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Abstract. Critical gaps in the amount, quality, consistency, availability, and spatial distribution of 23 

rainfall data limit extreme precipitation analysis, and the application of gridded precipitation data 24 

are challenging because of their considerable biases. This study corrected Asian Precipitation Highly 25 

Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) 26 

estimates in the Yarlung Tsangpo-Brahmaputra River Basin (YBRB) using two linear and two 27 

nonlinear methods, and their influence on extreme precipitation indices were assessed by cross-28 

validation. Bias correction greatly improved the performance of extreme precipitation analysis. The 29 

ability of four methods to correct wet-day frequency and coefficient of variation were substantially 30 

different, leading to considerable differences in extreme precipitation indices. Local intensity 31 

scaling (LOCI) and quantile−quantile mapping (QM) performed better than linear scaling (LS) and 32 

power transformation (PT). This study would provide reference for using gridded precipitation data 33 

in extreme precipitation analysis and selecting bias-corrected method for rainfall products in data-34 

sparse regions. 35 

 36 

1  Introduction 37 

Extreme precipitation often leads to floods, debris flows, and other secondary disasters (Wang 38 

et al., 2017), and changes in the frequency and intensity of extreme precipitation profoundly 39 

influence both natural environment and human society profoundly (Easterling et al., 2000; Yucel 40 

and Onen, 2014). Rainfall observations provide a primary foundation for comprehending their long-41 

term variability and change in extreme precipitation (Alexander, 2016). Accurate rainfall data are 42 

necessary for flood protection and water resource management. However, due to scarce spatial 43 

coverage of rainfall stations, short-length rainfall records, and high proportions of missing data, 44 
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observations currently available in some remote basins are clearly inadequate to capture their 45 

precipitation characteristics. In addition, observed rainfall data are usually difficult to collect in 46 

international river basins because many countries may not share or freely distribute data (Lakshmi 47 

et al., 2018). 48 

The Yarlung Tsangpo-Brahmaputra River is the fourth largest river in the world in terms of 49 

flow (Kamal-Heikman et al., 2007), which is influenced profoundly by complex atmospheric 50 

dynamics and regional climate processes (Immerzeel et al., 2010; Pervez and Henebry, 2015). 51 

Because its agriculture and economy rely heavily on monsoon precipitation, the basin is particularly 52 

vulnerable to changing climate (Singh et al., 2016; Liu et al., 2018; Janes et al., 2019; Xu et al., 53 

2019; Zhang et al., 2019). During the four summer monsoon months of June, July, August, and 54 

September (JJAS), extreme precipitation with large uncertainties lead to numerous floods (Kamal-55 

Heikman et al., 2007; Dimri et al., 2016; Malik et al., 2016). However, the understanding on extreme 56 

precipitation in the Yarlung Tsangpo-Brahmaputra River Basin (YBRB) have a number of gaps 57 

because of its complex topographic interactions with atmospheric flows, lack of observations, and 58 

data sharing issues, which hinder effective flood management (Ray et al., 2015; Prakash et al., 2019). 59 

Currently, different gridded rainfall products provide effective information over regional to 60 

global scales, which could be broadly classified into four categories: (1) gauge-based data sets that 61 

build on observations from rainfall stations; (2) products from numerical weather predictions or 62 

atmospheric models; (3) satellite-only products; and (4) combined satellite-gauge products. The 63 

performance of these products vary from region to region (Duan et al., 2016). Given the 64 

heterogeneity of orography and climate in the YBRB, observing and modeling its precipitation are 65 

very challenging (Khandu et al., 2017). In addition, satellite products are less reliable because high 66 
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convective rainfall generally takes place in the southern foothills of the Himalayas (Prakash et al., 67 

2015). Compared with some other gauge-based products, Asian Precipitation Highly Resolved 68 

Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) dataset 69 

collected more rainfall observations across South Asia (Rana et al., 2015), which have been proved 70 

could better estimate spatial precipitation (Andermann et al., 2011). Nonetheless, the lack and 71 

uneven distribution of rainfall stations at high altitudes in the Tibetan Plateau and Himalayas may 72 

introduce uncertainty and affect the accuracy of APHRODITE estimates (Rana et al., 2015; 73 

Chaudhary et al., 2017). 74 

Numerous rainfall observations can be obtained from public databases, although their short 75 

record and static character limit their direct application in precipitation analysis (Donat et al., 2013). 76 

However, these data could be useful for bias correction of gauge-based gridded products by 77 

providing additional observations from the denser network of rainfall stations. On the other hand, 78 

ranging from simple linear scaling to more sophisticated nonlinear approaches, several methods 79 

have been developed to adjust global climate model (GCM) data (Teutschbein and Seibert, 2012). 80 

Similarly, these bias correction methods could be applied to correct gridded rainfall products in 81 

sparsely-gauged mountainous basins (He et al., 2017). It is important to study whether extreme 82 

precipitation analysis could be improved by bias correction of gridded precipitation data and how 83 

different methods would influence extreme precipitation indices. 84 

This study evaluated different bias correction approaches for APHRODITE estimates in the 85 

YBRB and assessed their effects on extreme precipitation analysis. We first corrected APHRODITE 86 

estimates by both linear and nonlinear methods. Next, we calculated extreme precipitation indices 87 

using original and different corrected APHRODITE estimates, and the effects of bias correction on 88 
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extreme precipitation analysis were further investigated by cross-validation. The results would 89 

support reference for the application of gridded precipitation data and bias-corrected methods in 90 

extreme precipitation analysis. 91 

 92 

2  Material and methods 93 

2.1  Study area 94 

The YBRB can be divided into three physiographic zones: (1) the Tibetan plateau (TP), 95 

covering 44.4% of the basin, with elevations above 3500 m; (2) the Himalayan belt (HB), accounting 96 

for 28.6% of the basin, with elevations ranging from 100 m to 3500 m; and (3) the floodplains (FP), 97 

covering 27.0% of the basin, with elevations up to 100 m (Immerzeel, 2008).  98 

The moisture in the YBRB is mainly from the Indian Ocean. The YBRB exhibits a broad range 99 

of precipitation from the semi-arid upstream areas to the HB characterized by abundant orographic 100 

rainfall as well as the vast humid FP. In the upstream areas, precipitation is concentrated during 101 

JJAS, and rainfall intensity is mostly low due to long-distance moisture transport (Guan et al., 1984). 102 

The irregular topographic variations in the Himalayas profoundly affect the spatial distribution of 103 

precipitation by altering monsoonal flow, producing intense orographic rainfall along the Himalayan 104 

foothills (Khandu et al., 2017). The downstream areas also receive high rainfall from monsoon flow 105 

during JJAS, accounting for 60%−70% of the annual rainfall (Gain et al., 2011). 106 

 107 

2.2  Data sources 108 

2.2.1  Observational data 109 

In the upper YBRB, rainfall data across China recorded at 31 meteorological stations were 110 
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collected from the National Meteorological Information Center (NMIC, sourced from the China 111 

Meteorological Data Sharing Service System). In addition, data observed at 91 rainfall stations in 112 

the downstream area were obtained from the Global Historical Climatology Network 113 

(GHCN)−Daily dataset for bias correction. GHCN-Daily dataset comprises observations from four 114 

sources, which have been undergone extensive quality reviews, including the U.S. Collection, the 115 

International Collection, the Government Exchange Data, and the Global Summary of the Day. The 116 

locations of rainfall stations are shown in Fig. 1. 117 

 118 

2.2.2  APHRODITE estimates 119 

Numerous rainfall observations were incorporated into APHRODITE estimates, including (1) 120 

