
The authors would like to thank both reviewers for their useful comments which helped to improve 

the manuscript.   

 

In addition to the changes asked by the reviewers, we have made improvements also in Figure 1.  

The ROC curves (Figure 1a) and Areas under the ROC curves (Figure 1b) where re-computed, 

using a bootstrap process (with 1000 repetitions). The envelopes presented in Figure 1b depict 

confidence intervals and correspond to the 10th and 90th percentiles.  

 

Considering that Figure 8 was split into two news figures (New Figure 7 and 8) and to keep a 

manageable number of figures, the authors combined in Figure 4 both previous Figures 4 and 5 

(case study) without losing its readability.  

 

The revised figures and corresponding figure captions are shown below after the reply to the 

reviewer comments. 

 

In addition, the manuscript with track changes is also included at the end.   

 

 

Reviewer #1. Maximiliano Viale 

 

General comment 

This paper evaluates the ECMWF ensemble forecasts up to 15 days for AR that make landfall on 

western Iberian Peninsula. The paper is straightforward, reads well, their results have important 

relevancies for weather forecasting in the region. My criticism is minimal and relates to the 

presentation in some parts of the manuscript which may need to be improved. Overall, this article 

is welcome to the weather forecasting and atmospheric community in the region, and my 

recommendation is to publish this article in Nat. Hazard journal after considering some minor 

comments provided below to improve the presentation. 

 

Minor Comments  

 

Line 53: Replace “cost” by “coast”  

The typo was corrected. 

 

In the section 3, the comparison of the model output forecasts against the observations were done 

considering separately the sites or point with observations or using a regional average with 

observation? Please explain a little bit more about this point.  

In section 3, we considered the precipitation averaged in all the observed station precipitation 

dataset in Portugal to define “yes” or “no” extreme precipitation observations. These “yes/no” 

extreme precipitation events are compared against forecasts for precipitation and IVT. These 

correspond to the outputs from the forecast model within the same domain over Portugal for both 

variables, and a forecast is considered as an extreme one if it exceeds the 95th percentile 

 

Line 132: what period does it correspond to the model climatologies? Please specify.  

For all series considered as “extreme” (both forecast and observations) in the ROC curves analysis, 

we defined thresholds based on the 95th percentiles, and using the longest period available for the 



dataset. This is needed to ensure that we obtain thresholds which are representative for the specific 

realm of each independent dataset (station data VS model data), which obviously have different 

natures and magnitudes/ranges. Thus, they need to be compared using percentiles, and not absolute 

values. In the case of the Operational/Ensemble forecasts, we considered the period of available 

data, i.e. winters between 2011-2012 and 2015-2016. For each forecast day we defined the specific 

percentiles in the target domain using this period. We acknowledge that, in this context, the use of 

the word “climatology” might be abusive, using this rather short period. In this sense, this 

information was included in the new version of the manuscript (see the answer to the following 

query).  

 

Line 133: what does it mean a sufficient number of ensemble members? Please specify.  

The minimum fraction of ensemble members presenting a “yes forecast” varies between 0.1 and 

1. So 0.1 means that 10% of the ensemble members have a “yes forecast” while 1 correspond to 

the totality of the ensemble members. This is how the ROC curves are computed: Hit Rates and 

False Alarm Rates are calculated repeatedly for each one of these varying thresholds (of minimum 

ensemble members presenting a “yes forecast”), thus enabling the computation of the data 

presented in Figure 1. 

 

Considering the last three comments of the reviewer, the first paragraph has been revised as 

follows: 

 

Firstly, a Receiver Operating Characteristic (ROC, Wilks 2006) curve analysis was performed for 

IVT and precipitation forecasts for mainland Portugal. To begin with, using the observed 

precipitation dataset presented in Section 2.2, the mean precipitation (averaged over all mainland 

Portuguese stations) was computed. Afterwards, a list of extreme precipitation events associated 

with ARs was obtained by considering observations where the 12h-cumulated precipitation 

averaged over Portugal (using the surface stations) exceeded the 95th percentile , considering: i) 

only events with  spatially averaged precipitation >0.1mm; ii) that an AR was detected 

simultaneously in the region (IVT >450kg/m/s), following the threshold found by Ramos et al. 

(2015) for ERA-Interim reanalysis.  

In addition, for the forecasts of extreme IVT and precipitation, we computed the 95th percentile of 

the corresponding period of analysis (2012-2016). To the computation of the percentile we had 

into account the data for the winters spanning between 2011-2012 and 2015-2016 and have 

defined the specific percentiles for each forecast day -1 to -14. 

These forecasts are then compared against extreme precipitation observations, considering a 

“yes” forecast if a sufficient number of Ensemble members surpass that given threshold. The 

minimum fraction of ensemble members presenting a “yes forecast” varies between 0.1 and 1. So 

that 0.1 means 10% of the ensemble members have a “yes forecast”, while 1 corresponds to the 

totality of the ensemble members. A ROC curve is then obtained by computing Hit Rates versus 

False Alarm Rates (Wilks, 2006), and considering these different minimum fraction of Ensemble 

members above the 95th percentile. 

 

 

In Fig 3 may be is not necessary adding all subpannels with all the days. Perhaps the authors can 

incorporate subpanels only every 3 days would be sufficient to show the idea and not overcharge 

the figure. These are very small and hard to visualize.  



We agree with the reviewer that different forecast subpanels where very hard to read. This 

particular case was chosen to show the relatively larger differences that occur in the IVT field and 

intensity in the different lead times. Therefore, we choose to maximize the visible area of the sub-

panels which allows us to keep the entire set of the forecast, and at the same time increasing the 

figure readability. 

 

Fig 8 has too much information and of the different type. Considering splitting into two figures: 

the upper (percentages) and lower (contingency tables) panels. In caption indicate that the 

percentages correspond to the case study shown in Fig 3. The shading color codes of bars in 

contingency tables could be discrete (using the 5 subdivision) rather than continuous to better 

visualize the percentages. The first sentence in caption for these contingency tables could be 

rewritten as follow: Contingency tables for the accuracy of AR-related IVT forecasts by the 

ECMWF ensemble system, for lead times ranging between 1 and 15 days during winters spanning 

2012-2016. 

We agree with both reviewers comments regarding Figure 8. Therefore, it was divided into two 

separate figures, the new Figures 7 (percentages) and 8 (contingency tables). In addition, all the 

suggestions of improvement were included in the new version of the figure. 

