changing climate (Singh et al., 2016; Liu et al., 2018; Janes et al., 2019; Xu et al., 56 

2019; Zhang et al., 2019). During the four summer monsoon months of June, July, August, and 57 

September (JJAS), extreme precipitation with large uncertainties leads to numerous floods (Kamal-58 

Heikman et al., 2007; Dimri et al., 2016; Malik et al., 2016). However, the understanding on extreme 59 

precipitation in the Yarlung Tsangpo-Brahmaputra River Basin (YBRB) have a number of gaps 60 

because of its complex topographic interactions with atmospheric flows, lack of observations, and 61 

data sharing issues, which hinder effective flood management (Ray et al., 2015; Prakash et al., 2019). 62 

Currently, different gridded rainfall products provide effective information over regional to 63 

global scales, which could be broadly classified into four categories: (1) gauge-based data sets that 64 

build on observations from rainfall stations; (2) products from numerical weather predictions or 65 

atmospheric models; (3) satellite-only products; and (4) combined satellite-gauge products. The 66 
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performance of these products varies from region to region (Duan et al., 2016). Given the 67 

heterogeneity of orography and climate in the YBRB, observing and modeling its precipitation are 68 

very challenging (Khandu et al., 2017). In addition, satellite products are less reliable because high 69 

convective rainfall generally takes place in the southern foothills of the Himalayas (Prakash et al., 70 

2015). Compared with some other gauge-based products, the Asian Precipitation Highly Resolved 71 

Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) dataset 72 

collected more rainfall observations across South Asia (Rana et al., 2015), which have been proved 73 

could better estimate spatial precipitation (Andermann et al., 2011). Nonetheless, the lack and 74 

uneven distribution of rainfall stations at high altitudes in the Tibetan Plateau and Himalayas may 75 

introduce uncertainty and affect the accuracy of APHRODITE (Rana et al., 2015; Chaudhary et al., 76 

2017). 77 

Numerous rainfall observations can be obtained from public databases, although their short 78 

record and static character limit their direct application in precipitation analysis (Donat et al., 2013). 79 

However, these data could be useful for bias correction of gauge-based gridded products by 80 

providing additional observations from the denser network of rainfall stations. On the other hand, 81 

ranging from simple linear scaling to more sophisticated nonlinear approaches, several methods 82 

have been developed to adjust global climate model (GCM) data (Teutschbein and Seibert, 2012). 83 

Similarly, these bias correction methods could be applied to correct gridded rainfall products in 84 

sparsely-gauged mountainous basins (He et al., 2017). It is important to study whether extreme 85 

precipitation analysis could be improved by bias correction of gridded precipitation data and how 86 

different methods would influence extreme precipitation indices. 87 

This study evaluated different bias correction approaches for APHRODITE in the YBRB and 88 
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assessed their effects on extreme precipitation analysis. We first corrected APHRODITE dataset by 89 

both linear and nonlinear methods, and then evaluated their performances. Next, we calculated 90 

extreme precipitation indices using the original and different corrected APHRODITE to further 91 

investigate the effects of bias correction on extreme precipitation analysis. The results would support 92 

reference for the application of gridded precipitation data and bias-corrected methods in extreme 93 

precipitation analysis. 94 

 95 

2  Material and methods 96 

2.1  Study area 97 

The YBRB can be divided into three physiographic zones: (1) the Tibetan plateau (TP), 98 

covering 44.4% of the basin, with elevations above 3500 m; (2) the Himalayan belt (HB), accounting 99 

for 28.6% of the basin, with elevations ranging from 100 m to 3500 m; and (3) the floodplains (FP), 100 

covering 27.0% of the basin, with elevations up to 100 m (Immerzeel, 2008).  101 

The moisture in the YBRB is mainly from the Indian Ocean. The YBRB exhibits a broad range 102 

of precipitation from the semi-arid upstream areas to the HB characterized by abundant orographic 103 

rainfall as well as the vast humid FP. In the upstream areas, precipitation is concentrated during 104 

JJAS, and rainfall intensity is mostly low due to long-distance moisture transport (Guan et al., 1984). 105 