Global Telecommunication System (GTS)-based data, (2) data obtained from other projects or 121 

organizations, and (3) their own collection. The rainfall observations that had undergone quality 122 

control were gathered, and the ratios of rainfall observations to the world climatology were 123 

calculated and then interpolated for each month. The interpolated ratios were multiplied by the world 124 

climatology, and the first six components of the fast Fourier transform of the resulting values were 125 

used to obtain daily precipitation (Yatagai et al., 2012). 126 

Daily rainfall data of APHRO_MA_025deg_V1101 (http://aphrodite.st.hirosaki-127 

u.ac.jp/index.html) at 0.25° resolution in the Asian monsoon area end in 2007, while recently 128 

published APHRO_MA_025deg_V1101EX_R1 (http://aphrodite.st.hirosaki-u.ac.jp/index.html), 129 

using the same algorithm and spatial resolution, extend the time series over the period 2007−2015. 130 

Therefore, extreme precipitation could be analyzed during 1951−2015 by applying both datasets. 131 

To investigate the influence of topography on bias-corrected APHRODITE estimates, the grids were 132 
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classified into three topographic zones (the TP, HB, and FP; Fig. 2). 133 

 134 

2.3  Methods 135 

2.3.1  Bias correction methods 136 

Two linear methods (linear scaling (LS) and local intensity scaling (LOCI)) and two non-linear 137 

methods (power transformation (PT) and quantile−quantile mapping (QM)) were used for bias 138 

correction in this study. 139 

(1) LS 140 

LS corrects monthly estimates in accordance with observations (Lenderink et al., 2007). It 141 

corrects APHRODITE estimates using the ratio between mean monthly observation and 142 

corresponding estimation: 143 

( ) ( )
( )( )
( )( )

m obs

APH APH

m APH

P d
P d P d

P d






 
 = 
  

                                                   (1) 144 

where ( )APHP d
  and ( )APHP d   are the daily precipitation of corrected and original APHRODITE 145 

estimate, respectively, and ( )obsP d   is the daily precipitation observed at the rainfall station in 146 

corresponding grid of the APHRODITE estimate. ( )( )m obsP d  and ( )( )m APHP d  are the mean 147 

monthly precipitation of observations and corresponding APHRODITE estimates in the mth month, 148 

respectively. 149 

(2) LOCI 150 

LOCI makes a flexible adjustment to the wet-day frequency and intensity (Schmidli et al., 2006; 151 

Teutschbein and Seibert, 2012). Firstly, an adjusted precipitation threshold (
,th APHP ) is determined so 152 

that the number of days exceeding this threshold for APHRODITE estimates matches that of 153 

observed days with precipitation larger than 0 mm. Secondly, a linear scaling factor (s) for wet days 154 
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is computed: 155 

( ) ( )( )
( ) ( )( ), ,

0 mmm obs obs

m APH APH th APH th APH

P d P d
s

P d P d P P






=

 −

                                              (2) 156 

where ( ) ( )( )0 mmm obs obsP d P d    is the mean monthly precipitation of observations with daily 157 

precipitation larger than 0 mm, and ( ) ( )( ),m APH APH th APHP d P d P   is the mean monthly precipitation 158 

of APHRODITE estimates with daily precipitation larger than 
,th APHP . Finally, the precipitation data 159 

are corrected, using: 160 

( ) ( )( )( ),max ,0APH APH th APHP d s P d P =  −                                               (3) 161 

(3) PT 162 

PT corrects both the mean and the coefficient of variation of precipitation (Leander and 163 

Buishand, 2007), changing precipitation by: 164 

( ) ( )( )
b

APH APHP d a P d =                                                            (4) 165 

where a and b are the parameters of the power transformation, which are obtained using a 166 

distribution-free approach and estimated for each month within a 90-day window. Using a root-167 

finding algorithm, the value of b is firstly determined to ensure that the coefficient of variation of 168 

the corrected estimates matches that of the observations. The parameter a is then calculated using 169 

the mean observation and the corresponding mean of the transformed values. 170 

(4) QM 171 

By shifting occurrence distributions, QM corrects the distribution function of precipitation 172 

estimates to match that of observations, which is commonly used in correcting systematic 173 

distributional biases (Cannon et al., 2015). A Gamma distribution is usually assumed for 174 

precipitation events (Teutschbein and Seibert, 2012):  175 
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where α and β are the shape parameter and scale parameter, respectively. 177 

