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Abstract. Critical gaps in the amount, quality, consistency, availability, and spatial distribution of

rainfall data limit extreme precipitation analysis, and the application of gridded precipitation data

are challenging because of their considerable biases. This study corrected Asian Precipitation Highly

Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE)

estimates in the Yarlung Tsangpo-Brahmaputra River basin (YBRB) using two linear and two

nonlinear methods, and their influence on extreme precipitation indices were assessed by cross-

validation. Bias correction greatly improved the performance of extreme precipitation analysis. The

ability of four methods to correct wet-day frequency and coefficient of variation were substantially

different, leading to considerable differences in extreme precipitation indices. Local intensity

scaling (LOCI) and quantile—quantile mapping (QM) performed better than linear scaling (LS) and

power transformation (PT). This study would provide reference for using gridded precipitation data

in extreme precipitation analysis and selecting bias-corrected method for rainfall products in data-

sparse regions.

1 Introduction

Extreme precipitation often leads to floods, debris flows, and other secondary disasters (Wang

et al.,, 2017), and changes in the frequency and intensity of extreme precipitation profoundly

influence both natural environment and human society profoundly (Easterling et al., 2000; Yucel

and Onen, 2014). Rainfall observations provide a primary foundation for comprehending their long-

term variability and change in extreme precipitation (Alexander, 2016). Accurate rainfall data are

necessary for flood protection and water resource management. However, due to scarce spatial

coverage of rainfall stations, short-length rainfall records, and high proportions of missing data,
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observations currently available in some remote basins are clearly inadequate to capture their

precipitation characteristics. In addition, observed rainfall data are usually difficult to collect in

international river basins because many countries may not share or freely distribute data (Lakshmi

etal, 2018).

The Yarlung Tsangpo-Brahmaputra River is the fourth largest river in the world in terms of

flow (Kamal-Heikman et al., 2007), which is influenced profoundly by complex atmospheric

dynamics and regional climate processes (Immerzeel et al., 2010; Pervez and Henebry, 2015).

Because its agriculture and economy rely heavily on monsoon precipitation, the basin is particularly

vulnerable to changing climate (Singh et al., 2016; Liu et al., 2018; Janes et al., 2019; Xu et al.,

2019; Zhang et al., 2019). During the four summer monsoon months of June, July, August, and

September (JJAS), extreme precipitation with large uncertainties lead to numerous floods (Kamal-

Heikman et al., 2007; Dimri et al., 2016; Malik et al., 2016). However, the understanding on extreme

precipitation in the Yarlung Tsangpo-Brahmaputra River basin (YBRB) have a number of gaps

because of its complex topographic interactions with atmospheric flows, lack of observations, and

data sharing issues, which hinder effective flood management (Ray et al., 2015; Prakash et al., 2019).

Currently, different gridded rainfall products provide effective information over regional to

global scales, which could be broadly classified into four categories: (1) gauge-based data sets that

build on observations from rainfall stations; (2) products from numerical weather predictions or

atmospheric models; (3) satellite-only products; and (4) combined satellite-gauge products. The

performance of these products vary from region to region (Duan et al., 2016). Given the

heterogeneity of orography and climate in the YBRB, observing and modeling its precipitation are

very challenging (Khandu et al., 2017). In addition, satellite products are less reliable because high
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convective rainfall generally takes place in the southern foothills of the Himalayas (Prakash et al.,

2015). Compared with some other gauge-based products, Asian Precipitation Highly Resolved

Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) dataset

collected more rainfall observations across South Asia (Rana et al., 2015), which have been proved

could better estimate spatial precipitation (Andermann et al., 2011). Nonetheless, the lack and

uneven distribution of rainfall stations at high altitudes in the Tibetan Plateau and Himalayas may

introduce uncertainty and affect the accuracy of APHRODITE estimates (Rana et al., 2015;

Chaudhary et al., 2017).

