

1 Title

2 Bias correction of gauge-based gridded product to improve extreme precipitation analysis in the  
3 Yarlung Tsangpo-Brahmaputra River basin

4

5 Author names and affiliations

6 Xian Luo<sup>1,2</sup>, Xuemei Fan<sup>1</sup>, Yungang Li<sup>1,2</sup>, and Xuan Ji<sup>1,2</sup>

7 <sup>1</sup>Institute of International Rivers and Eco-security, Yunnan University, Kunming, China

8 <sup>2</sup>Yunnan Key Laboratory of International Rivers and Transboundary Eco-security, Kunming, China

9

10 Address

11 Institute of International Rivers and Eco-security, Yunnan University,

12 South Section, East Outer Ring Road, Chenggong District, Kunming, China

13

14 Email

15 Xian Luo: luoxian@ynu.edu.cn

16 Xuemei Fan: fanxuemei7@163.com

17 Yungang Li: ygli@ynu.edu.cn

18 Xuan Ji: jixuan@ynu.edu.cn

19

20 Contact Author: Xian Luo (luoxian@ynu.edu.cn)

21 Second Contact Author: Yungang Li (ygli@ynu.edu.cn)

22

23     **Abstract.** Critical gaps in the amount, quality, consistency, availability, and spatial distribution of  
24     rainfall data limit extreme precipitation analysis, and the application of gridded precipitation data  
25     are challenging because of their considerable biases. This study corrected Asian Precipitation Highly  
26     Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE)  
27     estimates in the Yarlung Tsangpo-Brahmaputra River basin (YBRB) using two linear and two  
28     nonlinear methods, and their influence on extreme precipitation indices were assessed by cross-  
29     validation. Bias correction greatly improved the performance of extreme precipitation analysis. The  
30     ability of four methods to correct wet-day frequency and coefficient of variation were substantially  
31     different, leading to considerable differences in extreme precipitation indices. Local intensity  
32     scaling (LOCI) and quantile–quantile mapping (QM) performed better than linear scaling (LS) and  
33     power transformation (PT). This study would provide reference for using gridded precipitation data  
34     in extreme precipitation analysis and selecting bias-corrected method for rainfall products in data-  
35     sparse regions.

36

## 37     1     Introduction

38         Extreme precipitation often leads to floods, debris flows, and other secondary disasters (Wang  
39         et al., 2017), and changes in the frequency and intensity of extreme precipitation profoundly  
40         influence both natural environment and human society profoundly (Easterling et al., 2000; Yucel  
41         and Onen, 2014). Rainfall observations provide a primary foundation for comprehending their long-  
42         term variability and change in extreme precipitation (Alexander, 2016). Accurate rainfall data are  
43         necessary for flood protection and water resource management. However, due to scarce spatial  
44         coverage of rainfall stations, short-length rainfall records, and high proportions of missing data,

45 observations currently available in some remote basins are clearly inadequate to capture their  
46 precipitation characteristics. In addition, observed rainfall data are usually difficult to collect in  
47 international river basins because many countries may not share or freely distribute data (Lakshmi  
48 et al., 2018).

49 The Yarlung Tsangpo-Brahmaputra River is the fourth largest river in the world in terms of  
50 flow (Kamal-Heikman et al., 2007), which is influenced profoundly by complex atmospheric  
51 dynamics and regional climate processes (Immerzeel et al., 2010; Pervez and Henebry, 2015).  
52 Because its agriculture and economy rely heavily on monsoon precipitation, the basin is particularly  
53 vulnerable to changing climate (Singh et al., 2016; Liu et al., 2018; Janes et al., 2019; Xu et al.,  
54 2019; Zhang et al., 2019). During the four summer monsoon months of June, July, August, and  
55 September (JJAS), extreme precipitation with large uncertainties lead to numerous floods (Kamal-  
56 Heikman et al., 2007; Dimri et al., 2016; Malik et al., 2016). However, the understanding on extreme  
57 precipitation in the Yarlung Tsangpo-Brahmaputra River basin (YBRB) have a number of gaps  
58 because of its complex topographic interactions with atmospheric flows, lack of observations, and  
59 data sharing issues, which hinder effective flood management (Ray et al., 2015; Prakash et al., 2019).

60 Currently, different gridded rainfall products provide effective information over regional to  
61 global scales, which could be broadly classified into four categories: (1) gauge-based data sets that  
62 build on observations from rainfall stations; (2) products from numerical weather predictions or  
63 atmospheric models; (3) satellite-only products; and (4) combined satellite-gauge products. The  
64 performance of these products vary from region to region (Duan et al., 2016). Given the  
65 heterogeneity of orography and climate in the YBRB, observing and modeling its precipitation are  
66 very challenging (Khandu et al., 2017). In addition, satellite products are less reliable because high

67 convective rainfall generally takes place in the southern foothills of the Himalayas (Prakash et al.,  
68 2015). Compared with some other gauge-based products, Asian Precipitation Highly Resolved  
69 Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) dataset  
70 collected more rainfall observations across South Asia (Rana et al., 2015), which have been proved  
71 could better estimate spatial precipitation (Andermann et al., 2011). Nonetheless, the lack and  
72 uneven distribution of rainfall stations at high altitudes in the Tibetan Plateau and Himalayas may  
73 introduce uncertainty and affect the accuracy of APHRODITE estimates (Rana et al., 2015;  
74 Chaudhary et al., 2017).

75 Numerous rainfall observations can be obtained from public databases, although their short  
76 record and static character limit their direct application in precipitation analysis (Donat et al., 2013).  
77 However, these data could be useful for bias correction of gauge-based gridded products by  
78 providing additional observations from the denser network of rainfall stations. On the other hand,  
79 ranging from simple linear scaling to more sophisticated nonlinear approaches, several methods  
80 have been developed to adjust global climate model (GCM) data (Teutschbein and Seibert, 2012).  
81 Similarly, these bias correction methods could be applied to correct gridded rainfall products in  
82 sparsely-gauged mountainous basins (He et al., 2017). It is important to study whether extreme  
83 precipitation analysis could be improved by bias correction of gridded precipitation data and how  
84 different methods would influence extreme precipitation indices.