The irregular topographic variations in the Himalayas profoundly affect the spatial distribution of 106 

precipitation by altering monsoonal flow, producing intense orographic rainfall along the Himalayan 107 

foothills (Khandu et al., 2017). The downstream areas also receive high rainfall from monsoon flow 108 

during JJAS, accounting for 60%−70% of the annual rainfall (Gain et al., 2011). 109 

 110 
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2.2  Data sources 111 

2.2.1  Observational data 112 

In the upper YBRB, rainfall data across China recorded at 31 meteorological stations were 113 

collected from the National Meteorological Information Center (NMIC, sourced from the China 114 

Meteorological Data Sharing Service System). In addition, data observed at 91 rainfall stations in 115 

the downstream area were obtained from the Global Historical Climatology Network 116 

(GHCN)−Daily for bias correction. GHCN-Daily comprises observations from four sources, which 117 

have been undergone extensive quality reviews, including the U.S. Collection, the International 118 

Collection, the Government Exchange Data, and the Global Summary of the Day. The locations of 119 

rainfall stations are shown in Fig. 1. 120 

 121 

2.2.2  APHRODITE 122 

Numerous rainfall observations were incorporated into APHRODITE, including (1) Global 123 

Telecommunication System (GTS)-based data, (2) data obtained from other projects or 124 

organizations, and (3) their own collection. The ratios of rainfall observations after quality control 125 

to the world climatology were calculated and interpolated for each month. The interpolated ratios 126 

were multiplied by the world climatology, and the first six components of the fast Fourier transform 127 

of the resulting values were used to obtain daily precipitation (Yatagai et al., 2012). 128 

Daily rainfall data of APHRO_MA_025deg_V1101 (http://aphrodite.st.hirosaki-129 

u.ac.jp/index.html) at 0.25° resolution in the Asian monsoon area end in 2007, while recently 130 

published APHRO_MA_025deg_V1101EX_R1 (http://aphrodite.st.hirosaki-u.ac.jp/index.html), 131 

using the same algorithm and spatial resolution, extend the time series over the period 2007−2015. 132 
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Therefore, extreme precipitation could be analyzed during 1951−2015 by applying both datasets. 133 

To investigate the influence of topography on bias-corrected APHRODITE, the APHRODITE grids 134 

were classified into three topographic zones (the TP, HB, and FP; Fig. 2). 135 

 136 

2.3  Methods 137 

2.3.1  Bias correction methods 138 

Two linear methods (linear scaling (LS) and local intensity scaling (LOCI)) and two non-linear 139 

methods (power transformation (PT) and quantile−quantile mapping (QM)) were used for bias 140 

correction in this study. 141 

(1) LS 142 

LS corrects monthly estimates in accordance with observations (Lenderink et al., 2007). It 143 

adjusts APHRODITE using the ratio between mean monthly observations and corresponding 144 

estimations: 145 

   
  
  

m obs

APH APH

m APH

P d
P d P d

P d






 
  
  

                                                  (1) 146 

where  APHP d   and  APHP d
  are the original and corrected APHRODITE, respectively. 147 

  m obsP d   and   m APHP d   are the mean monthly observation and corresponding 148 

APHRODITE, respectively. 149 

(2) LOCI 150 

LOCI makes a flexible adjustment to the wet-day frequency and intensity (Schmidli et al., 2006; 151 

Teutschbein and Seibert, 2012). Firstly, an adjusted precipitation threshold (𝑃𝑡ℎ,𝐴𝑃𝐻) is determined 152 

so that the threshold exceedance matches the wet-day frequency of the observation. Secondly, a 153 

linear scaling factor for wet days is computed, using the mean monthly precipitation: 154 
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    
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                                             (2) 155 

Finally, the precipitation data are corrected, using: 156 

     ,max ,0APH APH th APHP d s P d P                                                   (3) 157 

(3) PT 158 

PT corrects both the mean and the coefficient of variation of precipitation (Leander and 159 

Buishand, 2007), changing precipitation by: 160 

    
b

APH APHP d a P d                                                             (4) 161 

where a and b are the parameters of the power transformation, which are obtained using a 162 

distribution-free approach and estimated for each month within a 90-day window. Using a root-163 

finding algorithm, the value of b is firstly determined to ensure that the coefficient of variation of 164 

the corrected precipitation matches that of the observed precipitation. The parameter a is then 165 

calculated using the mean observation and the corresponding mean of the transformed values. 166 