 

Figure 7 (former upper panel of Fig. 8): Percentage of Ensemble members forecasting IVT above 

450 Kg/m/s in each of the regional boxes and for each lead time for the case study presented in 

Figure 3 (January 4 2016). Green bars represent a spatially accurate forecast (in the box where 

the maximum IVT was observed). Yellow bars represent a forecast in an adjacent box to where it 

was actually observed. Red bars represent a forecast in one of the remainder boxes. The bars in 

the last line represent a completely missed forecast, by either: i) no AR forecast; ii) AR forecast 

outside of the 6 considered boxes in Western Iberia. (upper panel).  

 

Figure 8 (former lower panel of Fig. 8): Contingency tables for the accuracy of AR-related IVT 

forecasts by the ECMWF ensemble system, for lead times ranging between 1 and 14 days, during 

the winters spanning 2012-2016. The red shading represents the percentage of observations versus 

forecasts. Note that a perfect forecast system would only present shadings in the diagonal, as the 

y-axis represents observed events in each box (as presented in Figure 2) and the x-axis represents 

forecasts in each box. The number of events in each box is shown in the y-axis by the blue arrow. 

The last row/column represent either: i) observations/forecasts outside of the 6 considered boxes; 

ii) no AR observed/predicted (lower panels) 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Reviewer #2 

 

This manuscript quantifies the predictability and forecast skill of winter time atmospheric rivers 

affecting the Iberian peninsula using ensemble forecasts from ECMWF. Given the impact of 

precipitation associated with atmospheric rivers in society this is a very worthwhile study. The 

main results include that integrated water vapour transport is more skilfully predicted than 

precipitation at longer lead times and that the IFS has a systematic error which results in landfall 

of the atmospheric rivers being predicted too far north. While most of the manuscript is easy to 

understand, some parts such as the explanation of the diagnostics and what observations / analysis 

the forecasts are verified against are hard to understand and lacking critical details. These two 

major points are further explained in major comments 1-8 and other minor issues and typos which 

should be addressed are described under minor comments. 

 

Major comments: 

1. Section 2.1, lines 111 – 113. Here it is stated that daily values of IVT and precipitation from the 

IFS are used. Please clarify what is actually done here. I assume for precipitation it is the daily 

accumulated (so time integrated over 24 hours from 00 UTC - 00 UTC) precipitation but it is not 

clear what is meant by the daily IVT. Is this also integrated over time (24 hr) at each point? 

For the IVT we considered instantaneous values, at 00UTC and 12UTC. These are compared with 

12h-cumulated precipitation, centered at that time-steps. For example, 12UTC IVT is compared 

with precipitation falling between previous 06UTC and the following 18UTC. We acknowledge 

these details were not sufficiently clear in the original version of the manuscript, so we added this 

information. 

 

The new version of the text reads as follows: 

 

The data considered here consists in instantaneous IVT values (for both direction and magnitude), 

at 00UTC and 12UTC, and 12-h accumulated precipitation centered in these time steps. The IVT 

was computed using the specific humidity and zonal and meridional winds between 300hPa and 

1000hPa levels (e.g. Ramos et al., 2015). 

 

 

2. If IVT is integrated over time, does this act to smooth out (or zonally blur) the ARs and how 

does this impact the skill scores and the predictability. Previous studies for other forecast variables 

such as clouds and radiation (e.g. Hogan et al, Tuononen et al, 2019) have shown that while 24-

hour integrated values are forecast with a large degree of skill, 6 hourly and 1 hourly values have 

much less skill. 

As mentioned in the previous comment the IVT is not integrated over time, corresponding to 

instantaneous values, at 00UTC and 12UTC, so we don´t have the smoothing problem as the 

reviewer mentioned. Please see comment above. 

 

 

 

 



 

3. Section 2.2, lines 124. Here it is stated that precipitation observations are accumulated into 12 

hourly periods whereas the forecast precipitation is 24 hour accumulated values. Is this correct? 

Please clarify the time accumulations. 

We agree with the reviewer that this information was not clear in the text. Both observation and 

forecast precipitation are accumulated into 12 hourly periods centered at 00UTC and 12UTC. 

Therefore, the 12UTC embraces the precipitation that occurs between 06UTC and 18 UTC for the 

same day, while the 00UTC embraces the precipitation registered between 18UTC from the 

previous day and the 6UTC of the following day.  

 

The 10 minutes precipitation were accumulated into consecutive 12h periods centered at 00UTC 

and 12UTC of each day. Therefore, the 12UTC embraces the precipitation that occurs between 

06UTC and 18 UTC for the same day, while the 00UTC embraces the precipitation registered 

between 18UTC from the previous day and the 6UTC of the following day. 

 

4. Section 2.2. Were these precipitation observations, that are used to verify the forecasts, 

assimilated into these forecasts or are these independent observations? 

The precipitation observations are only used in section 3. In addition, it must be noted that 

precipitation station data observations are not assimilated by the ECMWF Integrated Forecasting 

System, and therefore the observed dataset is totally independent from forecasts. The feasibility of 

assimilating SYNOP rain gauge data in the ECMWF model has been evaluated (see Lopez, P. 

Experimental 4D-Var Assimilation of SYNOP Rain Gauge Data at ECMWF. Mon. Weather Rev. 

2013, 141, 1527–1544.) showing a very small impact in the operational system due to the large 

amount of other data already assimilated. The only rainfall product assimilated operationally by 

ECMWF is the Radar data over USA (Lopez, P. Direct 4D-Var Assimilation of NCEP Stage IV 

Radar and Gauge Precipitation Data at ECMWF. Mon. Weather Rev. 2011, 139, 2098–2116.).  

 

5. It is hard to follow how the forecasts for IVT are verified. It is said later on in the manuscript 

that the analysis fields are taken from ECMWF to verify IVT but this should be mentioned much 

earlier, for example after section 2.2. This is because it is confusing to read how precipitation 

forecasts will be evaluated but not the IVT forecasts. I am also not sure if the precipitation analysis 

is used or not, and if not, why not. 

Regarding the IVT, the forecast validation is entirely model based, using the analysis field from 

the ECMWF. We agree that this information was not clearly provided in the submitted version of 

the manuscript, especially the difference between IVT validation and precipitation validation. This 

information is now included in the new version of the manuscript. 