Numerous rainfall observations can be obtained from public databases, although their short

record and static character limit their direct application in precipitation analysis (Donat et al., 2013).

However, these data could be useful for bias correction of gauge-based gridded products by

providing additional observations from the denser network of rainfall stations. On the other hand,

ranging from simple linear scaling to more sophisticated nonlinear approaches, several methods

have been developed to adjust global climate model (GCM) data (Teutschbein and Seibert, 2012).

Similarly, these bias correction methods could be applied to correct gridded rainfall products in

sparsely-gauged mountainous basins (He et al., 2017). It is important to study whether extreme

precipitation analysis could be improved by bias correction of gridded precipitation data and how

different methods would influence extreme precipitation indices.

This study evaluated different bias correction approaches for APHRODITE estimates in the

YBRB and assessed their effects on extreme precipitation analysis. We first corrected APHRODITE

estimates by both linear and nonlinear methods. Next, we calculated extreme precipitation indices

using original and different corrected APHRODITE estimates, and the effects of bias correction on
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extreme precipitation analysis were further investigated by cross-validation. The results would

support reference for the application of gridded precipitation data and bias-corrected methods in

extreme precipitation analysis.

2 Material and methods

2.1 Study area

The YBRB can be divided into three physiographic zones: (1) the Tibetan plateau (TP),

covering 44.4% of the basin, with elevations above 3500 m; (2) the Himalayan belt (HB), accounting

for 28.6% of the basin, with elevations ranging from 100 m to 3500 m; and (3) the floodplains (FP),

covering 27.0% of the basin, with elevations up to 100 m (Immerzeel, 2008).

The moisture in the YBRB is mainly from the Indian Ocean. The YBRB exhibits a broad range

of precipitation from the semi-arid upstream areas to the HB characterized by abundant orographic

rainfall as well as the vast humid FP. In the upstream areas, precipitation is concentrated during

JJAS, and rainfall intensity is mostly low due to long-distance moisture transport (Guan et al., 1984).

The irregular topographic variations in the Himalayas profoundly affect the spatial distribution of

precipitation by altering monsoonal flow, producing intense orographic rainfall along the Himalayan

foothills (Khandu et al., 2017). The downstream areas also receive high rainfall from monsoon flow

during JJAS, accounting for 60%—70% of the annual rainfall (Gain et al., 2011).

2.2 Data sources

2.2.1 Observational data

In the upper YBRB, rainfall data across China recorded at 31 meteorological stations were
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collected from the National Meteorological Information Center (NMIC, sourced from the China

Meteorological Data Sharing Service System). In addition, data observed at 91 rainfall stations in

the downstream area were obtained from the Global Historical Climatology Network

(GHCN)—Daily dataset for bias correction. GHCN-Daily dataset comprises observations from four

sources, which have been undergone extensive quality reviews, including the U.S. Collection, the

International Collection, the Government Exchange Data, and the Global Summary of the Day. The

locations of rainfall stations are shown in Fig. 1.

2.2.2 APHRODITE estimates

Numerous rainfall observations were incorporated into APHRODITE estimates, including (1)

Global Telecommunication System (GTS)-based data, (2) data obtained from other projects or

organizations, and (3) their own collection. The rainfall observations that had undergone quality

control were gathered, and the ratios of rainfall observations to the world climatology were

calculated and then interpolated for each month. The interpolated ratios were multiplied by the world

climatology, and the first six components of the fast Fourier transform of the resulting values were

used to obtain daily precipitation (Yatagai et al., 2012).

Daily rainfall data of APHRO MA 025deg V1101 (http://aphrodite.st.hirosaki-

u.ac.jp/index.html) at 0.25° resolution in the Asian monsoon area end in 2007, while recently

published APHRO MA 025deg VIIOIEX R1 (http://aphrodite.st.hirosaki-u.ac.jp/index.html),

using the same algorithm and spatial resolution, extend the time series over the period 2007—-2015.