(4) QM 167 

By shifting occurrence distributions, QM corrects the distribution function of the APHRODITE 168 

to match those of the observed distribution function. A Gamma distribution is usually assumed for 169 

precipitation events and has been proven to be effective in precipitation analysis (Teutschbein and 170 

Seibert, 2012):  171 

 
 

1 1
, ; 0; , 0

x

f x x e x
Γ

 
 

   
 


    


                                         (5) 172 

where α and β are the shape parameter and scale parameter, respectively. 173 

The cumulative density function (CDF) for the APHRODITE is matched with that for the daily 174 

observed precipitation for a given month, and the daily precipitation for APHRODITE is corrected 175 

depending on its quantile. It should be noted that for APHRODITE, many days had low precipitation 176 
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estimates instead of substantial dry conditions, which may distort the distribution of daily 177 

precipitation. Therefore, an adjusted precipitation threshold is also used to ensure the wet-day 178 

frequency of the corrected APHRODITE match the observed frequency: 179 

 
 

   
,

1

, , , ,

0 if

, , , otherwise

APH th APH

APH

APH APH m APH m obs m obs m

P d P
P d

F F P d     





 


 


，
                         (6) 180 

F
 and 

1F


 are the Gamma CDF and its inverse, respectively. 181 

Hereafter, the APHRODITE data corrected by LS, LOCI, PT, and QM are referred as LS-182 

APHRODITE, LOCI-APHRODITE, PT-APHRODITE, and QM-APHRODITE, respectively. 183 

 184 

2.3.2  Evaluation of APHRODITE estimates 185 

Observed data from rainfall stations were applied to evaluate the performances of the original 186 

and corrected APHRODITE at daily scale. Five common statistical metrics, including Pearson 187 

correlation coefficient (r), percentage bias (PB), mean error (ME), mean absolute error (MAE), and 188 

root mean squared error (RMSE), were calculated (Duan et al., 2016), and their equations and 189 

optimal values are summarized in Table 1. 190 

 191 

2.3.3  Indices of extreme precipitation 192 

To characterize extreme precipitation during JJAS, six indices recommended by the Expert 193 

Team on Climate Change Detection and Indices (ETCCDI), including consecutive wet days (CWD), 194 

number of heavy precipitation days (R10mm), number of very heavy precipitation days (R20mm), 195 

maximum 1-day precipitation amount (Rx1d), maximum 5-day precipitation amount (Rx5d), and 196 

simple daily intensity index (SDII), were applied in this study. Detailed descriptions of these indices 197 

are shown in Table 2. The indices fall roughly into three categories: (1) duration indices, which 198 
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represent the length of the wet spell; (2) threshold indices, which count the days on which a fixed 199 

precipitation threshold is exceeded; (3) absolute indices, which describe the maximum 1-day or 5-200 

day precipitation amount (Sillmann et al., 2013). 201 

In the grids distributed with rainfall stations, these six indices were calculated from the 202 

corrected APHRODITE. In addition, spatial interpolation was performed using inverse distance 203 

weighted (IDW) to obtain extreme precipitation indices for other grids within the basin. This 204 

allowed us to calculate mean values for each of the three topographic zones. 205 

 206 

3  Results 207 

3.1  Evaluation of original and corrected APHRODITE estimates 208 

The statistical metrics for daily precipitation during JJAS calculated for both original and 209 

corrected APHRODITE are summarized in Table 3. In general, original APHRODITE estimated 210 

precipitation well during JJAS in the YBRB, yielding r close to 0.8 in all three zones. However, the 211 

PB of the original APHRODITE estimates in the TP, HB, and FP were −9.4, −24.2, and −11.4, 212 

respectively. This indicates that they tended to underestimate precipitation. Due to the high 213 

orographic precipitation coupled with the low density of rainfall stations used in the APHRODITE, 214 

underestimation in the HB with complex topography was greatest. 215 

Corrected APHRODITE estimates yielded better statistical metrics. The PB and ME for LS-, 216 