85 This study evaluated different bias correction approaches for APHRODITE estimates in the  
86 YBRB and assessed their effects on extreme precipitation analysis. We first corrected APHRODITE  
87 estimates by both linear and nonlinear methods. Next, we calculated extreme precipitation indices  
88 using original and different corrected APHRODITE estimates, and the effects of bias correction on

89 extreme precipitation analysis were further investigated by cross-validation. The results would  
90 support reference for the application of gridded precipitation data and bias-corrected methods in  
91 extreme precipitation analysis.

92

## 93 **2 Material and methods**

### 94 **2.1 Study area**

95 The YBRB can be divided into three physiographic zones: (1) the Tibetan plateau (TP),  
96 covering 44.4% of the basin, with elevations above 3500 m; (2) the Himalayan belt (HB), accounting  
97 for 28.6% of the basin, with elevations ranging from 100 m to 3500 m; and (3) the floodplains (FP),  
98 covering 27.0% of the basin, with elevations up to 100 m (Immerzeel, 2008).

99 The moisture in the YBRB is mainly from the Indian Ocean. The YBRB exhibits a broad range  
100 of precipitation from the semi-arid upstream areas to the HB characterized by abundant orographic  
101 rainfall as well as the vast humid FP. In the upstream areas, precipitation is concentrated during  
102 JJAS, and rainfall intensity is mostly low due to long-distance moisture transport (Guan et al., 1984).

103 The irregular topographic variations in the Himalayas profoundly affect the spatial distribution of  
104 precipitation by altering monsoonal flow, producing intense orographic rainfall along the Himalayan  
105 foothills (Khandu et al., 2017). The downstream areas also receive high rainfall from monsoon flow  
106 during JJAS, accounting for 60%–70% of the annual rainfall (Gain et al., 2011).

107

### 108 **2.2 Data sources**

#### 109 **2.2.1 Observational data**

110 In the upper YBRB, rainfall data across China recorded at 31 meteorological stations were

111 collected from the National Meteorological Information Center (NMIC, sourced from the China  
112 Meteorological Data Sharing Service System). In addition, data observed at 91 rainfall stations in  
113 the downstream area were obtained from the Global Historical Climatology Network  
114 (GHCN)-Daily dataset for bias correction. GHCN-Daily dataset comprises observations from four  
115 sources, which have been undergone extensive quality reviews, including the U.S. Collection, the  
116 International Collection, the Government Exchange Data, and the Global Summary of the Day. The  
117 locations of rainfall stations are shown in Fig. 1.

118

### 119 **2.2.2 APHRODITE estimates**

120 Numerous rainfall observations were incorporated into APHRODITE estimates, including (1)  
121 Global Telecommunication System (GTS)-based data, (2) data obtained from other projects or  
122 organizations, and (3) their own collection. The rainfall observations that had undergone quality  
123 control were gathered, and the ratios of rainfall observations to the world climatology were  
124 calculated and then interpolated for each month. The interpolated ratios were multiplied by the world  
125 climatology, and the first six components of the fast Fourier transform of the resulting values were  
126 used to obtain daily precipitation (Yatagai et al., 2012).

127 Daily rainfall data of APHRO\_MA\_025deg\_V1101 ([http://aphrodite.st.hirosaki-  
128 u.ac.jp/index.html](http://aphrodite.st.hirosaki-u.ac.jp/index.html)) at 0.25° resolution in the Asian monsoon area end in 2007, while recently  
129 published APHRO\_MA\_025deg\_V1101EX\_R1 (<http://aphrodite.st.hirosaki-u.ac.jp/index.html>),  
130 using the same algorithm and spatial resolution, extend the time series over the period 2007–2015.  
131 Therefore, extreme precipitation could be analyzed during 1951–2015 by applying both datasets.  
132 To investigate the influence of topography on bias-corrected APHRODITE estimates, the grids were

133 classified into three topographic zones (the TP, HB, and FP; Fig. 2).

134

135 **2.3 Methods**

136 **2.3.1 Bias correction methods**

137 Two linear methods (linear scaling (LS) and local intensity scaling (LOCI)) and two non-linear  
138 methods (power transformation (PT) and quantile–quantile mapping (QM)) were used for bias  
139 correction in this study.

140 (1) LS

141 LS corrects monthly estimates in accordance with observations (Lenderink et al., 2007). It  
142 corrects APHRODITE estimates using the ratio between mean monthly observation and  
143 corresponding estimation:

$$144 P_{APH}^*(d) = P_{APH}(d) \cdot \left[ \frac{\mu_m(P_{obs}(d))}{\mu_m(P_{APH}(d))} \right] \quad (1)$$

145 where  $P_{APH}^*(d)$  and  $P_{APH}(d)$  are the daily precipitation of corrected and original APHRODITE  
146 estimate, respectively, and  $P_{obs}(d)$  is the daily precipitation observed at the rainfall station in  
147 corresponding grid of the APHRODITE estimate.  $\mu_m(P_{obs}(d))$  and  $\mu_m(P_{APH}(d))$  are the mean  
148 monthly precipitation of observations and corresponding APHRODITE estimates in the  $m$ th month,  
149 respectively.