The cumulative density function (CDF) of the APHRODITE estimates is adjusted to agree with 178 

that of the observation, and the daily precipitation for APHRODITE estimates is corrected 179 

depending on its quantile. It should be noted that for APHRODITE estimates, many days had low 180 

precipitation estimates instead of substantial dry conditions, which may distort the distribution of 181 

daily precipitation. Therefore, an adjusted precipitation threshold is also used to ensure the wet-day 182 

frequency of corrected APHRODITE estimates match the observed frequency: 183 

( )
( )

( )( )( )
,

1

, , , ,

0 if

, , , otherwise

APH th APH

APH

APH APH m APH m obs m obs m

P d P
P d
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，
                      184 

(6) 185 

F  and 1F

−  are the Gamma CDF and its inverse, respectively. ,APH m  and ,APH m  are the shape 186 

parameter and scale parameter of original APHRODITE estimates in the mth month, respectively, 187 

and ,obs m  and ,obs m  are those of observations in the mth month, respectively. 188 

This study corrected the grids of the APHRODITE estimates that contained time series of 189 

observations, and the parameters of bias correction were determined using corresponding available 190 

rainfall observations. After that, the APHRODITE estimates during 1951−2015 in these grids were 191 

corrected by 4 bias correction methods, respectively. Hereafter, APHRODITE estimates corrected 192 

by LS, LOCI, PT, and QM are referred as LS-APHRODITE, LOCI-APHRODITE, PT-193 

APHRODITE, and QM-APHRODITE estimates, respectively. 194 

 195 

2.3.2  Indices of extreme precipitation 196 

To characterize extreme precipitation during JJAS, six indices recommended by the Expert 197 
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Team on Climate Change Detection and Indices (ETCCDI), including consecutive wet days (CWD), 198 

number of heavy precipitation days (R10mm), number of very heavy precipitation days (R20mm), 199 

maximum 1-day precipitation amount (Rx1d), maximum 5-day precipitation amount (Rx5d), and 200 

simple daily intensity index (SDII), were applied in this study. Detailed descriptions of these indices 201 

are shown in Table 1. The indices fall roughly into three categories: (1) duration indices, which 202 

represent the length of the wet spell; (2) threshold indices, which count the days on which a fixed 203 

precipitation threshold is exceeded; (3) absolute indices, which describe the maximum 1-day or 5-204 

day precipitation amount (Sillmann et al., 2013). 205 

Extreme precipitation indices for corrected APHRODITE estimates in the grids distributed 206 

with rainfall stations were calculated. To obtain extreme precipitation indices in other grids, inverse 207 

distance weighted (IDW) interpolation for extreme precipitation indices were performed. This 208 

allowed us to calculate mean values for each of the three topographic zones. 209 

 210 

2.3.3  Validation on bias correction 211 

Cross-validation was used to evaluate the performance of 4 bias correction methods. At each 212 

rainfall station, the observations were divided into two groups. Two third of the rainfall records were 213 

applied to calculate the parameters of bias correction, and then APHRODITE estimates were 214 

corrected. Making use of the remaining rainfall observations, the mean error (ME) of the extreme 215 

precipitation indices for corrected APHRODITE estimates were calculated to evaluate the 216 

performance of different bias correction methods. 217 

 218 

3  Results 219 
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3.1  Extreme precipitation indices calculated from original and corrected APHRODITE 220 

estimates 221 

3.1.1  Extreme precipitation indices in the three physiographic zones 222 

Extreme precipitation indices calculated from original and four corrected APHRODITE 223 

estimates in the three different physiographic zones are shown in Fig. 3. The CWD estimated using 224 

original APHRODITE and LS-APHRODITE estimates were similar. Meanwhile, those derived 225 

from LOCI-, PT-, and QM-APHRODITE estimates were much less. 226 

Mean R10mm during JJAS obtained by original APHRODITE estimates in the TP, HB, and FP 227 

were 6.7, 31.0, and 47.7 days, respectively. These were similar to those estimated by corrected 228 