LOCI-, and PT-APHRODITE were almost 0, indicating there was no longer any distinct bias in the 217 

mean of daily precipitation. The linear approaches and PT calculate correction values based on the 218 

ratio between long-term observations and APHRODITE estimates. Therefore, LS-, LOCI-, and PT-219 

APHRODITE agreed with the mean observations. In the case of QM-APHRODITE, the PB in the 220 
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TP, HB, and FB were 3.2, 11.3, and 5.7, respectively, which were larger than those for other 221 

corrected APHRODITE estimates. 222 

The other three statistical metrics (r, MAE, and RMSE) for the corrected APHRODITE in the 223 

TP were similar to those for the original APHRODITE, while the corrected APHRODITE in the FP 224 

had slightly higher r and lower MAE and RMSE. In the HB, the r, MAE, and RMSE for the original 225 

APHRODITE were 0.81, 3.6 mm, and 15.9 mm, respectively; while for the corrected APHRODITE, 226 

the r were all higher than 0.9, and the MAE and RMSE were mostly less than 3 mm and 10 mm, 227 

respectively, suggesting that the greatest improvement occurred in the HB. 228 

 229 

3.2  The influence of bias correction on extreme precipitation indices 230 

3.2.1  Spatial distribution of extreme precipitation 231 

Rainstorms over the lower YBRB usually have a duration of 2−3 days (Dhar and Nandargi, 232 

2000), and large multi-day precipitation events are crucial to the floods in the basin. Hence, the 233 

spatial distribution of Rx5d during JJAS based on the original APHRODITE estimates were 234 

compared with the corrected APHRODITE estimates in Fig. 3. For the original APHRODITE, the 235 

area with Rx5d higher than 300 mm only accounted for 2.0% of the basin, while the proportions for 236 

LS-, LOCI-, PT-, and QM-APHRODITE were 10.9%, 18.7%, 21.7%, and 21.3%, respectively. The 237 

most profound difference between the original and corrected APHRODITE occurred over the 238 

windward slopes of the Himalayas before the river flows into the Brahmaputra valley. The Rx5d 239 

calculated from the original APHRODITE were lower than 300 mm, while much higher Rx5d were 240 

obtained after bias correction, yielding maxima of 946.6, 1030.3, 1105.1, and 1396.6 mm for LS-, 241 

LOCI-, PT-, and QM-APHRODITE, respectively. The eastern Himalayas, acting as orographic 242 
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barriers, push the southwest moist air upwards, leading to heavier extreme precipitation over the 243 

windward slopes (Singh et al., 2004; Bookhagen and Burbank, 2010; Dimri et al., 2016). However, 244 

original APHRODITE estimates tended to substantially underestimate these extreme precipitation, 245 

likely because of sparse rainfall gauge data. Besides aforementioned region, higher Rx5d along the 246 

Himalayan front were also found after bias correction. In this case, extreme precipitation calculated 247 

from nonlinear approaches were heavier than those derived from linear methods. Bias correction are 248 

able to consider topographic effects on the spatial distribution of extreme precipitation more 249 

comprehensively by making use of observations from denser network of rainfall stations. This 250 

resulted in better capturing of the main climatological features of extreme precipitation in the YBRB. 251 

 252 

3.2.2  Extreme precipitation indices in the three physiographic zones 253 

Sparsely distributed rainfall stations and short records affect the accuracy of spatial 254 

precipitation interpolation. Hence, it is hard to directly evaluate extreme precipitation obtained from 255 

bias-corrected APHRODITE by carrying out pixel-to-pixel comparison with those interpolated 256 

using gauge observations. A major limitation is the remaining uncertainty regarding how well 257 

different corrected APHRODITE estimate heavy rainfall, especially in data-sparse regions. Despite 258 

improved statistical metrics for bias-corrected APHRODITE, these could not guarantee good 259 

performance in extreme precipitation analysis. To obtain valuable information about the influences 260 

of bias-corrected methods on extreme precipitation analysis, extreme precipitation indices 261 

calculated from the original and four corrected APHRODITE were compared. 262 

Extreme precipitation indices calculated from the original and four corrected APHRODITE 263 

estimates in the three different physiographic zones are shown in Fig. 4. The CWD estimated using 264 
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original APHRODITE and LS-APHRODITE were similar. Meanwhile, those derived from LOCI-, 265 