150 (2) LOCI

151 LOCI makes a flexible adjustment to the wet-day frequency and intensity (Schmidli et al., 2006;  
152 Teutschbein and Seibert, 2012). Firstly, an adjusted precipitation threshold ( $P_{th,APH}$ ) is determined so  
153 that the number of days exceeding this threshold for APHRODITE estimates matches that of  
154 observed days with precipitation larger than 0 mm. Secondly, a linear scaling factor ( $s$ ) for wet days

155 is computed:

$$156 \quad s = \frac{\mu_m(P_{obs}(d) | P_{obs}(d) > 0 \text{ mm})}{\mu_m(P_{APH}(d) | P_{APH}(d) > P_{th,APH}) - P_{th,APH}} \quad (2)$$

157 where  $\mu_m(P_{obs}(d) | P_{obs}(d) > 0 \text{ mm})$  is the mean monthly precipitation of observations with daily  
158 precipitation larger than 0 mm, and  $\mu_m(P_{APH}(d) | P_{APH}(d) > P_{th,APH})$  is the mean monthly precipitation  
159 of APHRODITE estimates with daily precipitation larger than  $P_{th,APH}$ . Finally, the precipitation data  
160 are corrected, using:

$$161 \quad P_{APH}^*(d) = \max(s \cdot (P_{APH}(d) - P_{th,APH}), 0) \quad (3)$$

162 (3) PT

163 PT corrects both the mean and the coefficient of variation of precipitation (Leander and  
164 Buishand, 2007), changing precipitation by:

$$165 \quad P_{APH}^*(d) = a \cdot (P_{APH}(d))^b \quad (4)$$

166 where  $a$  and  $b$  are the parameters of the power transformation, which are obtained using a  
167 distribution-free approach and estimated for each month within a 90-day window. Using a root-  
168 finding algorithm, the value of  $b$  is firstly determined to ensure that the coefficient of variation of  
169 the corrected estimates matches that of the observations. The parameter  $a$  is then calculated using  
170 the mean observation and the corresponding mean of the transformed values.

171 (4) QM

172 By shifting occurrence distributions, QM corrects the distribution function of precipitation  
173 estimates to match that of observations, which is commonly used in correcting systematic  
174 distributional biases (Cannon et al., 2015). A Gamma distribution is usually assumed for  
175 precipitation events (Teutschbein and Seibert, 2012):

176 
$$f_{\gamma}(x|\alpha, \beta) = x^{\alpha-1} \cdot \frac{1}{\beta^{\alpha} \cdot \Gamma(\alpha)} \cdot e^{-\frac{x}{\beta}}; x \geq 0; \alpha, \beta > 0 \quad (5)$$

177 where  $\alpha$  and  $\beta$  are the shape parameter and scale parameter, respectively.

178 The cumulative density function (CDF) of the APHRODITE estimates is adjusted to agree with  
 179 that of the observation, and the daily precipitation for APHRODITE estimates is corrected  
 180 depending on its quantile. It should be noted that for APHRODITE estimates, many days had low  
 181 precipitation estimates instead of substantial dry conditions, which may distort the distribution of  
 182 daily precipitation. Therefore, an adjusted precipitation threshold is also used to ensure the wet-day  
 183 frequency of corrected APHRODITE estimates match the observed frequency:

184 
$$P_{APH}^*(d) = \begin{cases} 0, & \text{if } P_{APH}(d) < P_{th,APH} \\ F_{\gamma}^{-1}(F_{\gamma}(P_{APH}(d)|\alpha_{APH,m}, \beta_{APH,m})|\alpha_{obs,m}, \beta_{obs,m}), & \text{otherwise} \end{cases} \quad (6)$$

185  $F_{\gamma}$  and  $F_{\gamma}^{-1}$  are the Gamma CDF and its inverse, respectively.  $\alpha_{APH,m}$  and  $\beta_{APH,m}$  are the shape  
 186 parameter and scale parameter of original APHRODITE estimates in the  $m$ th month, respectively,  
 187 and  $\alpha_{obs,m}$  and  $\beta_{obs,m}$  are those of observations in the  $m$ th month, respectively.

188 This study corrected the grids of the APHRODITE estimates that contained time series of  
 189 observations, and the parameters of bias correction were determined using corresponding available  
 190 rainfall observations. After that, the APHRODITE estimates during 1951–2015 in these grids were  
 191 corrected by four bias correction methods, respectively. Hereafter, APHRODITE estimates  
 192 corrected by LS, LOCI, PT, and QM are referred as LS-APHRODITE, LOCI-APHRODITE, PT-  
 193 APHRODITE, and QM-APHRODITE estimates, respectively.

194

195 **2.3.2 Indices of extreme precipitation**

196 To characterize extreme precipitation during JJAS, six indices recommended by the Expert  
 197 Team on Climate Change Detection and Indices (ETCCDI), including consecutive wet days (CWD),

198 number of heavy precipitation days (R10mm), number of very heavy precipitation days (R20mm),  
199 maximum 1-day precipitation amount (Rx1d), maximum 5-day precipitation amount (Rx5d), and  
200 simple daily intensity index (SDII), were applied in this study. Detailed descriptions of these indices  
201 are shown in Table 1. The indices fall roughly into three categories: (1) duration indices, which  
202 represent the length of the wet spell; (2) threshold indices, which count the days on which a fixed  
203 precipitation threshold is exceeded; (3) absolute indices, which describe the maximum 1-day or 5-  
204 day precipitation amount (Sillmann et al., 2013).

205 Extreme precipitation indices for corrected APHRODITE estimates in the grids distributed  
206 with rainfall stations were calculated. To obtain extreme precipitation indices in other grids, inverse  
207 distance weighted (IDW) interpolation for extreme precipitation indices were performed. This  
208 allowed us to calculate mean values for each of the three topographic zones.

209

### 210 **2.3.3 Validation on bias correction**

211 Cross-validation was applied to evaluate the performance of four bias correction methods. At  
212 each rainfall station, the observations were divided into two groups. Two-thirds of the rainfall  
213 records were applied to calculate the parameters of LS, LOCI, PT, and QM, respectively. Making  
214 use of these parameters, the APHRODITE estimates were then corrected. The mean error (*ME*)  
215 between the extreme precipitation indices obtained from the corrected APHRODITE estimates and  
216 those obtained from remaining one-third of the rainfall observations were calculated to evaluate the  
217 performance of different bias correction methods.