APHRODITE estimates. However, the differences in R20mm were much pronounced. Mean 229 

R20mm in HB and FP for bias-corrected APHRODITE datasets were close to 19.0 and 26.5 days, 230 

respectively, which were approximately 4–5 days higher than those derived from original 231 

APHRODITE estimates. 232 

Compared with original APHRODITE estimates, the Rx1d and Rx5d increased greatly after 233 

bias correction. In the HB, the mean Rx1d obtained from original APHRODITE estimates was 49.5 234 

mm, while those for LS-, LOCI-, PT-, and QM-APHRODITE estimates were 72.4, 90.1, 109.0, and 235 

103.8 mm, respectively. In addition, the ranges of Rx1d and Rx5d also increased considerably. 236 

The differences in SDII between original and corrected APHRODITE estimates were also 237 

marked. For example, mean SDII in the FP calculated from original APHRODITE estimates was 238 

13.4 mm. After correction, mean SDII for LOCI- and QM-APHRODITE estimates increased to 23.4 239 

and 25.1 mm, respectively. These values were much greater than those derived from LS- and PT-240 

APHRODITE datasets (15.7 and 17.7 mm). 241 
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 242 

3.1.2  Relative changes in extreme precipitation indices 243 

The relative changes in extreme precipitation indices during JJAS based on original and 244 

corrected APHRODITE estimates are shown in Fig. 4. The CWD for LOCI-, PT-, and QM-245 

APHRODITE estimates were all lower than original APHRODITE estimates, yielding relative 246 

change rates from −66% to −27%. Bias correction decreased the number of rainy days except LS. 247 

The variations in R10mm and R20mm illustrated that corrected APHRODITE estimates identified 248 

much more extreme precipitation events in the TP. The changes in indices varied considerably for 249 

different correction methods, with the change rates of R20mm in the TP for LS-, LOCI-, PT-, and 250 

QM-APHRODITE estimates being 30.4%, 169.2%, 297.1%, and 317.4%, respectively. For Rx1d, 251 

Rx5d, and SDII, the increases in the HB were much pronounced than those in the FP and TP. Except 252 

for LS-APHRODITE estimates, the increases in Rx1d and Rx5d in the HB were all above 70% for 253 

corrected APHRODITE estimates.  254 

 255 

3.2  Influence of bias correction on extreme precipitation indices 256 

3.2.1  Evaluation of extreme precipitation indices 257 

The ME of extreme precipitation indices during JJAS for validation are shown in Fig. 5. For 258 

original APHRODITE estimates, the ME of CWD in the TP, HB, and FP were 8.3, 16.4, and 21.8 259 

days, respectively. There were a lot of days with low precipitation estimations instead of substantial 260 

dry conditions, leading to the overestimation on CWD. Likewise, this propagated to LS-261 

APHRODITE estimates with similar ME of CWD, because there was no change made to the wet-262 

day frequency. The ME of CWD in the TP, HB, and FP for LOCI-APHRODITE estimates were 3.1, 263 
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1.2, and 1.4 days, respectively, and those for QM-APHRODITE estimates were 2.5, 0.8, and 0.9 264 

days, respectively. For both LOCI- and QM-APHRODITE estimates, the days with low 265 

precipitation estimations instead of substantial dry conditions were redefined as dry days using 266 

precipitation threshold, resulting in much less ME and more reliable CWD. Finally, although PT did 267 

not directly correct wet-day frequency, the CWD for PT-APHRODITE estimates were lower than 268 

those for original APHRODITE estimates because tiny precipitation were corrected. 269 