PT-, and QM-APHRODITE estimates were much less. For the original APHRODITE, there were a 266 

lot of days with low precipitation estimations instead of substantial dry conditions, leading to the 267 

overestimation on CWD. Likewise, this propagated to the LS-APHRODITE, because there was no 268 

change made to the wet-day frequency. In contrast, for both LOCI- and QM-APHRODITE, these 269 

low precipitation days were redefined as dry days using precipitation threshold, resulting in more 270 

reliable CWD. Finally, although the PT did not correct wet-day frequency, the CWD for the PT-271 

APHRODITE were lower because tiny precipitation were also corrected. 272 

Mean R10mm during JJAS obtained by the original APHRODITE estimates in the TP, HB, and 273 

FP were 6.7, 31.0, and 47.7 days, respectively. These were similar to those estimated by the bias-274 

corrected APHRODITE datasets. However, the differences in R20mm were much pronounced. 275 

Mean R20mm in HB and FP for the bias-corrected APHRODITE datasets were close to 19.0 and 276 

26.5 days, respectively, which were approximately 4–5 days higher than those derived from the 277 

original APHRODITE estimates. 278 

Compared with the original APHRODITE estimates, the Rx1d and Rx5d increased greatly after 279 

bias correction. In the HB, the mean Rx1d obtained from the original APHRODITE estimates was 280 

49.5 mm, while those for LS-, LOCI-, PT-, and QM-APHRODITE estimates were 72.4, 90.1, 109.0, 281 

and 103.8 mm, respectively. In addition, the range of Rx1d and Rx5d also increased considerably. 282 

LS was not able to adjust the coefficient of variation, resulting in the lowest Rx1d and Rx5d among 283 

the corrected estimates. Likewise, although precipitation intensity was changed, the Rx1d and Rx5d 284 

for the LOCI-APHRODITE were not as high as those obtained from the two nonlinear corrections, 285 

because it used consistent ratio in its linear transformation. 286 
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The differences in SDII between the original and corrected APHRODITE estimates were also 287 

marked. For example, the mean SDII in the FP calculated from the original APHRODITE estimates 288 

was 13.4 mm. After correction, the mean SDII for LOCI- and QM-APHRODITE estimates 289 

increased to 23.4 and 25.1 mm, respectively. These values were much greater than those derived 290 

from LS- and PT-APHRODITE datasets (15.7 and 17.7 mm). The original APHRODITE estimates 291 

are expected to underestimate SDII. Firstly, the original APHRODITE tended to underestimate 292 

precipitation, resulting in very high precipitation in the HB and TP not being fully captured. 293 

Secondly, the original APHRODITE overestimated wet days instead of substantial dry conditions, 294 

which distorted the estimation of precipitation intensity. Larger values of SDII obtained from the 295 

corrected APHRODITE estimates were expected, and the SDII for LOCI- and QM-APHRODITE 296 

were higher because they correct rainfall amount as well as number of rainy days. 297 

 298 

3.2.3  Relative changes in extreme precipitation indices 299 

The relative changes in extreme precipitation indices during JJAS based on the original and 300 

corrected APHRODITE estimates are shown in Fig. 5. The CWD for LOCI-, PT-, and QM-301 

APHRODITE were all lower than the original APHRODITE, yielding relative change rates from 302 

−66% to −27%. This indicates bias corrections decreased the number of rainy days except LS. The 303 

variations in R10mm and R20mm illustrated that the corrected APHRODITE identified much more 304 

extreme precipitation events in the TP. The changes in indices varied considerably for different 305 

correction methods, with the change rates of R20mm in the TP for LS-, LOCI-, PT-, and QM-306 

APHRODITE being 30.4%, 169.2%, 297.1%, and 317.4%, respectively. For Rx1d, Rx5d, and SDII, 307 

the increases in the HB were much pronounced than those in the FP and TP. Except for the LS-308 
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APHRODITE, the increases in Rx1d and Rx5d in the HB were all above 70% for the corrected 309 