Therefore, extreme precipitation could be analyzed during 1951-2015 by applying both datasets.

To investigate the influence of topography on bias-corrected APHRODITE estimates, the grids were
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classified into three topographic zones (the TP, HB, and FP; Fig. 2).

2.3 Methods
2.3.1 Bias correction methods

Two linear methods (linear scaling (LS) and local intensity scaling (LOCI)) and two non-linear
methods (power transformation (PT) and quantile—quantile mapping (QM)) were used for bias
correction in this study.

(1) LS

LS corrects monthly estimates in accordance with observations (Lenderink et al., 2007). It
corrects APHRODITE estimates using the ratio between mean monthly observation and

corresponding estimation:

P (4)=Par (d)'{M} m

where P,

(d) and P,,(d) are the daily precipitation of corrected and original APHRODITE

estimate, respectively, and P

obs

(d) is the daily precipitation observed at the rainfall station in

corresponding grid of the APHRODITE estimate. (P, (d)) and , (P, (d)) are the mean

monthly precipitation of observations and corresponding APHRODITE estimates in the mth month,
respectively.

(2) LOCI

LOCI makes a flexible adjustment to the wet-day frequency and intensity (Schmidli et al., 2006;

Teutschbein and Seibert, 2012). Firstly, an adjusted precipitation threshold ( ) is determined so

Pth, APH

that the number of days exceeding this threshold for APHRODITE estimates matches that of

observed days with precipitation larger than 0 mm. Secondly, a linear scaling factor (s) for wet days

7
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is computed:

P

obs

5= /um(Pobs(d) (d)>0 mm)
Hn (PAPH (d)‘PAPH (d ) > Pth,AF'H )_ Plh,APH

2)

Where /um (Pobs (d )

P (d)>0 mm) is the mean monthly precipitation of observations with daily

th, APH

precipitation larger than 0 mm, and ,,_ (PAPH (d )‘ Pen (d)>P, ) is the mean monthly precipitation

of APHRODITE estimates with daily precipitation larger than P, .. . Finally, the precipitation data
are corrected, using:
Pren (d):max(s'(PAPH (d)_Pth,APH)’O) 3)

3)PT

PT corrects both the mean and the coefficient of variation of precipitation (Leander and
Buishand, 2007), changing precipitation by:
P () =Py (4))' 4)
where a and b are the parameters of the power transformation, which are obtained using a
distribution-free approach and estimated for each month within a 90-day window. Using a root-
finding algorithm, the value of b is firstly determined to ensure that the coefficient of variation of
the corrected estimates matches that of the observations. The parameter a is then calculated using
the mean observation and the corresponding mean of the transformed values.

(4)QM

By shifting occurrence distributions, QM corrects the distribution function of precipitation
estimates to match that of observations, which is commonly used in correcting systematic
distributional biases (Cannon et al., 2015). A Gamma distribution is usually assumed for

precipitation events (Teutschbein and Seibert, 2012):
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~e7;x20;a,ﬂ>0 (%)

f,(Xa, B)=x" ~m

where o and f are the shape parameter and scale parameter, respectively.

The cumulative density function (CDF) of the APHRODITE estimates is adjusted to agree with
that of the observation, and the daily precipitation for APHRODITE estimates is corrected
depending on its quantile. It should be noted that for APHRODITE estimates, many days had low
precipitation estimates instead of substantial dry conditions, which may distort the distribution of
daily precipitation. Therefore, an adjusted precipitation threshold is also used to ensure the wet-day

frequency of corrected APHRODITE estimates match the observed frequency:

0, if PAPH (d)< Pth,APH

(6)
F;l ( F, (PAPH (d )‘aAPH,m » Bapm )

P,:PH (d):{

aobs,m ’ ﬂobs,m )v otherwise
F, and F* arethe Gamma CDF and its inverse, respectively. @ypy;, and S, are the shape

parameter and scale parameter of original APHRODITE estimates in the mth month, respectively,

and a,

and g, . are those of observations in the mth month, respectively.

bs,m

This study corrected the grids of the APHRODITE estimates that contained time series of
observations, and the parameters of bias correction were determined using corresponding available
rainfall observations. After that, the APHRODITE estimates during 1951-2015 in these grids were
corrected by four bias correction methods, respectively. Hereafter, APHRODITE estimates

corrected by LS, LOCI, PT, and QM are referred as LS-APHRODITE, LOCI-APHRODITE, PT-

APHRODITE, and QM-APHRODITE estimates, respectively.