Original APHRODITE tended to underestimate heavy and very heavy precipitation days. Bias 270 

correction reduced error on R10mm and R20mm except LS, and the absolute value of mean ME for 271 

LOCI-, PT-, and QM-APHRODITE estimates were mostly less than 1.0 days. LOCI, PT, and QM 272 

are able to effectively correct heavy and very heavy precipitation days. 273 

For original APHRODITE estimates, the ME of Rx1d were −11.3, −89.1 and −50.5 mm in the 274 

TP, HB, and FP, respectively, and those of Rx5d reached −18.0, −167.4 and −76.8 mm, respectively. 275 

Original APHRODITE estimates greatly underestimated Rx1d and Rx5d. For corrected 276 

APHRODITE estimates, QM performed best on Rx1d, and the ME for QM-APHRODITE estimates 277 

were −0.1, −1.9 and −5.4 mm, respectively. LS and LOCI used consistent ratio in linear 278 

transformation, resulting in underestimation on Rx1d. In addition, LOCI outperformed other 279 

methods on Rx5d, and the overestimation in the HB and FP for PT- and QM-APHRODITE estimates 280 

were greater. 281 

The ME of SDII for original APHRODITE estimates in the TP, HB, and FP were −2.4, −13.9 282 

and −11.0 mm, respectively. Firstly, heavy and very heavy precipitation in the HB and TP were not 283 

fully captured by original APHRODITE estimates. Secondly, original APHRODITE estimates 284 

overestimated wet days, which distorted the estimation of precipitation intensity. Smaller error were 285 
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found in LOCI- and QM-APHRODITE estimates because they corrected rainfall amount as well as 286 

the number of rainy days. 287 

 288 

3.2.2  Spatial distribution of extreme precipitation 289 

Rainstorms over the lower YBRB usually have the duration of 2−3 days (Dhar and Nandargi, 290 

2000), and large multi-day precipitation events are crucial to the floods in the basin. Hence, the 291 

spatial distribution of Rx5d during JJAS based on original APHRODITE estimates were compared 292 

with corrected APHRODITE estimates in Fig. 6. For original APHRODITE estimates, the area with 293 

Rx5d higher than 300 mm only accounted for 2.0% of the basin, while the proportions for LS-, 294 

LOCI-, PT-, and QM-APHRODITE estimates were 10.9%, 18.7%, 21.7%, and 21.3%, respectively. 295 

The most profound difference between original and corrected APHRODITE estimates occurred over 296 

the windward slopes of the Himalayas before the river flows into the Brahmaputra valley. The Rx5d 297 

calculated from original APHRODITE estimates were lower than 300 mm, while much higher Rx5d 298 

were obtained after bias correction, yielding maxima of 946.6, 1030.3, 1105.1, and 1396.6 mm for 299 

LS-, LOCI-, PT-, and QM-APHRODITE estimates, respectively. The eastern Himalayas, acting as 300 

orographic barriers, push the southwest moist air upwards, leading to heavier extreme precipitation 301 

over the windward slopes (Singh et al., 2004; Bookhagen and Burbank, 2010; Dimri et al., 2016). 302 

However, original APHRODITE estimates tended to substantially underestimate these extreme 303 

precipitation. Besides aforementioned region, higher Rx5d along the Himalayan front were also 304 

found after bias correction. In this case, extreme precipitation calculated from nonlinear approaches 305 

were heavier than those derived from linear methods. In general, bias correction are able to consider 306 

topographic effects on the spatial distribution of extreme precipitation more comprehensively. 307 
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 308 

4  Discussion 309 

Using two linear and two nonlinear bias methods, we corrected APHRODITE estimates during 310 

JJAS in the YBRB to investigate the effects of different approaches on extreme precipitation 311 

analysis. Extreme precipitation indices were strongly dependent on the bias correction approach 312 

applied. 313 

A primary problem when using gauge-based gridded data sets for extreme precipitation 314 

analysis is the fundamental mismatch between point-based observations and gridded estimates 315 