APHRODITE estimates. Clearly, topographic variations profoundly influenced the spatial 310 

distribution of precipitation by altering monsoonal flow, resulting in considerable orographic rainfall 311 

on the windward slopes of the Himalayas (Khandu et al., 2017). Insufficient gauge observations in 312 

the Himalayas caused high uncertainty in the heavy precipitation estimates for the original 313 

APHRODITE. After bias adjustment especially those of nonlinear correction, the heterogeneous 314 

orographic effects on extreme precipitation were captured more accurately. 315 

 316 

3.2.4  Interannual variation of extreme precipitation 317 

To investigate the interannual variation of extreme precipitation for the original and corrected 318 

APHRODITE, the exceedance probabilities of area-averaged Rx5d during JJAS were compared 319 

(Fig. 6). The Rx5d for corrected APHRODITE differ considerably, and the LOCI-, PT-, and QM-320 

APHRODITE estimated much higher Rx5d than the original APHRODITE and LS-APHRODITE. 321 

In addition, there were greater variability in the Rx5d derived from PT- and QM-APHRODITE. In 322 

particular, heavier Rx5d with low exceedance probabilities obtained by nonlinear corrections 323 

reflected the increasing interannual variation. 324 

 325 

4  Discussion 326 

Using two linear and two bias nonlinear methods, we corrected APHRODITE estimates during 327 

JJAS in the YBRB to investigate the effects of different approaches on extreme precipitation 328 

analysis. Regardless of the method used, bias correction improved the performance of rainfall 329 

estimates. Nonetheless, extreme precipitation indices were strongly dependent on the bias correction 330 
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approach applied. 331 

A primary problem when using gauge-based gridded data sets for extreme precipitation 332 

analysis is the fundamental mismatch between point-based observations and gridded estimates 333 

(Alexander, 2016). In addition, the spatial coverage of rainfall stations is another major source of 334 

uncertainty, particularly where spatial distributions of precipitation are complex (Donat et al., 2013). 335 

There are currently several approaches for bias correction, ranging from simple linear scaling to 336 

more sophisticated nonlinear methods (Teutschbein and Seibert, 2012). Although mean precipitation 337 

corrected by all bias-corrected approaches were similar, their standard deviations and consequent 338 

extreme precipitation indices varied considerably. In the case of linear corrections, both mean and 339 

standard deviation are multiplied by same factor (Leander and Buishand, 2007), resulting in dubious 340 

variations of precipitation. Nonlinear corrections adjust mean and also coefficient of variation 341 

(Teutschbein and Seibert, 2012), yielding more reliable results. In addition, the typical biases of 342 

rainfall products are related to their identification of too many wet days with low-intensity 343 

precipitation. Among the four bias-corrected approaches applied herein, LS and PT make no change 344 

on the number of rainy days, while LOCI and QM use threshold exceedance to match the wet-day 345 

frequency to the observations. Overall, QM corrects most of the statistical characteristics, and 346 

therefore it is expected to perform better in extreme precipitation analysis. 347 

In international river basins, rainfall data are usually not publicly available, and extreme 348 

precipitation analysis may suffer from data restrictions (Nishat and Rahman, 2009; Luo et al., 2019). 349 

Several great international rivers in south Asia, including the Indus, Ganges, and Yarlung 350 

Tsangpo−Brahmaputra, originate from or flow through the Himalayas. Rainfall estimates of 351 

different products varied markedly along the Himalayan front and obtained similar results toward 352 
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the adjacent low‐relief domains (Andermann et al., 2011). The GHCN-Daily data can be applied to 353 

adjust gauge-based gridded data sets in this region, ensuring these products capture the spatial 354 

distribution and variation of extreme precipitation. However, numerous GHCN-Daily records in 355 

Asia do not contain data from recent years, and the short or incomplete rainfall records limit their 356 

direct applications (Donat et al., 2013). Hence, it would be preferable to add spatial coverage in 357 

data-sparse regions by applying nonpublic datasets. 358 

 359 

5  Conclusions 360 

Despite increasing use of gridded rainfall products in sparsely gauged river basins, their 361 

application in extreme precipitation analysis is challenging due to considerable biases. This study 362 

made use of four methods to correct the APHRODITE in the YBRB. Their influences on extreme 363 

precipitation indices were compared and assessed. The following conclusions were drawn. 364 