2.3.2 Indices of extreme precipitation
To characterize extreme precipitation during JJAS, six indices recommended by the Expert

Team on Climate Change Detection and Indices (ETCCDI), including consecutive wet days (CWD),
9
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number of heavy precipitation days (R10mm), number of very heavy precipitation days (R20mm),

maximum 1-day precipitation amount (Rx1d), maximum 5-day precipitation amount (Rx5d), and

simple daily intensity index (SDII), were applied in this study. Detailed descriptions of these indices

are shown in Table 1. The indices fall roughly into three categories: (1) duration indices, which

represent the length of the wet spell; (2) threshold indices, which count the days on which a fixed

precipitation threshold is exceeded; (3) absolute indices, which describe the maximum 1-day or 5-

day precipitation amount (Sillmann et al., 2013).

Extreme precipitation indices for corrected APHRODITE estimates in the grids distributed

with rainfall stations were calculated. To obtain extreme precipitation indices in other grids, inverse

distance weighted (IDW) interpolation for extreme precipitation indices were performed. This

allowed us to calculate mean values for each of the three topographic zones.

2.3.3 Validation on bias correction

Cross-validation was applied to evaluate the performance of four bias correction methods. At

each rainfall station, the observations were divided into two groups. Two-thirds of the rainfall

records were applied to calculate the parameters of LS, LOCI, PT, and QM, respectively. Making

use of these parameters, the APHRODITE estimates were then corrected. The mean error (MFE)

between the extreme precipitation indices obtained from the corrected APHRODITE estimates and

those obtained from remaining one-third of the rainfall observations were calculated to evaluate the

performance of different bias correction methods.

3 Results

10
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3.1 Evaluation of extreme precipitation indices

The ME of extreme precipitation indices during JJAS for validation are shown in Fig. 3. For

original APHRODITE estimates, the ME of CWD in the TP, HB, and FP were 8.3, 16.4, and 21.8

days, respectively. There were a lot of days with low precipitation estimations instead of substantial

dry conditions, leading to the overestimation on CWD. Likewise, this propagated to LS-

APHRODITE estimates with similar ME of CWD, because there was no change made to the wet-

day frequency. The ME of CWD in the TP, HB, and FP for LOCI-APHRODITE estimates were 3.1,

1.2, and 1.4 days, respectively, and those for QM-APHRODITE estimates were 2.5, 0.8, and 0.9

days, respectively. For both LOCI- and QM-APHRODITE estimates, the days with low

precipitation estimations instead of substantial dry conditions were redefined as dry days using

precipitation threshold, resulting in much less ME and more reliable CWD. Finally, although PT did

not directly correct wet-day frequency, the CWD for PT-APHRODITE estimates were lower than

those for original APHRODITE estimates because tiny precipitation were corrected.

Original APHRODITE tended to underestimate heavy and very heavy precipitation days. Bias

correction reduced error on R10mm and R20mm except LS, and the absolute value of mean MFE for

LOCI-, PT-, and QM-APHRODITE estimates were mostly less than 1.0 days. LOCI, PT, and QM

are able to effectively correct heavy and very heavy precipitation days.

For original APHRODITE estimates, the ME of Rx1d were —11.3, —89.1 and —50.5 mm in the

TP, HB, and FP, respectively, and those of Rx5d reached —18.0, —167.4 and —76.8 mm, respectively.