218

## 219 **3 Results**

220 **3.1 Evaluation of extreme precipitation indices**

221 The *ME* of extreme precipitation indices during JJAS for validation are shown in Fig. 3. For  
222 original APHRODITE estimates, the *ME* of CWD in the TP, HB, and FP were 8.3, 16.4, and 21.8  
223 days, respectively. There were a lot of days with low precipitation estimations instead of substantial  
224 dry conditions, leading to the overestimation on CWD. Likewise, this propagated to LS-  
225 APHRODITE estimates with similar *ME* of CWD, because there was no change made to the wet-  
226 day frequency. The *ME* of CWD in the TP, HB, and FP for LOCI-APHRODITE estimates were 3.1,  
227 1.2, and 1.4 days, respectively, and those for QM-APHRODITE estimates were 2.5, 0.8, and 0.9  
228 days, respectively. For both LOCI- and QM-APHRODITE estimates, the days with low  
229 precipitation estimations instead of substantial dry conditions were redefined as dry days using  
230 precipitation threshold, resulting in much less *ME* and more reliable CWD. Finally, although PT did  
231 not directly correct wet-day frequency, the CWD for PT-APHRODITE estimates were lower than  
232 those for original APHRODITE estimates because tiny precipitation were corrected.

233 Original APHRODITE tended to underestimate heavy and very heavy precipitation days. Bias  
234 correction reduced error on R10mm and R20mm except LS, and the absolute value of mean *ME* for  
235 LOCI-, PT-, and QM-APHRODITE estimates were mostly less than 1.0 days. LOCI, PT, and QM  
236 are able to effectively correct heavy and very heavy precipitation days.

237 For original APHRODITE estimates, the *ME* of Rx1d were  $-11.3$ ,  $-89.1$  and  $-50.5$  mm in the  
238 TP, HB, and FP, respectively, and those of Rx5d reached  $-18.0$ ,  $-167.4$  and  $-76.8$  mm, respectively.  
239 Original APHRODITE estimates greatly underestimated Rx1d and Rx5d. For corrected  
240 APHRODITE estimates, QM performed best on Rx1d, and the *ME* for QM-APHRODITE estimates  
241 were  $-0.1$ ,  $-1.9$  and  $-5.4$  mm, respectively. LS and LOCI used consistent ratio in linear

242 transformation, resulting in underestimation on Rx1d. In addition, LOCI outperformed other  
243 methods on Rx5d, and the overestimation in the HB and FP for PT- and QM-APHRODITE estimates  
244 were greater.

245 The *ME* of SDII for original APHRODITE estimates in the TP, HB, and FP were  $-2.4$ ,  $-13.9$   
246 and  $-11.0$  mm, respectively. Firstly, heavy and very heavy precipitation in the HB and TP were not  
247 fully captured by original APHRODITE estimates. Secondly, original APHRODITE estimates  
248 overestimated wet days, which distorted the estimation of precipitation intensity. Smaller error were  
249 found in LOCI- and QM-APHRODITE estimates because they corrected rainfall amount as well as  
250 the number of rainy days.

251

252 **3.2 Extreme precipitation indices calculated from original and corrected APHRODITE**  
253 **estimates**

254 **3.2.1 Extreme precipitation indices in the three physiographic zones**

255 Extreme precipitation indices calculated from original and four corrected APHRODITE  
256 estimates in the three different physiographic zones are shown in Fig. 4. The CWD estimated using  
257 original APHRODITE and LS-APHRODITE estimates were similar. Meanwhile, those derived  
258 from LOCI-, PT-, and QM-APHRODITE estimates were much less.

259 Mean R10mm during JJAS obtained by original APHRODITE estimates in the TP, HB, and FP  
260 were 6.7, 31.0, and 47.7 days, respectively. These were similar to those estimated by corrected  
261 APHRODITE estimates. However, the differences in R20mm were much pronounced. Mean  
262 R20mm in HB and FP for bias-corrected APHRODITE datasets were close to 19.0 and 26.5 days,  
263 respectively, which were approximately 4–5 days higher than those derived from original

264 APHRODITE estimates.

265 Compared with original APHRODITE estimates, the Rx1d and Rx5d increased greatly after  
266 bias correction. In the HB, the mean Rx1d obtained from original APHRODITE estimates was 49.5  
267 mm, while those for LS-, LOCI-, PT-, and QM-APHRODITE estimates were 72.4, 90.1, 109.0, and  
268 103.8 mm, respectively. In addition, the ranges of Rx1d and Rx5d also increased considerably.

269 The differences in SDII between original and corrected APHRODITE estimates were also  
270 marked. For example, mean SDII in the FP calculated from original APHRODITE estimates was  
271 13.4 mm. After correction, mean SDII for LOCI- and QM-APHRODITE estimates increased to 23.4  
272 and 25.1 mm, respectively. These values were much greater than those derived from LS- and PT-  
273 APHRODITE datasets (15.7 and 17.7 mm).

274

### 275 **3.2.2 Relative changes in extreme precipitation indices**

276 The relative changes in extreme precipitation indices during JJAS based on original and  
277 corrected APHRODITE estimates are shown in Fig. 5. The CWD for LOCI-, PT-, and QM-  
278 APHRODITE estimates were all lower than original APHRODITE estimates, yielding relative  
279 change rates from  $-66\%$  to  $-27\%$ . Bias correction decreased the number of rainy days except LS.  
280 The variations in R10mm and R20mm illustrated that corrected APHRODITE estimates identified  
281 much more extreme precipitation events in the TP. The changes in indices varied considerably for  
282 different correction methods, with the change rates of R20mm in the TP for LS-, LOCI-, PT-, and  
283 QM-APHRODITE estimates being 30.4%, 169.2%, 297.1%, and 317.4%, respectively. For Rx1d,  
284 Rx5d, and SDII, the increases in the HB were much pronounced than those in the FP and TP. Except  
285 for LS-APHRODITE estimates, the increases in Rx1d and Rx5d in the HB were all above 70% for

286 corrected APHRODITE estimates.