(1) Original APHRODITE tended to underestimate precipitation during JJAS, and bias 365 

correction improved the accuracy of APHRODITE, especially in the HB with complex topography, 366 

highlighting the superiority of corrected APHRODITE. 367 

(2) The extreme precipitation indices calculated from different corrected APHRODITE varied 368 

substantially, depending on correction method and location. Major dissimilarities were induced by 369 

wet-day frequency and standard deviation. Nonlinear correction methods adjust not only mean 370 

precipitation but also coefficient of variation, and QM further corrects probability of wet days, 371 

which is expected to perform better in extreme precipitation analysis. 372 

(3) The deficiency of gauge-based gridded data is mainly attributed to the spatial coverage of 373 

rainfall stations, causing uncertainty to be amplified in extreme precipitation analysis. By correcting 374 
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these gauge-based gridded data using complementary observations from denser networks of rainfall 375 

stations, extreme precipitation representation may be greatly improved.  376 
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Table 1. Statistical metrics used in the evaluation of original and corrected APHRODITE estimates. 514 

Table 2. Detailed description of extreme precipitation indices. 515 

Table 3. Statistical metrics for daily precipitation during JJAS calculated from original and 516 

corrected APHRODITE estimates in the Yarlung Tsangpo-Brahmaputra River Basin (YBRB). 517 
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Table 1. Statistical metrics used in the evaluation of original and corrected APHRODITE estimates. 519 

Statistical metric Equation Optimal value 

Pearson correlation coefficient (r) 
  

   

, ,1

2 2

, ,1 1

n

obs i obs APH i APHi

n n

obs i obs APH i APHi i

P P P P
r

P P P P



 

 


 



 

 
1 

Percentage bias (PB) 
 , ,1

,1

100

n

APH i obs ii

n

obs ii

P P
PB

P






 



 0 

Mean error (ME) 
 , ,1

n

APH i obs ii
P P

ME
n





  0 

Mean absolute error (MAE) , ,1

n

APH i obs ii
P P

MAE
n





  0 

Root mean squared error (RMSE)  
2

, ,1

n

APH i obs ii
P P

RMSE
n





  0 

Notation: n means the number of samples; Pobs,i and PAPH,i refer to the observations and the APHRODITE estimates, 520 

respectively; 𝑃𝑜𝑏𝑠̅̅ ̅̅ ̅̅  and 𝑃𝐴𝑃𝐻̅̅ ̅̅ ̅̅  are the mean rain gauge precipitation measurement and the mean APHRODITE 521 

estimate, respectively. 522 
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Table 2. Detailed description of extreme precipitation indices. 524 

Index Descriptive name Definition Unit 

CWD Consecutive wet days 

Maximum number of consecutive days with 

precipitation ≥ 1 mm 

days 

R10mm Number of heavy precipitation days 

Count of days when precipitation ≥ 10 mm 

during June, July, August, and September 

(JJAS) 

days 

R20mm 

Number of very heavy precipitation 

days 

Count of days when precipitation ≥ 20 mm 

during JJAS 

days 

Rx1d 

Maximum 1-day precipitation 

amount 

Maximum 1-day precipitation mm 

Rx5d 

Maximum 5-day precipitation 

amount 

Maximum consecutive 5-day precipitation mm 

SDII Simple daily intensity index 

Total precipitation during JJAS divided by the 

number of wet days (when precipitation ≥ 1 

mm) 

mm/day 
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Table 3. Statistical metrics for daily precipitation during JJAS calculated from original and 526 

corrected APHRODITE estimates in the Yarlung Tsangpo-Brahmaputra River Basin (YBRB). 527 

Physiographic zone Correction method r PB 

ME 

(mm) 

MAE 

(mm) 

RMSE 

(mm) 