 

Based on reviewer #1 comment and also on reviewer #2 comments the fist part of section 3, reads 

as follows: 

 

Firstly, a Receiver Operating Characteristic (ROC, Wilks, 2006) curves analysis was performed 

for IVT and precipitation forecasts for mainland Portugal. To begin with, using the observed 

precipitation dataset presented in Section 2.2, the mean precipitation (averaged over all mainland 

Portuguese stations) was computed. Afterwards, a list of extreme precipitation events associated 

with ARs was obtained by considering observations where the 12h-cumulated precipitation 

averaged over Portugal (using the surface stations) exceeded the 95th percentile , considering: i) 



only events with  spatially averaged precipitation >0.1mm; ii) that an AR was detected 

simultaneously in the region (IVT >450kg/m/s), following the threshold found by Ramos et al. 

(2015) for ERA-Interim reanalysis.  

In addition, for the forecasts of extreme IVT and precipitation, we computed the 95th percentile of 

the corresponding period of analysis (2012-2016). To the computation of the percentile we had 

into account the data for the winters spanning between 2011-2012 and 2015-2016 and have 

defined the specific percentiles for each forecast day -1 to -14. 

These forecasts are then compared against extreme precipitation observations, considering a 

“yes” forecast if a sufficient number of Ensemble members surpass that given threshold. The 

minimum fraction of ensemble members presenting a “yes forecast” varies between 0.1 and 1. So 

that 0.1 means 10% of the ensemble members have a “yes forecast”, while 1 corresponds to the 

totality of the ensemble members. A ROC curve is then obtained by computing Hit Rates versus 

False Alarm Rates (Wilks, 2006), and considering these different minimum fraction of Ensemble 

members above the 95th percentile. 

 

6. Section 4. Line 155. How do you verify the precipitation over the boxes which are located over 

sea where there are no observation stations? 

The precipitation forecast and validation is only done in section 3, where the authors compare the 

predictive skill of precipitation and IVT. Based on the results obtained in section 3 (higher IVT 

predictability), all the remaining results sections (i.e. sections 4 and 5) are focused specifically on 

the IVT (ARs) predictability.  

 

Taking this into account we now stress, at the end of section 3, that only the IVT will be analyzed 

from this point onwards: 

 

Based on the results presented in Figure 1, we show that the IVT can provide an added value for 

mid-range operational forecast of extreme precipitation events. Therefore, from this point onward 

we will focus our analysis on the performance of the ECMWF probabilistic forecasts for IVT and 

the AR-related IVT forecasts over Portugal, exploring potential systematic biases, and trying to 

access model behavior and accuracy metrics at different forecast lead times. 

 

 

7. Section 4.1, lines 165 – 171. It is very hard to understand these diagnostics and as such this is 

the biggest weakness of this manuscript. This must be improved. Specific points are: 

(a) Landfall distance. As this is described (line 165) this is the scalar distance simply 

measured between two points which in theory should always have a positive value and no 

direction. However when this is discussed in the text and shown in Figure 4 this parameter can 

have negative values and a direction. Is this then the difference in the meridional direction with 

positive (negative) errors indicating a northward (southward) forecast relative to the analysis? 

Please clarify. 

We agree with the reviewer that the wording used in the submitted version of the manuscript lacked 

sufficient clarity. Regarding the landfall distance, the values presented correspond simply to the 

meridional distance (in km) between the landfall (location of the maximum IVT) in the analysis 

and in the forecast. As stated by the reviewer, this value can be positive (negative) errors indicating 

a northward (southward) forecast landfall error.  

 



(b) How is the landfall location identified? Is this the first point in time when IVT exceeds 

the threshold value over a land point in any of the boxes? Again please clarify this in the revised 

manuscript. 

The landfall location corresponds to the latitude of the maximum IVT within the coastal area used 

for detection (the box domains presented in figure 2).  

 

(c) The landfall IVT error is sensitive to both intensity and displacement errors. This should 

be noted more clearly. It would also be interesting to include a diagnostic which solely measures 

the intensity error e.g. the difference in the maximum value in the forecast and the analysis 

regardless of where they occur. 

We agree with the reviewer that the landfall IVT error is sensitive to both intensity and 

displacement errors. That is why we developed three different metrics to test it: (1) Landfall 

distance and (2) Landfall IVT error and (3) AR-axis IVT error.  

Regarding the suggestion raised by the reviewer to have a new diagnostic that measures the 

intensity error, this is already included in metric (3), which is exactly the difference in the 

maximum value in the forecast and in the analysis, regardless of where these two maxima occur. 

We believe that with the new addition to the text, this information will become clear.  

  

(d) The AR-axis angle error. Two points (or a vector) are always need to calculate an angle 

e.g. you need to identify the axis of the AR yet this is not done here. I do not fully understand how 

this angle is calculated in the forecast / analysis and therefore I do not understand how the 

difference can be calculated. I assume it is the angle of the IVT vector but where and when? Please 

clarify this. A schematic diagram may be helpful as would adding the IVT vectors to the large 

panel in Figure 3 to make it clearer to readers that IVT is vector and the shading is the magnitude 

of that vector. 

The AR-axis angle is relative to the landfall region, not to the “entire” AR, in this regards it is 

more appropriate to state that we compute the angle of incidence of the AR in the target area. In 

this sense, it is not very easy to depict it as suggested in Fig.3, due to the relatively small spatial 

scale. Regarding its computation, we simply detect the latitude of the maximum IVT for each 

longitude within the target area. Then, using those latitudes, the “mean” angle is calculated, using 

a west-east direction as the 0º reference. As for other metrics, this is computed for analysis and 

forecast, providing the error in the angle. Positive (negative) errors denote a counterclockwise 

(clockwise) error. We added this information in the revised manuscript, to make it clearer. 

 

 

Considering the review comments the diagnosis description now reads as follows: 

 

Afterwards, forecasts up to 14 days in advance from the control and ensemble members where 

compared against the analyses, through the computation of the following metrics that consider the 

landfall IVT error sensitivity to both intensity and displacement errors: 

1) Landfall distance: the meridional distance (in km) between the landfall (location of the 

maximum IVT) in the forecast and in the analysis. This value can be positive (negative), indicating 

a northward (southward) forecast landfall error. 