287

288 **3.3 Influence of bias correction on the spatial distribution of extreme precipitation indices**

289 Rainstorms over the lower YBRB usually have the duration of 2–3 days (Dhar and Nandargi,

290 2000), and large multi-day precipitation events are crucial to the floods in the basin. Hence, the

291 spatial distribution of Rx5d during JJAS based on original APHRODITE estimates were compared

292 with corrected APHRODITE estimates in Fig. 6. For original APHRODITE estimates, the area with

293 Rx5d higher than 300 mm only accounted for 2.0% of the basin, while the proportions for LS-,

294 LOCI-, PT-, and QM-APHRODITE estimates were 10.9%, 18.7%, 21.7%, and 21.3%, respectively.

295 The most profound difference between original and corrected APHRODITE estimates occurred over

296 the windward slopes of the Himalayas before the river flows into the Brahmaputra valley. The Rx5d

297 calculated from original APHRODITE estimates were lower than 300 mm, while much higher Rx5d

298 were obtained after bias correction, yielding maxima of 946.6, 1030.3, 1105.1, and 1396.6 mm for

299 LS-, LOCI-, PT-, and QM-APHRODITE estimates, respectively. The eastern Himalayas, acting as

300 orographic barriers, push the southwest moist air upwards, leading to heavier extreme precipitation

301 over the windward slopes (Singh et al., 2004; Bookhagen and Burbank, 2010; Dimri et al., 2016).

302 However, original APHRODITE estimates tended to substantially underestimate these extreme

303 precipitation. Besides aforementioned region, higher Rx5d along the Himalayan front were also

304 found after bias correction. In this case, extreme precipitation calculated from nonlinear approaches

305 were heavier than those derived from linear methods. In general, bias correction are able to consider

306 topographic effects on the spatial distribution of extreme precipitation more comprehensively.

307

308     **4 Discussion**

309         Using two linear and two nonlinear bias methods, we corrected APHRODITE estimates during  
310         JJAS in the YBRB to investigate the effects of different approaches on extreme precipitation  
311         analysis. Extreme precipitation indices were strongly dependent on the bias correction approach  
312         applied.

313         A primary problem when using gauge-based gridded data sets for extreme precipitation  
314         analysis is the fundamental mismatch between point-based observations and gridded estimates  
315         (Alexander, 2016). In addition, the spatial coverage of rainfall stations is another major source of  
316         uncertainty, particularly where spatial distributions of precipitation are complex (Donat et al., 2013).  
317         There are currently several approaches for bias correction, ranging from simple linear scaling to  
318         more sophisticated nonlinear methods (Teutschbein and Seibert, 2012). Although mean precipitation  
319         corrected by all bias-corrected approaches were similar, their standard deviations and consequent  
320         extreme precipitation indices varied considerably. In the case of linear correction, both mean and  
321         standard deviation are multiplied by same factor (Leander and Buishand, 2007), resulting in dubious  
322         variations of precipitation. Nonlinear correction adjust mean and also coefficient of variation  
323         (Teutschbein and Seibert, 2012), yielding more reliable results. In addition, the typical biases of  
324         rainfall products are related to their identification of too many wet days with low-intensity  
325         precipitation. Among the four bias-corrected approaches applied herein, LS and PT make no change  
326         on the number of rainy days, while LOCI and QM use threshold exceedance to match the wet-day  
327         frequency to the observations.

328         In international river basins, rainfall data are usually not publicly available, and extreme  
329         precipitation analysis may suffer from data restrictions (Nishat and Rahman, 2009; Luo et al., 2019).

330 Several great international rivers in south Asia, including the Indus, Ganges, and Yarlung  
331 Tsangpo–Brahmaputra, originate from or flow through the Himalayas. Topographic variations of  
332 the Himalayas profoundly influence the spatial distribution of precipitation by altering monsoonal  
333 flow, resulting in considerable orographic rainfall on the windward slopes (Khandu et al., 2017).  
334 Rainfall estimates of different products varied markedly along the Himalayan front and obtained  
335 similar results toward the adjacent low-relief domains (Andermann et al., 2011). The GHCN-Daily  
336 data can be applied to correct gauge-based gridded data sets in this region, ensuring these products  
337 capture the spatial distribution and variation of extreme precipitation. However, numerous GHCN-  
338 Daily records in Asia do not contain data from recent years, and the short or incomplete rainfall  
339 records limit their direct applications (Donat et al., 2013). Hence, it would be preferable to apply  
340 nonpublic datasets in data-sparse regions.

341

## 342 **5 Conclusions**

343 Despite increasing use of gridded rainfall products in sparsely gauged river basins, their  
344 application in extreme precipitation analysis is challenging due to considerable biases. This study  
345 made use of four methods to correct APHRODITE estimates in the YBRB. Their influences on  
346 extreme precipitation indices were compared and assessed. The following conclusions were drawn.

347 (1) Original APHRODITE estimates tended to underestimate heavy and very heavy  
348 precipitation in the YBRB, and there were a lot of days with low precipitation estimations instead  
349 of substantial dry conditions. Bias correction greatly improved the performance of extreme  
350 precipitation analysis. The extreme precipitation indices calculated from different corrected  
351 APHRODITE estimates varied substantially, and LOCI- and QM-APHRODITE estimates were able

352 to obtain more reliable extreme precipitation indices.

353 (2) Insufficient gauge observations in the Himalayas caused high uncertainty in the heavy  
354 precipitation estimates for original APHRODITE estimates. After bias correction using observations  
355 from a denser network of gauges, the heterogeneous orographic effects on extreme precipitation  
356 were captured more accurately.

357

358 *Data availability.* The co-authors used publicly available data from the Asian Precipitation Highly  
359 Resolved Observational Data Integration Towards Evaluation of Water Resources and the National  
360 Centers for Environmental Information. In addition, rainfall observations in China were obtained  
361 from the National Meteorological Information Center.

362

363 *Author contributions.* XL and YL conceived the study, XL and XF carried out bias correction and  
364 extreme precipitation analysis, XL drafted the paper, and all co-authors jointly worked on enriching  
365 and developing the draft.