Original APHRODITE estimates greatly underestimated Rx1d and Rx5d. For corrected

APHRODITE estimates, QM performed best on Rx1d, and the ME for QM-APHRODITE estimates

were —0.1, —1.9 and —5.4 mm, respectively. LS and LOCI used consistent ratio in linear

11
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transformation, resulting in underestimation on Rxld. In addition, LOCI outperformed other

methods on Rx5d, and the overestimation in the HB and FP for PT- and QM-APHRODITE estimates

were greater.

The ME of SDII for original APHRODITE estimates in the TP, HB, and FP were —2.4, —=13.9

and —11.0 mm, respectively. Firstly, heavy and very heavy precipitation in the HB and TP were not

fully captured by original APHRODITE estimates. Secondly, original APHRODITE estimates

overestimated wet days, which distorted the estimation of precipitation intensity. Smaller error were

found in LOCI- and QM-APHRODITE estimates because they corrected rainfall amount as well as

the number of rainy days.

3.2 Extreme precipitation indices calculated from original and corrected APHRODITE

estimates

3.2.1 Extreme precipitation indices in the three physiographic zones

Extreme precipitation indices calculated from original and four corrected APHRODITE

estimates in the three different physiographic zones are shown in Fig. 4. The CWD estimated using

original APHRODITE and LS-APHRODITE estimates were similar. Meanwhile, those derived

from LOCI-, PT-, and QM-APHRODITE estimates were much less.

Mean R10mm during JJAS obtained by original APHRODITE estimates in the TP, HB, and FP

were 6.7, 31.0, and 47.7 days, respectively. These were similar to those estimated by corrected

APHRODITE estimates. However, the differences in R20mm were much pronounced. Mean

R20mm in HB and FP for bias-corrected APHRODITE datasets were close to 19.0 and 26.5 days,

respectively, which were approximately 4-5 days higher than those derived from original

12
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APHRODITE estimates.

Compared with original APHRODITE estimates, the Rx1d and Rx5d increased greatly after

bias correction. In the HB, the mean Rx1d obtained from original APHRODITE estimates was 49.5

mm, while those for LS-, LOCI-, PT-, and QM-APHRODITE estimates were 72.4, 90.1, 109.0, and

103.8 mm, respectively. In addition, the ranges of Rx1d and Rx5d also increased considerably.

The differences in SDII between original and corrected APHRODITE estimates were also

marked. For example, mean SDII in the FP calculated from original APHRODITE estimates was

13.4 mm. After correction, mean SDII for LOCI- and QM-APHRODITE estimates increased to 23.4

and 25.1 mm, respectively. These values were much greater than those derived from LS- and PT-

APHRODITE datasets (15.7 and 17.7 mm).

3.2.2 Relative changes in extreme precipitation indices

The relative changes in extreme precipitation indices during JJAS based on original and

corrected APHRODITE estimates are shown in Fig. 5. The CWD for LOCI-, PT-, and QM-

APHRODITE estimates were all lower than original APHRODITE estimates, yielding relative

change rates from —66% to —27%. Bias correction decreased the number of rainy days except LS.

The variations in R10mm and R20mm illustrated that corrected APHRODITE estimates identified

much more extreme precipitation events in the TP. The changes in indices varied considerably for

different correction methods, with the change rates of R20mm in the TP for LS-, LOCI-, PT-, and

QM-APHRODITE estimates being 30.4%, 169.2%, 297.1%, and 317.4%, respectively. For Rx1d,

Rx5d, and SDII, the increases in the HB were much pronounced than those in the FP and TP. Except

for LS-APHRODITE estimates, the increases in Rx1d and Rx5d in the HB were all above 70% for

13
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corrected APHRODITE estimates.