2) Landfall IVT error: the difference (forecast minus analysis) between the IVT (in kg/m/s) at 

the correct location of the landfall, i.e., where the maximum IVT was actually observed in the 

analysis; 

3) AR-axis IVT error: the difference (forecast minus analysis) between the IVT (in kg/m/s) at 

the specific individual locations of the landfall in the analysis and forecast. It considers the 

difference in the maximum IVT value in the forecast and the analysis, regardless of where they 

occur; 

4) AR-axis angle error: the difference (forecast minus analysis) between the incidence angle 

(in º, respective to W→E) at the specific locations of the landfall (Figure 2) in the analysis and 

forecast. The latitude of the maximum IVT is detected for each longitude within the target area. 

Then, using those latitudes, the “mean” angle is computed, using a west-east direction as the 0º 

reference. As for other metrics, this is computed for analysis and forecasts, providing the error in 

the angle. Positive (negative) errors denote a counterclockwise (clockwise) error. 

 

8. It is not clear how the diagnostics described in section 4.1 are calculated in the cases that no AR 

is forecast. Are these included as missing data? How does this impact the overall results and 

conclusions? Please add some information about this. 

To create a catalogue of Observed events we only considered analysis where the 450kg/m/s 

threshold is surpassed within the target area (boxes). However, the maximum IVT (intensity and 

location) is detected in a much wider latitudinal window (further north/south). For example, in the 

Case Study presented to explain the methodology (new Figure 4), if the maximum IVT is detected 

further north/south than the target domain, or if the maximum is below 450kg/m/s, it is considered 

as no-AR in the domain (as depicted by the open circles). However, regardless of being detected 

as AR in the domain or not, the maximum IVT at the longitudes where the target area is located 

(as well as the latitude where that maximum is located) is always kept. These values are used for 

the computation of “mean statistics” presented in figure 5 and figure 6 (new version of the 

manuscript), in the same way that values Forecasted as AR are. 

 

Minor comments and typos: 

1. Title. I’m not 100% sure this title is grammatically correct. Would “Predictive skill of 

atmospheric rivers in the western Iberian Peninsula” be more correct? 

The title was changed.  

 

2. Line 75. Should read “These kind of studies...” 

The sentence was corrected. 

 

3. Lines 77-80. The information presented here about the AR reconnaissance program is somewhat 

out of place. Either this program needs to be further explain and links made to the research 

presented in this paper or this should be removed. 

We agree with the reviewer that the AR reconnaissance program sentence was not needed in the 

context of this paper. Therefore, it was deleted from the text.  

 

 



4. Line 91. What is meant by this statement “The EFI for IVT became control at ECMWF….”? 

Please clarify the text here. I think it should read “became operational at...” 

Thank you for spotting this error. The information was corrected in the text.  

 

5. Line 98 / objective 1. This objective does not make sense. I think what it meant here is to 

compare the impact of forecast lead time of the forecast values of both IVT and precipitation. 

Please revise. 

The objective 1 was revised in order to become clearer.: “The main objective here is twofold: a) 

the comparison between the predictive skill of precipitation and IVT at different lead times during 

extreme ARs striking western Iberia, using ECMWF ensemble forecasts up to 15 days for winters 

between 2012/2013 and 2015/16;….. “ 

 

6. It would be helpful to add letters to the panels in the figures and refer to the panels using the 

letters rather than “upper panel” etc. 

We agree with the reviewer’s suggestion. Therefore, letters were added to all the figures with 

multiple panels. In addition, the text was also changed accordingly. 

 

7. Line 290. There is a typo in the reference here and “to” is missing in the sentence “This is due 

the….” 

Thank you for spotting that. The typo was corrected. 

 

8. Line 309. “control context”. I think what is meant here is “in an operational context...”. 

The text was corrected. 

 

Figure comments: 

1. Figure 1, top panel. The colour bar is hard to read since it is an continuum. Can this be changed 

to have discrete colours and only the number of colours that there are lines on this figure (I think 

4 colours). The yellow lines are also hard to see so using darker colours would be better. 

We agree with the reviewer, and changed the figure accordingly. Also, confidence intervals have 

been added to panel b), regarding the “area under the ROC curve”, following a bootstrap 

procedure. 

 

2. Figure 1. bottom panel. What is the grey bar above this panel for? 

This was a problem with the figure exporting the title for the panel. We thank the reviewer for 

noticing it, and it is corrected in the revised version of the manuscript. 

 

3. Figure 3. The boxes are hard to see in the top panel as they are similar colours to the shading. 

Furthermore, the panels at the bottom are very small and hard the see. These smaller panels would 

be clearer if the area boxes were removed and if the titles were shortened as this would allow the 

images to be made larger. 

We agree with the reviewer that different forecast subpanels where very hard to read. This 

particular case was chosen to show the relatively larger differences that occur in the IVT field and 

intensity in the different lead times. Therefore, we choose to maximize the visible area of the sub-

panels, which allowed us to keep the entire set of forecasts, and to increase the figure readability. 

 



4. Figure 4 caption. “Solid blue line represents the error in the location of the maximum IVT 

between observations and each forecast”. What observations of IVT is available or should this read 

“...between the verifying analysis and each forecast”. Also see major point 5 above. 

We agree with the reviewer that this is not clear in the text. As mentioned in reply to major point 

5, the error is between the verifying analysis and each forecast. As mentioned before, figures 4 and 

5 were combined in this new Figure 4 and the caption was changed accordingly. 

 

Figure 4.  Example of the evolution with lead time for the accuracy of IVT probabilistic forecasts, 

for the event presented in Figure 3. In a) the black line represents the error in the location of the 

maximum IVT (i.e. landfall distance) in the Operational run (in km), while the blue thick solid line 

represents the landfall distance for the Ensemble Forecasts. The blue shaded envelope 

accommodates the Ensemble spread, considering the 25th and 75th percentiles. In addition, the 

black arrows represent the errors in the angle (in degrees) of the AR axis for each forecast.  Panel 

b) shows the error in the IVT intensity (Kg/m/s) for each forecast at the observed landfall location. 

Black solid line, red solid line and red shaded envelope are as in panel a). Panel c) shows the 

error in the maximum IVT at the specific locations where it has been observed and forecasted for 

each lead time, regardless of the landfall distance. Black solid line, dashed red line and red shaded 

envelop as in a) and b). The open circles represented in some lead times represent forecasts where 

the maximum IVT did not surpass a minimum threshold of 450 Kg/m/s within the target domain 

(i.e. regional boxes over Western Iberia). 

 

 

5. Figure 5. The shading is not very clear in the top panel and appears to change shade. Can this 

be improved? Also please add information to the caption about how the “spread” is calculated. For 

example, is this the maximum and minimum differences or the 25th - 75th percentile that is 

shaded? 