TP 

Original 0.80 −9.4 −0.3 1.7 3.4 

Linear scaling 0.81 0.0 0.0 1.7 3.3 

Local intensity scaling 0.81 0.0 0.0 1.5 3.3 

Power transformation 0.79 −0.4 0.0 1.6 3.5 

Quantile−quantile mapping 0.80 3.2 0.1 1.6 3.6 

HB 

Original 0.81 −24.2 −1.6 3.6 15.9 

Linear scaling 0.93 −0.1 0.0 2.9 8.9 

Local intensity scaling 0.92 −0.1 0.0 2.7 8.8 

Power transformation 0.93 0.3 0.0 2.7 8.8 

Quantile−quantile mapping 0.93 11.3 0.7 3.0 10.7 

FP 

Original 0.81 −11.4 −1.5 8.0 15.5 

Linear scaling 0.83 −0.3 0.0 7.8 14.2 

Local intensity scaling 0.83 −0.3 0.0 7.3 14.1 

Power transformation 0.82 0.4 0.1 7.5 14.9 

Quantile−quantile mapping 0.82 5.7 0.8 7.6 15.1 
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Figure 1. Locations of rainfall stations in the Yarlung Tsangpo-Brahmaputra River Basin (YBRB). 529 

Figure 2. Location of Asian Precipitation Highly Resolved Observational Data Integration Towards 530 

Evaluation of Water Resources (APHRODITE) grids over the Tibetan plateau (TP), Himalayan belt 531 

(HB), and floodplains (FP). 532 

Figure 3. Spatial distribution of mean maximum 5-day precipitation amount (Rx5d) during June, 533 

July, August, and September (JJAS) in the YBRB based on (a) original APHRODITE, as well as (b) 534 

linear scaling (LS)-APHRODITE, (c) local intensity scaling (LOCI)-APHRODITE, (d) power 535 

transformation (PT)-APHRODITE, and (e) quantile−quantile mapping (QM)-APHRODITE. 536 

Figure 4. Box-whisker plot for (a) consecutive wet days (CWD), (b) number of heavy precipitation 537 

days (R10mm), (c) number of very heavy precipitation days (R20mm), (d) maximum 1-day 538 

precipitation amount (Rx1d), (e) Rx5d, and (f) simple daily intensity index (SDII) during JJAS in 539 

the three different physiographic zones (TP, HB, and FP) of YBRB derived from original and 540 

corrected APHRODITE estimates. 541 

Figure 5. Relative change rate of (a) CWD, (b) R10mm, (c) R20mm, (d) Rx1d, (e) Rx5d, and (f) 542 

SDII during JJAS for the original and corrected APHRODITE estimates. 543 

Figure 6. Exceedance probabilities of area-averaged Rx5d during JJAS for the original and 544 

corrected APHRODITE estimates in the (a) TP, (b) HB, and (c) FP. 545 
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 547 

Figure 1. Locations of rainfall stations in the Yarlung Tsangpo-Brahmaputra River Basin (YBRB). 548 
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 550 

Figure 2. Location of Asian Precipitation Highly Resolved Observational Data Integration Towards 551 

Evaluation of Water Resources (APHRODITE) grids over the Tibetan plateau (TP), Himalayan belt 552 

(HB), and floodplains (FP). 553 
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 555 

Figure 3. Spatial distribution of mean maximum 5-day precipitation amount (Rx5d) during June, 556 

July, August, and September (JJAS) in the YBRB based on (a) original APHRODITE, as well as (b) 557 

linear scaling (LS)-APHRODITE, (c) local intensity scaling (LOCI)-APHRODITE, (d) power 558 

transformation (PT)-APHRODITE, and (e) quantile−quantile mapping (QM)-APHRODITE. 559 
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 561 

Figure 4. Box-whisker plot for (a) consecutive wet days (CWD), (b) number of heavy precipitation 562 

days (R10mm), (c) number of very heavy precipitation days (R20mm), (d) maximum 1-day 563 

precipitation amount (Rx1d), (e) Rx5d, and (f) simple daily intensity index (SDII) during JJAS in 564 

the three different physiographic zones (TP, HB, and FP) of YBRB derived from original and 565 

corrected APHRODITE estimates. 566 
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 568 

Figure 5. Relative change rate of (a) CWD, (b) R10mm, (c) R20mm, (d) Rx1d, (e) Rx5d, and (f) 569 

SDII during JJAS for the original and corrected APHRODITE estimates. 570 
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 572 

Figure 6. Exceedance probabilities of area-averaged Rx5d during JJAS for the original and 573 

corrected APHRODITE estimates in the (a) TP, (b) HB, and (c) FP. 574 
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