366

367 *Competing interests.* The authors declare that they have no conflict of interest.

368

369 *Acknowledgements.* This study was supported by the National Natural Science Foundation of China  
370 (41661144044, 41601026), the National Key R&D Program of China (2016YFA0601601), and the  
371 Science and Technology Planning Project of Yunnan Province, China (2017FB073).

372

373 **References**

374 Alexander, L. V.: Global observed long-term changes in temperature and precipitation extremes: A  
375 review of progress and limitations in IPCC assessments and beyond, *Weather & Climate Extremes*,  
376 11, 4–16, <https://doi.org/10.1016/j.wace.2015.10.007>, 2016.

377 Andermann, C., Bonnet, S., and Gloaguen, R.: Evaluation of precipitation data sets along the  
378 Himalayan front, *Geochemistry, Geophysics, Geosystems*, 12, Q07023,  
379 <https://doi.org/10.1029/2011gc003513>, 2011.

380 Bookhagen, B. and Burbank, D. W.: Toward a complete Himalayan hydrological budget:  
381 Spatiotemporal distribution of snowmelt and rainfall and their impact on river discharge, *Journal of  
382 Geophysical Research*, 115, F03019, <https://doi.org/doi:10.1029/2009JF001426>, 2010.

383 Cannon A. J., Sobie S. R., and Murdock T. Q.: Bias correction of GCM precipitation by quantile  
384 mapping: How well do methods preserve changes in quantiles and extremes? *Journal of Climate*,  
385 28, 6938–6959, <https://doi.org/10.1175/JCLI-D-14-00754.1>, 2015.

386 Chaudhary S., Dhanya C. T., and Vinnarasi R.: Dry and wet spell variability during monsoon in  
387 gauge-based gridded daily precipitation datasets over India, *Journal of Hydrology*, 546, 204–218,  
388 <https://doi.org/10.1016/j.jhydrol.2017.01.023>, 2017.

389 Dhar, O. N. and Nandargi, S.: A study of floods in the Brahmaputra Basin in India, *International  
390 Journal of Climatology*, 20, 771–781, 2000.

391 Dimri, A. P., Thayyen, R. J., Kibler, K., Stanton, A., Jain, S. K., Tullos, D., and Singh, V. P.: A review  
392 of atmospheric and land surface processes with emphasis on flood generation in the Southern  
393 Himalayan rivers, *Science of the Total Environment*, 556, 98 – 115,  
394 <http://dx.doi.org/10.1016/j.scitotenv.2016.02.206>, 2016.

395 Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., and Caesar, J.: Global land-based

396 datasets for monitoring climatic extremes, *Bulletin of the American Meteorological Society*, 94,  
397 997–1006, <http://dx.doi.org/10.1175/BAMS-D-12-00109.1>, 2013.

398 Duan, Z., Liu, J., Tuo, Y., Chiogna, G., and Disse, M.: Evaluation of eight high spatial resolution  
399 gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales, *Science*  
400 of the Total Environment

573, 1536–1553, <http://dx.doi.org/10.1016/j.scitotenv.2016.08.213>, 2016.

401 Easterling, D. R.: Climate extremes: observations, modeling, and impacts, *Science*, 289, 2068–2074,  
402 <https://doi.org/doi:10.1126/science.289.5487.2068>, 2000.

403 Gain, A. K., Immerzeel, W. W., Sperna Weiland, F. C., and Bierkens, M. F. P.: Impact of climate  
404 change on the stream flow of the lower Brahmaputra: trends in high and low flows based on  
405 discharge-weighted ensemble modelling, *Hydrology and Earth System Sciences*, 15, 1537–1545,  
406 <https://doi.org/10.5194/hess-15-1537-2011>, 2011.

407 Guan, Z. H., Chen, C. Y., Ou, Y. X., Fan, Y. Q., Zhang, Y. S., Chen, Z. M., Bao, S. H., Zu, Y. T., He,  
408 X. W., and Zhang, M. T. (Eds.): *Rivers and Lakes in Tibet*, Science Press, Beijing, China, 1984.

409 He, Z., Hu, H., Tian F., Ni G., and Hu Q.: Correcting the TRMM rainfall product for hydrological  
410 modelling in sparsely-gauged mountainous basins, *Hydrological Sciences Journal*, 62, 306–318,  
411 <https://doi.org/10.1080/02626667.2016.1222532>, 2017.

412 Immerzeel, W.: Historical trends and future predictions of climate variability in the Brahmaputra  
413 basin, *International Journal of Climatology*, 28, 243–254, <https://doi.org/10.1002/joc.1528>, 2008.

414 Immerzeel, W. W., van Beek, L. P. H., and Bierkens, M. F. P.: Climate change will affect the Asian  
415 water towers, *Science*, 328, 1382–1385, <https://doi.org/10.1126/science.1183188>, 2010.

416 Janes, T., McGrath, F., Macadam, I., and Jones, R.: High-resolution climate projections for south  
417 Asia to inform climate impacts and adaptation studies in the Ganges-Brahmaputra-Meghna and

418 Mahanadi deltas, Science of The Total Environment, 650, 1499 – 1520,  
419 <https://doi.org/10.1016/j.scitotenv.2018.08.376>, 2019.

420 Kamal-Heikman, S., Derry, L. A., Stedinger, J. R., and Duncan, C. C.: A simple predictive tool for  
421 lower Brahmaputra River basin monsoon flooding, Earth Interactions, 11, 1 – 11,  
422 <https://doi.org/10.1175/EI226.1>, 2007.

423 Khandu, Awange, J. L., Kuhn, M., Anyah, R., and Forootan, E.: Changes and variability of  
424 precipitation and temperature in the Ganges-Brahmaputra-Meghna River Basin based on global  
425 high-resolution reanalyses, International Journal of Climatology, 37, 2141–2159,  
426 <https://doi.org/10.1002/joc.4842>, 2017.