Figure shading in this figure (old Figure 5, part of new Figure 4) was improved in order to become 

clearer. The information about the percentiles has been added to the caption. 

See previous comment. 

 

6. Figure 8 is very small and hard to see. The caption is also very long and hard to follow. Could 

this figure be split into two figures e.g. top panel and then the middle and bottom panels as a 

separate figure? 

As suggested by both reviewers, we split Figure 8 into two figures (New figure 7 and 8), and the 

captions where changed accordingly. 

 

7. Figure 9 is also hard to see and could be made large. The colours could be explained briefly in 

the caption here rather than expecting a reader to return to Figure 2. e.g. The darkest blue bar 

represent the most northerly box and the yellow bars the most southerly box. 

We agree with the reviewer suggestion. The figure was improved in order to become clearer and 

the caption was also improved. It reads as follows:   

 

Figure 9. Forecast verification metrics for IVT exceedances (>450 Kg/m/s) using the ECMWF 

Ensemble forecast system during the 2012-2016 extended winters in Western Iberia, and for lead 

times between 1 and 14 days. Colored bars represent metrics for individual regional boxes, as 



where the darkest blue bar represents the most northerly box and the yellow bars the most 

southerly box (as depicted in Figure 2). 

  

References: 

Hogan, R. J., O’Connor, E. J., and Illingworth, A. J.: Verification of cloud–fraction forecasts, Q. 

J. Roy. Meteorol. Soc., 135, 1494–1511, https://doi.org/10.1002/qj.481, 2009. 

 

Tuononen,  M.,  O'Connor,  E.  J.  and Sinclair, V. A.:  "Evaluating solar  radiation forecast  

uncertainty." 

Atmospheric Chemistry and Physics 19.3 (2019): 1985-2000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure Captions 

 

Figure 1. Receiver Operating Characteristic curves (ROC curves) for the IVT and precipitation 

ensemble forecasts during Atmospheric River days (ARs) from the ECMWF model, using 

Portuguese surface meteorological stations during the 2012-2016 extended winters (October-

March) as a benchmark, and considering events above the 95th percentile (a). The solid lines are 

for the IVT and dashed lines for precipitation. Different curve colors represent different lead times 

for the forecasts (1, 5, 9 and 13 days). Area under the ROC curves for lead times up to 14 days (b), 

where the confidence intervals are also shown.  The mean percentage of ensemble members 

forecasting IVT (pink) and precipitation (purple) above the 95th percentile for lead times up to 14 

days during extreme rainfall events associated to ARs (observed precipitation above the 95th 

percentile associated to an AR over Western Iberia) is shown in (b). 

 

Figure 2. The six regional boxes considered for the verification of IVT probabilistic forecasts in 

Western Iberia at lead times up to 14 days: i) sea North; ii) Galicia; iii) North Portugal; iv) Central 

Portugal; v) South Portugal; vi) sea South. 

 

Figure 3. Example of the evolution of the Operational Forecast of the IVT in an event affecting 

Western Iberia. a) Analysis of the IVT fields on January 4 2016 at 12UTC. In addition, operational 

forecasts for that date at different lead times, from 1 to 14 days. 

 

Figure 4.  Example of the evolution with lead time for the accuracy of IVT probabilistic forecasts, 

for the event presented in Figure 3. In a) the black line represents the error in the location of the 

maximum IVT (i.e. landfall distance) in the Operational run (in km), while the blue thick solid line 

represents the landfall distance for the Ensemble Forecasts. The blue shaded envelope 

accommodates the Ensemble spread, considering the 25th and 75th percentiles. In addition, the 

black arrows represent the errors in the angle (in degrees) of the AR axis for each forecast.  Panel 

b) shows the error in the IVT intensity (Kg/m/s) for each forecast at the observed landfall location. 

Black solid line, red solid line and red shaded envelope are as in panel (a). Panel c) shows the error 

in the maximum IVT at the specific locations where it has been observed and forecasted for each 

lead time, regardless of the landfall distance. Black solid line, dashed red line and red shaded 

envelop as in a) and b). The open circles represented in some lead times represent forecasts where 

the maximum IVT did not surpass a minimum threshold of 450 Kg/m/s within the target domain 

(i.e. regional boxes over Western Iberia). 

 

Figure 5. Statistics for the verification of the accuracy of the Operational Forecast of IVT for all 

events affecting Western Iberia during the extended winters between 2012 and 2016 relative to 

mean errors (a) and absolute errors (b). Solid blue line represents the error in the location of the 

maximum IVT between observation and each forecast (in km). The solid red line shows the error 

in the IVT (Kg/m/s) for each forecast at the real landfall location (where the maximum IVT was 

observed), while the red dashed curve represents the error in the maximum IVT between the 

observed and each lead time forecast, independently of the location in each forecast. Black arrows 

represent the errors in the angle (in degrees) of the AR axis. 

 

 



Figure 6. Statistics for the verification of the accuracy of the Ensemble Forecast of IVT for all 

events affecting Western Iberia during the extended winters between 2012 and 2016. a) mean 

Landfall distance errors (in km) for the Operational forecast (thin black line), the mean of the 

Ensemble Forecast (thick solid colored line) and the spread of the Ensemble (shading). b) As in 

a), but for the mean IVT error (in Kg/m/s) at the location of observed landfall. c) As in b), but at 

the location of the maximum IVT in each forecast. 

 

Figure 7. Percentage of Ensemble members forecasting IVT above 450 Kg/m/s in each of the 

regional boxes and for each lead time for the case study presented in Figure 3 (January 4 2016). 

Green bars represent a spatially accurate forecast (in the box where the maximum IVT was 

observed). Yellow bars represent a forecast in an adjacent box to where it was actually observed. 

Red bars represent a forecast in one of the remainder boxes. The bars in the last line represent a 

completely missed forecast, by either: i) no AR forecast; ii) AR forecast outside of the 6 considered 

boxes in Western Iberia. (upper panel).  

 

Figure 8. Contingency tables for the accuracy of AR-related IVT forecasts by the ECMWF 

ensemble system, for lead times ranging between 1 and 14 days, during the winters spanning 2012-

2016. The red shading represents the percentage of observations versus forecasts. Note that a 

perfect forecast system would only present shadings in the diagonal, as the y-axis represents 

observed events in each box (as presented in Figure 2) and the x-axis represents forecasts in each 

box. The number of events in each box is shown in the y-axis by the blue arrow. The last 

row/column represent either: i) observations/forecasts outside of the 6 considered boxes; ii) no AR 

observed/predicted (lower panels). 