(Alexander, 2016). In addition, the spatial coverage of rainfall stations is another major source of 316 

uncertainty, particularly where spatial distributions of precipitation are complex (Donat et al., 2013). 317 

There are currently several approaches for bias correction, ranging from simple linear scaling to 318 

more sophisticated nonlinear methods (Teutschbein and Seibert, 2012). Although mean precipitation 319 

corrected by all bias-corrected approaches were similar, their standard deviations and consequent 320 

extreme precipitation indices varied considerably. In the case of linear correction, both mean and 321 

standard deviation are multiplied by same factor (Leander and Buishand, 2007), resulting in dubious 322 

variations of precipitation. Nonlinear correction adjust mean and also coefficient of variation 323 

(Teutschbein and Seibert, 2012), yielding more reliable results. In addition, the typical biases of 324 

rainfall products are related to their identification of too many wet days with low-intensity 325 

precipitation. Among the four bias-corrected approaches applied herein, LS and PT make no change 326 

on the number of rainy days, while LOCI and QM use threshold exceedance to match the wet-day 327 

frequency to the observations. 328 

In international river basins, rainfall data are usually not publicly available, and extreme 329 



16 

 

precipitation analysis may suffer from data restrictions (Nishat and Rahman, 2009; Luo et al., 2019). 330 

Several great international rivers in south Asia, including the Indus, Ganges, and Yarlung 331 

Tsangpo−Brahmaputra, originate from or flow through the Himalayas. Topographic variations of 332 

the Himalayas profoundly influence the spatial distribution of precipitation by altering monsoonal 333 

flow, resulting in considerable orographic rainfall on the windward slopes (Khandu et al., 2017). 334 

Rainfall estimates of different products varied markedly along the Himalayan front and obtained 335 

similar results toward the adjacent low‐relief domains (Andermann et al., 2011). The GHCN-Daily 336 

data can be applied to correct gauge-based gridded data sets in this region, ensuring these products 337 

capture the spatial distribution and variation of extreme precipitation. However, numerous GHCN-338 

Daily records in Asia do not contain data from recent years, and the short or incomplete rainfall 339 

records limit their direct applications (Donat et al., 2013). Hence, it would be preferable to apply 340 

nonpublic datasets in data-sparse regions. 341 

 342 

5  Conclusions 343 

Despite increasing use of gridded rainfall products in sparsely gauged river basins, their 344 

application in extreme precipitation analysis is challenging due to considerable biases. This study 345 

made use of four methods to correct APHRODITE estimates in the YBRB. Their influences on 346 

extreme precipitation indices were compared and assessed. The following conclusions were drawn. 347 

(1) Original APHRODITE estimates tended to underestimate heavy and very heavy 348 

precipitation in the YBRB, and there were a lot of days with low precipitation estimations instead 349 

of substantial dry conditions. Bias correction greatly improved the performance of extreme 350 

precipitation analysis. The extreme precipitation indices calculated from different corrected 351 
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APHRODITE estimates varied substantially, and LOCI- and QM-APHRODITE estimates were able 352 

to obtain more reliable extreme precipitation indices. 353 

(2) Insufficient gauge observations in the Himalayas caused high uncertainty in the heavy 354 

precipitation estimates for original APHRODITE estimates. After bias correction using observations 355 

from a denser network of gauges, the heterogeneous orographic effects on extreme precipitation 356 

were captured more accurately. 357 
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Table 1. Detailed description of extreme precipitation indices. 495 
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Table 1. Detailed description of extreme precipitation indices. 497 