3.3 Influence of bias correction on the spatial distribution of extreme precipitation indices

Rainstorms over the lower YBRB usually have the duration of 2—3 days (Dhar and Nandargi,

2000), and large multi-day precipitation events are crucial to the floods in the basin. Hence, the

spatial distribution of Rx5d during JJAS based on original APHRODITE estimates were compared

with corrected APHRODITE estimates in Fig. 6. For original APHRODITE estimates, the area with

Rx5d higher than 300 mm only accounted for 2.0% of the basin, while the proportions for LS-,

LOCI-, PT-, and QM-APHRODITE estimates were 10.9%, 18.7%, 21.7%, and 21.3%, respectively.

The most profound difference between original and corrected APHRODITE estimates occurred over

the windward slopes of the Himalayas before the river flows into the Brahmaputra valley. The Rx5d

calculated from original APHRODITE estimates were lower than 300 mm, while much higher Rx5d

were obtained after bias correction, yielding maxima of 946.6, 1030.3, 1105.1, and 1396.6 mm for

LS-, LOCI-, PT-, and QM-APHRODITE estimates, respectively. The eastern Himalayas, acting as

orographic barriers, push the southwest moist air upwards, leading to heavier extreme precipitation

over the windward slopes (Singh et al., 2004; Bookhagen and Burbank, 2010; Dimri et al., 2016).

However, original APHRODITE estimates tended to substantially underestimate these extreme

precipitation. Besides aforementioned region, higher Rx5d along the Himalayan front were also

found after bias correction. In this case, extreme precipitation calculated from nonlinear approaches

were heavier than those derived from linear methods. In general, bias correction are able to consider

topographic effects on the spatial distribution of extreme precipitation more comprehensively.
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4 Discussion

Using two linear and two nonlinear bias methods, we corrected APHRODITE estimates during

JJAS in the YBRB to investigate the effects of different approaches on extreme precipitation

analysis. Extreme precipitation indices were strongly dependent on the bias correction approach

applied.

A primary problem when using gauge-based gridded data sets for extreme precipitation

analysis is the fundamental mismatch between point-based observations and gridded estimates

(Alexander, 2016). In addition, the spatial coverage of rainfall stations is another major source of

uncertainty, particularly where spatial distributions of precipitation are complex (Donat et al., 2013).

There are currently several approaches for bias correction, ranging from simple linear scaling to

more sophisticated nonlinear methods (Teutschbein and Seibert, 2012). Although mean precipitation

corrected by all bias-corrected approaches were similar, their standard deviations and consequent

extreme precipitation indices varied considerably. In the case of linear correction, both mean and

standard deviation are multiplied by same factor (Leander and Buishand, 2007), resulting in dubious

variations of precipitation. Nonlinear correction adjust mean and also coefficient of variation

(Teutschbein and Seibert, 2012), yielding more reliable results. In addition, the typical biases of

rainfall products are related to their identification of too many wet days with low-intensity

precipitation. Among the four bias-corrected approaches applied herein, LS and PT make no change

on the number of rainy days, while LOCI and QM use threshold exceedance to match the wet-day

frequency to the observations.

In international river basins, rainfall data are usually not publicly available, and extreme

precipitation analysis may suffer from data restrictions (Nishat and Rahman, 2009; Luo et al., 2019).
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Several great international rivers in south Asia, including the Indus, Ganges, and Yarlung

Tsangpo—Brahmaputra, originate from or flow through the Himalayas. Topographic variations of

the Himalayas profoundly influence the spatial distribution of precipitation by altering monsoonal

flow, resulting in considerable orographic rainfall on the windward slopes (Khandu et al., 2017).

Rainfall estimates of different products varied markedly along the Himalayan front and obtained

similar results toward the adjacent low-relief domains (Andermann et al., 2011). The GHCN-Daily

data can be applied to correct gauge-based gridded data sets in this region, ensuring these products

capture the spatial distribution and variation of extreme precipitation. However, numerous GHCN-

Daily records in Asia do not contain data from recent years, and the short or incomplete rainfall

records limit their direct applications (Donat et al., 2013). Hence, it would be preferable to apply

nonpublic datasets in data-sparse regions.