 

Figure 9. Figure 9. Forecast verification metrics for IVT exceedances (>450 Kg/m/s) using the 

ECMWF Ensemble forecast system during the 2012-2016 extended winters in Western Iberia, and 

for lead times between 1 and 14 days. Colored bars represent metrics for individual regional boxes, 

as where the darkest blue bar represents the most northerly box and the yellow bars the most 

southerly box (as depicted in Figure 2). 
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Abstract. A large fraction of extreme precipitation and flood events across Western Europe are triggered 

by Atmospheric Rivers (ARs). The association between ARs and extreme precipitation days over the 

Iberian Peninsula has been well documented for western river basins. 

Since ARs are often associated with high impact weather, it is important to study their medium-range 

predictability. Here we perform such an assessment using the ECMWF ensemble forecasts up to 15 days 

for events where ARs made landfall in western Iberian Peninsula during the winters spanning between 

2012/2013 and 2015/16. IVT and precipitation from the 51 ensemble members of the ECMWF 

Integrated Forecasting System (IFS) ensemble (ENS) were processed over a domain including western 

Europe and contiguous North Atlantic Ocean. 

Metrics concerning the ARs location, intensity and orientation were computed, in order to compare the 

predictive skill (for different prediction lead times) of IVT and precipitation. We considered several 

regional boxes over Western Iberia, where the presence of ARs is detected in analysis/forecasts, 

enabling the construction of contingency tables and probabilistic evaluation for further objective 

verification of forecast accuracy. Our results indicate that the ensemble forecasts have skill to detect 

upcoming ARs events, which can be particularly useful to better predict potential hydrometeorological 

extremes. We also characterized how the ENS dispersion and confidence curves change with increasing 

forecast lead times for each sub-domain. The probabilistic evaluation, using ROC analysis, shows that for 

short lead times precipitation forecasts are more accurate than IVT forecasts, while for longer lead times 

this reverses (~10 days). Furthermore, we show that this reversal occurs for shorter lead times in areas 

where the ARs contribution is more relevant for winter precipitation totals (e.g. northwestern Iberia). 

 

 

 

 

 

 



1. Introduction 

Extreme precipitation events in the Iberian Peninsula are often due to anomalous vertically integrated 

water vapor transport (IVT) which are generally associated with an Atmospheric River (AR, Ramos et al., 

2015, Eiras et al., 2016, Ramos et al., 2018). According to the definition of the American Meteorological 

Society glossary of Meteorology, ARs correspond to “a long, narrow, and transient corridor of strong 

horizontal water vapor transport that is typically associated with a low-level jet stream ahead of the cold 

front of an extratropical cyclone. The water vapor in ARs is supplied by tropical and/or extratropical 

moisture sources and these systems frequently lead to heavy precipitation where they are forced 

upward—for example, by mountains or by ascent in the warm conveyor belt. Horizontal water vapor 

transport in the midlatitudes occurs primarily in atmospheric rivers and is focused in the lower 

troposphere” (Ralph et al., 2018).  

Extreme precipitation and floods in other regions of the world have been shown to be also associated 

with ARs, especially on the western continental coastlines of the mid-latitudes (Guan and Waliser, 2015, 

Gimeno et al., 2016). The preferred regions for ARs to strike are the western coast of the continents like: 

California (e.g. Gershunov et al., 2017, Ralph et al., 2017, Rutz et al., 2015), South Africa (e.g. Blamey et 

al., 2018, Ramos et al., 2019), Chile (e.g. Viale et al., 2018, Valenzuela and Garreaud, 2019) the Iberian 

Peninsula (Ramos et al., 2015, Eiras et al., 2016) or even Southern Australia and New Zealand (Guan and 

Waliser, 2015, Kingston et al., 2016).  However, their climate and socio-economics impacts are significant 

also in other regions of the world, as western and northwestern Europe (Lavers and Villarini, 2015, 2013, 

Sodemman and Stohl, 2013) or even the east coast of the US (Mahoney et al., 2016, Miller et al., 2019).   

AR impacts are not always hazardous, as they can be also responsible for providing beneficial water supply 

(e.g. Dettinger, 2013). Lavers and Villarini, 2015 show that for western Europe, the west coast of the 

United States, and for the central and northeastern United States, the AR contribution to the total 

precipitation occurring during the winter months is in the range between 30% to 50%.  In addition, Ralph 

et al., 2019, introduced a new scale for the intensity and impacts of ARs along the west coast of the United 

States, where the authors showed that weak ARs are mostly beneficial, since they can enhance water 

supply and snowpack, while stronger ARs tend to be frequently hazardous.  

Due to its importance in the hydrological cycle, in the last years, there has been an increase in the number 

of studies dealing with the predictive skill of the different forecast systems in terms of ARs at short and 

medium range forecasts, as well as seasonal to sub-seasonal scales. Regarding the short (1–3 days) and 

medium-range (3–14 days) forecasts, most studies are focused on the US. Among them, Nayak et al., 2014 

analyzed the skill of global numerical weather prediction models to forecast atmospheric rivers over the 

central United States showing that, for five different numerical models, AR occurrences are predicted 

quite well for short lead times, with an increase in the location errors as the lead time increases to about 

7 days. The authors show that, as expected, the skill of the forecast decreases with increasing lead time 

in both occurrence and location.  

On the other hand, Martin et al., 2018, examined in detail the skill of a mesoscale numerical weather 

prediction system (WRF) and compared it with a global numerical weather prediction model (Global 

Ensemble Reforecast Dataset, Hamill et al. 2013) during AR events for the western United States. It was 

shown that both models present similar and important errors in low-level water vapor flux, and 

consequently on the magnitude of precipitation. However, it was found that that WRF (at 9 km horizontal 



resolution) can add value to the forecast when compared with a global numerical weather prediction 

model by means of dynamical downscaling of the medium-range forecast. 

Using an adjoint model framework (Errico, 1997), it was shown for short-range forecast that both low-

level winds and precipitation, for ARs striking California, are most sensitive to mid- to lower-tropospheric 

perturbations in the initial state in and near the ARs (Doyle et al., 2014; Reynolds et al., 2019). These kind 

of studies can help identify locations of greatest sensitivity in the forecast, thus helping to plan 

observational campaigns that probe ARs using research aircraft and dropsondes; the dropsonde 

observations will then be assimilated into operational forecast models (Lavers et al., 2018; Guan et al., 

2017). 