Index Descriptive name Definition Unit 

CWD Consecutive wet days 

Maximum number of consecutive days with 

precipitation ≥ 1 mm 

days 

R10mm Number of heavy precipitation days 

Count of days when precipitation ≥ 10 mm 

during June, July, August, and September 

(JJAS) 

days 

R20mm 

Number of very heavy precipitation 

days 

Count of days when precipitation ≥ 20 mm 

during JJAS 

days 

Rx1d 

Maximum 1-day precipitation 

amount 

Maximum 1-day precipitation mm 

Rx5d 

Maximum 5-day precipitation 

amount 

Maximum consecutive 5-day precipitation mm 

SDII Simple daily intensity index 

Total precipitation during JJAS divided by the 

number of wet days (when precipitation ≥ 1 

mm) 

mm/day 
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Figure 1. Locations of rainfall stations in the Yarlung Tsangpo-Brahmaputra River Basin (YBRB). 499 

Figure 2. Location of Asian Precipitation Highly Resolved Observational Data Integration Towards 500 

Evaluation of Water Resources (APHRODITE) grids over the Tibetan plateau (TP), Himalayan belt 501 

(HB), and floodplains (FP). 502 

Figure 3. Box-whisker plot for (a) consecutive wet days (CWD), (b) number of heavy precipitation 503 

days (R10mm), (c) number of very heavy precipitation days (R20mm), (d) maximum 1-day 504 

precipitation amount (Rx1d), (e) maximum 5-day precipitation amount (Rx5d), and (f) simple daily 505 

intensity index (SDII) during June, July, August, and September (JJAS) in the three different 506 

physiographic zones (the TP, HB, and FP) of the YBRB derived from original and corrected 507 

APHRODITE estimates. 508 

Figure 4. Relative change rate of (a) CWD, (b) R10mm, (c) R20mm, (d) Rx1d, (e) Rx5d, and (f) 509 

SDII during JJAS for original and corrected APHRODITE estimates. 510 

Figure 5. Mean error (ME) of extreme precipitation indices during JJAS for validation in the three 511 

different physiographic zones (TP, HB, and FP) of the YBRB. 512 

Figure 6. Spatial distribution of mean Rx5d during JJAS in the YBRB based on (a) original 513 

APHRODITE estimates, as well as (b) linear scaling (LS)-APHRODITE estimates, (c) local 514 

intensity scaling (LOCI)-APHRODITE estimates, (d) power transformation (PT)-APHRODITE 515 

estimates, and (e) quantile−quantile mapping (QM)-APHRODITE estimates. 516 
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Figure 1. Locations of rainfall stations in the Yarlung Tsangpo-Brahmaputra River Basin (YBRB). 519 
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 521 

Figure 2. Location of Asian Precipitation Highly Resolved Observational Data Integration Towards 522 

Evaluation of Water Resources (APHRODITE) grids over the Tibetan plateau (TP), Himalayan belt 523 

(HB), and floodplains (FP). 524 
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 526 

Figure 3. Box-whisker plot for (a) consecutive wet days (CWD), (b) number of heavy precipitation 527 

days (R10mm), (c) number of very heavy precipitation days (R20mm), (d) maximum 1-day 528 

precipitation amount (Rx1d), (e) maximum 5-day precipitation amount (Rx5d), and (f) simple daily 529 

intensity index (SDII) during June, July, August, and September (JJAS) in the three different 530 

physiographic zones (the TP, HB, and FP) of the YBRB derived from original and corrected 531 

APHRODITE estimates. 532 
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 534 

Figure 4. Relative change rate of (a) CWD, (b) R10mm, (c) R20mm, (d) Rx1d, (e) Rx5d, and (f) 535 

SDII during JJAS for original and corrected APHRODITE estimates. 536 
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 538 

Figure 5. Mean error (ME) of extreme precipitation indices during JJAS for validation in the three 539 

different physiographic zones (TP, HB, and FP) of the YBRB. 540 
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 545 

 546 

Figure 6. Spatial distribution of mean Rx5d during JJAS in the YBRB based on (a) original 547 

APHRODITE estimates, as well as (b) linear scaling (LS)-APHRODITE estimates, (c) local 548 

intensity scaling (LOCI)-APHRODITE estimates, (d) power transformation (PT)-APHRODITE 549 

estimates, and (e) quantile−quantile mapping (QM)-APHRODITE estimates. 550 
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