427 Lakshmi, V., Fayne, J., and Bolten, J.: A comparative study of available water in the major river  
428 basins of the world, Journal of Hydrology, 567, 510 – 532,  
429 <https://doi.org/10.1016/j.jhydrol.2018.10.038>, 2018.

430 Leander, R. and Buishand, T. A.: Resampling of regional climate model output for the simulation of  
431 extreme river flows, Journal of Hydrology, 332, 487 – 496,  
432 <https://doi.org/10.1016/j.jhydrol.2006.08.006>, 2007.

433 Lenderink, G., Buishand, A., and van Deursen, W.: Estimates of future discharges of the river Rhine  
434 using two scenario methodologies: direct versus delta approach, Hydrology and Earth System  
435 Sciences, 11, 1145–1159, <https://doi.org/10.5194/hess-11-1145-2007>, 2007.

436 Liu, Z., Wang, R., and Yao, Z.: Climate change and its impact on water availability of large  
437 international rivers over the mainland Southeast Asia, Hydrological Processes, 32, 3966–3977,  
438 <https://doi.org/10.1002/hyp.13304>, 2018.

439 Luo, X., Wu, W., He, D., Li, Y., and Ji, X.: Hydrological simulation using TRMM and CHIRPS

440 precipitation estimates in the lower Lancang-Mekong River Basin, Chinese Geographical Science,  
441 29, 13–25, <https://doi.org/10.1007/s11769-019-1014-6>, 2019.

442 Malik, N., Bookhagen, B., and Mucha, P. J.: Spatiotemporal patterns and trends of Indian monsoonal  
443 rainfall extremes, Geophysical Research Letters, 43, 1710,  
444 <https://doi.org/doi:10.1002/2016GL067841>, 2016.

445 Nishat, B. and Rahman, S. M. M.: Water resources modeling of the Ganges-Brahmaputra-Meghna  
446 River basins using satellite remote sensing data, Journal of the American Water Resources  
447 Association, 45, 1313–1327, <https://doi.org/10.1111/j.1752-1688.2009.00374.x>, 2009.

448 Pervez, M. S. and Henebry, G. M.: Spatial and seasonal responses of precipitation in the Ganges  
449 and Brahmaputra river basins to ENSO and Indian Ocean dipole modes: implications for flooding  
450 and drought, Nat. Hazards Earth Syst. Sci., 15, 147–162, <https://doi.org/10.5194/nhess-15-147-2015>,  
451 2015.

452 Prakash, S., Mitra, A. K., Momin, I. M., Rajagopal, E. N., Basu, S., Collins, M., Turner, A. G., Rao,  
453 K. A., and Ashok, K.: Seasonal intercomparison of observational rainfall datasets over India during  
454 the southwest monsoon season, International Journal of Climatology, 35, 2326–2338,  
455 <https://doi.org/10.1002/joc.4129>, 2015.

456 Prakash, S., Seshadri, A., Srinivasan, J., and Pai, D. S.: A new parameter to assess impact of rain  
457 gauge density on uncertainty in the estimate of monthly rainfall over India, Journal of  
458 Hydrometeorology, 20, 821–832, <https://doi.org/10.1175/JHM-D-18-0161.1>, 2019.

459 Rana, S., McGregor, J., and Renwick, J.: Precipitation seasonality over the Indian subcontinent: an  
460 evaluation of gauge, reanalyses, and satellite retrievals, Journal of Hydrometeorology, 16, 631–651,  
461 <https://doi.org/10.1175/jhm-d-14-0106.1>, 2015.

462 Ray, P. A., Yang, Y. E., Wi, S., Khalil, A., Chatikavanij, V., and Brown, C.: Room for improvement:  
463 Hydroclimatic challenges to poverty-reducing development of the Brahmaputra River basin,  
464 Environmental Science & Policy, 54, 64–80, <https://doi.org/10.1016/j.envsci.2015.06.015>, 2015.

465 Schmidli, J., Frei, C., and Vidale, P. L.: Downscaling from GCM precipitation: a benchmark for  
466 dynamical and statistical downscaling methods, International Journal of Climatology, 26, 679–689,  
467 <https://doi.org/10.1002/joc.1287>, 2006.

468 Sillmann, J., Kharin, V. V., Zhang, X., Zwiers, F. W., and Bronaugh, D.: Climate extremes indices  
469 in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate, Journal of  
470 Geophysical Research: Atmospheres, 118, 1716–1733, <https://doi.org/doi:10.1002/jgrd.50203>,  
471 2013.

472 Singh, S., Kumar, R., Bhardwaj, A., Sam, L., Shekhar, M., Singh, A., Kumar, R., and Gupta, A.:  
473 Changing climate and glacio-hydrology in Indian Himalayan Region: a review. Wiley  
474 Interdisciplinary Reviews: Climate Change, 7, 393–410. <https://doi.org/10.1002/wcc.393>, 2016.

475 Singh, V. P., Sharma, N., and Ojha, C. S. P. (Eds.): The Brahmaputra Basin water resources, Kluwer  
476 Academic Publishers, Dordrecht, Netherlands, 2004.

477 Teutschbein, C. and Seibert, J.: Bias correction of regional climate model simulations for  
478 hydrological climate-change impact studies: Review and evaluation of different methods, Journal  
479 of Hydrology, 456–457, 12–29, <https://doi.org/10.1016/j.jhydrol.2012.05.052>, 2012.

480 Wang, C., Ren, X., and Li, Y.: Analysis of extreme precipitation characteristics in low mountain  
481 areas based on three-dimensional copulas—taking Kuandian County as an example, Theoretical and  
482 Applied Climatology, 128, 169–179, <https://doi.org/10.1007/s00704-015-1692-7>, 2017.

483 Xu, R., Hu, H., Tian, F., Li, C., and Khan, M. Y. A.: Projected climate change impacts on future

484 streamflow of the Yarlung Tsangpo-Brahmaputra River, *Global and Planetary Change*, 175, 144–  
485 159, <https://doi.org/10.1016/j.gloplacha.2019.01.012>, 2019.