5 Conclusions

Despite increasing use of gridded rainfall products in sparsely gauged river basins, their

application in extreme precipitation analysis is challenging due to considerable biases. This study

made use of four methods to correct APHRODITE estimates in the YBRB. Their influences on

extreme precipitation indices were compared and assessed. The following conclusions were drawn.

(1) Original APHRODITE estimates tended to underestimate heavy and very heavy

precipitation in the YBRB, and there were a lot of days with low precipitation estimations instead

of substantial dry conditions. Bias correction greatly improved the performance of extreme

precipitation analysis. The extreme precipitation indices calculated from different corrected

APHRODITE estimates varied substantially, and LOCI- and QM-APHRODITE estimates were able
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to obtain more reliable extreme precipitation indices.

(2) Insufficient gauge observations in the Himalayas caused high uncertainty in the heavy

precipitation estimates for original APHRODITE estimates. After bias correction using observations

from a denser network of gauges, the heterogeneous orographic effects on extreme precipitation

were captured more accurately.
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499

500

Table 1. Detailed description of extreme precipitation indices.

Index Descriptive name Definition Unit
Maximum number of consecutive days with
CWD Consecutive wet days days
precipitation > 1 mm
Count of days when precipitation > 10 mm
R10mm  Number of heavy precipitation days  during June, July, August, and September days
(JJAS)
Number of very heavy precipitation ~ Count of days when precipitation > 20 mm
R20mm days
days during JJAS
Maximum 1-day precipitation
Rx1d Maximum 1-day precipitation mm
amount
Maximum 5-day precipitation
Rx5d Maximum consecutive 5-day precipitation mm
amount
Total precipitation during JJAS divided by the
SDII Simple daily intensity index number of wet days (when precipitation > 1 mm/day

mm)
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Figure 1. Locations of rainfall stations in the Yarlung Tsangpo-Brahmaputra River basin (YBRB).

Figure 2. Location of Asian Precipitation Highly Resolved Observational Data Integration Towards

Evaluation of Water Resources (APHRODITE) grids over the Tibetan plateau (TP), Himalayan belt

(HB), and floodplains (FP).

Figure 3. Mean error (ME) of (a) consecutive wet days (CWD), (b) number of heavy precipitation

days (R10mm), (c) number of very heavy precipitation days (R20mm), (d) maximum 1-day

precipitation amount (Rx1d), (¢) maximum 5-day precipitation amount (Rx5d), and (f) simple daily

intensity index (SDII) during June, July, August, and September (JJAS) for validation in the three

different physiographic zones (TP, HB, and FP) of the YBRB.

Figure 4. Box-whisker plot for (a) CWD, (b) R10mm, (c) R20mm, (d) Rx1d, (¢) Rx5d, and (f) SDII

during JJAS in the three different physiographic zones (the TP, HB, and FP) of the YBRB derived

from original and corrected APHRODITE estimates.

Figure 5. Relative change rate of (a) CWD, (b) R10mm, (¢) R20mm, (d) Rx1d, (¢) Rx5d, and (f)

SDII during JJAS for original and corrected APHRODITE estimates.

Figure 6. Spatial distribution of mean Rx5d during JJAS in the YBRB based on (a) original

APHRODITE estimates, as well as (b) linear scaling (LS)-APHRODITE estimates, (c) local

intensity scaling (LOCI)-APHRODITE estimates, (d) power transformation (PT)-APHRODITE

estimates, and (e) quantile—quantile mapping (QM)-APHRODITE estimates.
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Figure 3. Mean error (MFE) of (a) consecutive wet days (CWD), (b) number of heavy precipitation
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precipitation amount (Rx1d), (¢) maximum 5-day precipitation amount (Rx5d), and (f) simple

daily intensity index (SDII) during June, July, August, and September (JJAS) for validation in the

three different physiographic zones (TP, HB, and FP) of the YBRB.
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