Weather forecasting uses a process called ensemble forecasting to generate multiple realizations of 

possible future atmospheric conditions or states. This is undertaken to take into account uncertainties in 

the initial atmospheric state and inadequacies in the numerical model formulations. In recent years a new 

approach based on the IVT forecasts (Lavers et al, 2014) has revealed that the IVT may provide earlier 

awareness of ARs and extreme precipitation than precipitation forecasts in different regions of the world 

(Lavers et al., 2016, Lavers et al., 2017, Lavers et al., 2018). The rationale behind it is to use higher IVT 

predictive skill (e.g. Lavers et al., 2014; 2016) and then use the ECMWF Extreme Forecast Index (EFI, Zsoter 

et al., 2014).  The EFI assesses how extreme the ensemble forecasts are with respect to the model climate 

and provide values that range between −1 and 1. Regarding the Iberian Peninsula, Lavers et al., 2018, 

showed, using a high-density daily surface precipitation observation, for the winters of 2015/2016 and 

2016/2017, the IVT EFI has slightly more skill (than the precipitation EFI) in discriminating extreme 

precipitation anomalies across the western Iberian Peninsula (Portugal and northwestern Spain) from 

forecast day 11 onwards.  The EFI for IVT became operational at ECMWF in the summer of 2019. 

Since the ARs are relatively narrow corridors of strong horizontal water vapor transport, its landfall 

position will influence the location of a possible extreme precipitation event. In the case of the Iberian 

Peninsula, it was shown by Ramos et al., 2015, that the occurrence (or not) of extreme precipitation days 

over western river basins is highly sensitive to the latitudinal location of the AR landfall. Therefore, it is 

important to obtain an objective assessment of the forecast accuracy, at different lead times regarding 

ARs landfall position by using the IVT. This will be explored here, through a validation procedure that is 

based on observational precipitation records. 

The main objective here is twofold: a) the comparison between the predictive skill of precipitation and 

IVT at different lead times during extreme ARs striking western Iberia, using ECMWF ensemble forecasts 

up to 15 days for winters between 2012/2013 and 2015/16; and b) to assess the skill (or accuracy) of IVT 

probabilistic forecasts in terms of location landfall and intensity, through a probabilistic verification 

procedure, thus allowing the identification of possible model biases during extreme ARs events, and to 

define simple metrics which may be suitable for operational purposes. 

 

 

 

 



2. Dataset  

2.1 Forecast dataset 

The ECMWF integrated forecasting system (IFS) ensemble (ENS) operational forecasts were processed for 

the extended winter seasons (October to March) in four winters: 2012/2013, 2013/2014, 2014/15 and 

2015/16. ENS has a control run and  50 ensemble members. The two daily forecasts initialized at 00UTC 

and 12 UTC with a lead time of 15 days were processed. The control forecast is produced with the best 

estimate of the initial atmospheric state. The remaining 50 members are generated by perturbating the 

initial conditions. The data considered here consists in instantaneous IVT values (for both direction and 

magnitude), at 00UTC and 12UTC, and 12-h accumulated precipitation centered in these time steps. The 

IVT was computed using the specific humidity and zonal and meridional winds between 300hPa and 

1000hPa levels (e.g. Ramos et al., 2015). The ECMWF operational forecasts in the four winters had several 

upgrades, including model and resolution updates (accessed 18 September 2019: 

https://www.ecmwf.int/en/forecasts/documentation-and-support/changes-ecmwf-model).  A detailed 

evaluation of the impact of these model changes on forecast skill would have required a detailed analysis 

of the past forecasts (hindcasts) of each model version, which is beyond the scope of this study. 

 

2.2. Observed precipitation dataset 

In order to evaluate the operational forecasts, we have used the Portuguese national network of 

automatic weather stations surface provided by the Portuguese Institute of Meteorology (Instituto 

Português do Mar e da Atmosfera, IPMA). The data include 10 minutes accumulated precipitation from 

around 100 automatic weather stations over mainland Portugal, which were chosen based on a 

combination of tests for completeness and quality. The 10 minutes precipitation were accumulated into 

consecutive 12h periods centered at 00UTC and 12UTC of each day. Therefore, the 12UTC embraces the 

precipitation that occurs between 06UTC and 18 UTC for the same day, while the 00UTC embraces the 

precipitation registered between 18UTC from the previous day and the 6UTC of the following day. 

 

3. Comparing the predictive skill of precipitation and IVT 

Firstly, a Receiver Operating Characteristic (ROC, Wilks 2006) curve analysis was performed for IVT and 

precipitation forecasts for mainland Portugal. To begin with, using the observed precipitation dataset 

presented in Section 2.2, the mean precipitation (averaged over all mainland Portuguese stations) was 

computed. Afterwards, a list of extreme precipitation events associated with ARs was obtained by 

considering observations where the 12h-cumulated precipitation averaged over Portugal (using the 

surface stations) exceeded the 95th percentile , considering: i) only events with  spatially averaged 

precipitation >0.1mm; ii) that an AR was detected simultaneously in the region (IVT >450kg/m/s), 

following the threshold found by Ramos et al. (2015) for ERA-Interim reanalysis.  

In addition, for the forecasts of extreme IVT and precipitation, we computed the 95th percentile of the 

corresponding period of analysis (2012-2016). In the computation of the percentiles we took into account 

the data for the winters spanning between 2011-2012 and 2015-2016 and defined the specific percentiles 

for each forecast day -1 to -14. 



These forecasts are then compared against extreme precipitation observations, considering a “yes” 

forecast if a sufficient number of Ensemble members surpass that given threshold. The minimum fraction 

of ensemble members presenting a “yes forecast” varies between 0.1 and 1. So that 0.1 means 10% of 

the ensemble members have a “yes forecast”, while 1 corresponds to the totality of the ensemble 

members. A ROC curve is then obtained by computing Hit Rates versus False Alarm Rates (Wilks, 2006), 

and considering these different minimum fraction of Ensemble members above the 95th percentile.The 

area under the ROC curve above 0.5 denotes skilful forecasts in respect to climatology. In Fig. 1, the ROC 

curves and areas for forecasts at different lead times are presented. 