486 Yatagai, A., Kamiguchi, K., Arakawa, O., Hamada, A., Yasutomi, N., and Kitoh, A.: APHRODITE:  
487 Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of  
488 rain gauges, *Bulletin of the American Meteorological Society*, 93, 1401–1415,  
489 <https://doi.org/10.1175/bams-d-11-00122.1>, 2012.

490 Yucel, I. and Onen, A.: Evaluating a mesoscale atmosphere model and a satellite-based algorithm in  
491 estimating extreme rainfall events in northwestern Turkey, *Nat. Hazards Earth Syst. Sci.*, 14, 611–  
492 624, <https://doi.org/10.5194/nhess-14-611-2014>, 2014.

493 Zhang Y., Zheng H., Herron N., Liu X., Wang Z., Chiew, F. H. S., and Parajka, J.: A framework  
494 estimating cumulative impact of damming on downstream water availability, *Journal of Hydrology*,  
495 575, 612–627, <https://doi.org/10.1016/j.jhydrol.2019.05.061>, 2019.

496

497 **Table 1.** Detailed description of extreme precipitation indices.

498

**Table 1.** Detailed description of extreme precipitation indices.

| Index | Descriptive name                        | Definition                                                                                         | Unit   |
|-------|-----------------------------------------|----------------------------------------------------------------------------------------------------|--------|
| CWD   | Consecutive wet days                    | Maximum number of consecutive days with precipitation $\geq 1$ mm                                  | days   |
| R10mm | Number of heavy precipitation days      | Count of days when precipitation $\geq 10$ mm during June, July, August, and September (JJAS)      | days   |
| R20mm | Number of very heavy precipitation days | Count of days when precipitation $\geq 20$ mm during JJAS                                          | days   |
| Rx1d  | Maximum 1-day precipitation amount      | Maximum 1-day precipitation                                                                        | mm     |
| Rx5d  | Maximum 5-day precipitation amount      | Maximum consecutive 5-day precipitation                                                            | mm     |
| SDII  | Simple daily intensity index            | Total precipitation during JJAS divided by the number of wet days (when precipitation $\geq 1$ mm) | mm/day |

501 **Figure 1.** Locations of rainfall stations in the Yarlung Tsangpo-Brahmaputra River basin (YBRB).

502 **Figure 2.** Location of Asian Precipitation Highly Resolved Observational Data Integration Towards  
503 Evaluation of Water Resources (APHRODITE) grids over the Tibetan plateau (TP), Himalayan belt  
504 (HB), and floodplains (FP).

505 **Figure 3.** Mean error (*ME*) of (a) consecutive wet days (CWD), (b) number of heavy precipitation  
506 days (R10mm), (c) number of very heavy precipitation days (R20mm), (d) maximum 1-day  
507 precipitation amount (Rx1d), (e) maximum 5-day precipitation amount (Rx5d), and (f) simple daily  
508 intensity index (SDII) during June, July, August, and September (JJAS) for validation in the three  
509 different physiographic zones (TP, HB, and FP) of the YBRB.

510 **Figure 4.** Box-whisker plot for (a) CWD, (b) R10mm, (c) R20mm, (d) Rx1d, (e) Rx5d, and (f) SDII  
511 during JJAS in the three different physiographic zones (the TP, HB, and FP) of the YBRB derived  
512 from original and corrected APHRODITE estimates.

513 **Figure 5.** Relative change rate of (a) CWD, (b) R10mm, (c) R20mm, (d) Rx1d, (e) Rx5d, and (f)  
514 SDII during JJAS for original and corrected APHRODITE estimates.

515 **Figure 6.** Spatial distribution of mean Rx5d during JJAS in the YBRB based on (a) original  
516 APHRODITE estimates, as well as (b) linear scaling (LS)-APHRODITE estimates, (c) local  
517 intensity scaling (LOCI)-APHRODITE estimates, (d) power transformation (PT)-APHRODITE  
518 estimates, and (e) quantile-quantile mapping (QM)-APHRODITE estimates.

519



521 **Figure 1.** Locations of rainfall stations in the Yarlung Tsangpo-Brahmaputra River basin (YBRB).

522



523 **Figure 2.** Location of Asian Precipitation Highly Resolved Observational Data Integration Towards  
 524 Evaluation of Water Resources (APHRODITE) grids over the Tibetan plateau (TP), Himalayan belt  
 525 (HB), and floodplains (FP).

526



528

529 **Figure 3.** Mean error (ME) of (a) consecutive wet days (CWD), (b) number of heavy precipitation  
 530 days (R10mm), (c) number of very heavy precipitation days (R20mm), (d) maximum 1-day  
 531 precipitation amount (Rx1d), (e) maximum 5-day precipitation amount (Rx5d), and (f) simple  
 532 daily intensity index (SDII) during June, July, August, and September (JJAS) for validation in the  
 533 three different physiographic zones (TP, HB, and FP) of the YBRB.

534



535

536 **Figure 4.** Box-whisker plot for (a) CWD, (b) R10mm, (c) R20mm, (d) Rx1d, (e) Rx5d, and (f) SDII

537 during JJAS in the three different physiographic zones (the TP, HB, and FP) of the YBRB derived

538 from original and corrected APHRODITE estimates.

539



540

541 **Figure 5.** Relative change rate of (a) CWD, (b) R10mm, (c) R20mm, (d) Rx1d, (e) Rx5d, and (f)

542 SDII during JJAS for original and corrected APHRODITE estimates.

543

544



545



546





549 **Figure 6.** Spatial distribution of mean Rx5d during JJAS in the YRB based on (a) original  
 550 APHRODITE estimates, as well as (b) linear scaling (LS)-APHRODITE estimates, (c) local  
 551 intensity scaling (LOCI)-APHRODITE estimates, (d) power transformation (PT)-APHRODITE  
 552 estimates, and (e) quantile-quantile mapping (QM)-APHRODITE estimates.

553