The ROC curves analysis (Fig. 1 a) clearly shows that lead time is crucial for the performance of both IVT 

and precipitation forecasts. For both variables, the forecast skill becomes negligible beyond 10 days lead 

time. While this is not unexpected, our results show that IVT can add potential value to extreme 

precipitation forecasts during ARs in the mid-range time frame (5 to 10 days). As Fig. 1 b), around day 4-

5, ROC areas are higher for IVT than for precipitation which is also confirmed by the confident intarvals 

also shown. This intervales were computed using a bootstrap process (with 1000 repetitions). This result 

is in line with a previous work by Lavers et al. (2018), which already highlighted the potential of 

probabilistic forecasts for IVT (over precipitation forecasts) in western Iberia for 2 winters over longer lead 

times. Furthermore, as shown in Fig. 1 c), when considering those days with extreme precipitation 

associated to ARs in Portugal, the number of ensemble members warning for a forecast above the 95th 

percentile is higher for IVT than for precipitation, for all lead times. While during the days where the 

precipitation ROC areas are above the IVT (<5 days) which likely reflects the more False Alarms using the 

IVT, it is clear that between days 5-10 the use of probabilistic IVT forecasts can give a significant added 

warning value for extreme precipitation forecasts. 

Based on the results presented in Fig. 1, we show that the IVT can provide an added value for mid-range 

operational forecast of extreme precipitation events. Therefore, from this point onward we will focus our 

analysis on the performance of the ECMWF probabilistic forecasts for IVT and the AR-related IVT forecasts 

over Portugal, exploring potential systematic biases, and trying to access model behavior and accuracy 

metrics at different forecast lead times. 

 

4. Model bias during extreme ARs landfall events 

We have defined 6 regional boxes (Fig. 2) over Western Iberia, 3 of them covering the area where IPMA 

surface stations are located (North Portugal, Central Portugal and South Portugal), and also extending 

further north/south (Sea-North, Galicia and Sea-South), in order to define metrics for the accuracy of the 

location of ARs landfall, including “hits” and “misses” in forecasts.  

 

 

4.1. An exemplificative case-study (January 4 2016) 

To check the model performance for IVT forecast over the domain during AR events, we considered only 

cases where the analysis (+00 hours forecast) exceeded the 450kg/m/s threshold for IVT (as defined in 

Ramos, 2015 - where the ERA-Interim dataset was used). These cases were considered as the 



“benchmark” for model forecast verification, being performed for 00UTC and 12UTC analysis during the 

4 winters spanning 2012-2016. Afterwards, forecasts up to 14 days in advance from the control and 

ensemble members where compared against the analyses, through the computation of the following 

metrics that consider the landfall IVT error sensitivity to both intensity and displacement errors: 

1) Landfall distance: the meridional distance (in km) between the landfall (location of the 

maximum IVT) in the forecast and in the analysis. This value can be positive (negative), indicating a 

northward (southward) forecast landfall error. 

2) Landfall IVT error: the difference (forecast minus analysis) between the IVT (in kg/m/s) at the 

correct location of the landfall, i.e., where the maximum IVT was actually observed in the analysis; 

3) AR-axis IVT error: the difference (forecast minus analysis) between the IVT (in kg/m/s) at the 

specific individual locations of the landfall in the analysis and forecast. It considers the difference in the 

maximum IVT value in the forecast and the analysis, regardless of where they occur; 

4) AR-axis angle error: the difference (forecast minus analysis) between the incidence angle (in º, 

respective to W→E) at the specific locaRons of the landfall (Fig. 2) in the analysis and forecast. The latitude 

of the maximum IVT is detected for each longitude within the target area. Then, using those latitudes, the 

“mean” angle is computed, using a west-east direction as the 0º reference. As for other metrics, this is 

computed for analysis and forecasts, providing the error in the angle. Positive (negative) errors denote a 

counterclockwise (clockwise) error. 

The relevance of these metrics can be easily understood looking at a case study. In Fig.3 ((a), analysis), an 

example of an AR affecting the North Portugal box is presented. The 14 small panels (Fig. 3b) show how 

the control forecast changed with increasing forecast daily lead time. While at short lead times the 

location, intensity and angle are quite similar to the analysis, at longer lead times the control forecast 

becomes less accurate, and some of them predicting an IVT magnitude, axis orientation and landfall totally 

disconnected from reality. This example higliths the importance of considering ensemble forecasts for 

long lead times, as discussed below.  

The evolution of the forecasts is depicted in Fig. 4, where the metrics for each lead time are summarized 

using both  control  and ensemble. As lead time increases, it is notable how the AR was being predicted 

further north by the control forecast (Fig 4a) , black line). In fact, for lead times of -9 days, -11 days and -

14 days, there was no predictive skill of an AR affecting the defined boxes (either forecasted much further 

north, or not forecasted at all, as depicted by the open circles), and in accordance with the corresponding 

subplot observed in Fig. 3. Consequently, as the landfall distance error increases, the IVT error at that 

location also increases (black line line in Fig. 4b). When considering the AR-axis IVT error (Fig. 4c, dashed 

black line), the decrease with longer lead times is smaller, showing that despite the error in the actual 

position of the AR, its maximum intensity was well forecasted for most of the period. Regarding the angle 

of incidence of the AR, it was mostly zonal, both in the analysis and most forecasts, thus with small error. 

Nevertheless, and as seen in Fig. 3, during mid-range lead times (around 7-10 days) forecasts tended to 

tilt the AR NW→SE over Western Iberia, as depicted by the arrows in Fig. 4a).  

Moreover, we computed the same metrics described above for each of the 50 ensemble members of ENS, 

being these results are also presented in Fig. 4. The errors of the ensemble mean are presented for landfall 

distances (blue thick line) and Landfall IVT error (red thick line) and AR-axis IVT error (dashed black line) 



as well as the spread in the ensemble forecast (shaded areas), shown here as the 25th and 75th percentiles 

of the ensemble computed metrics distribution. The control forecast errors and the ensemble mean are 

in good agreement with the dispersion of the ensemble forecast increasing with lead time. Regarding the 

landfall distance, it was found that the error increases with lead time, and in this case the control forecast 

error at lead time -12 days is higher than the ensemble mean and even the ensemble dispersion. The 50 

members of the ensemble for lead time -5 day (Fig. S1) and for -12 days (Fig. S2) are shown in 

supplementary material Fig. S1 where it can be compared with the control IVT forecast shown in Fig. 3. 

One can see, that the ensemble members for the shorter lead time are in better agreement and closer to 

reality. When looking to -12 days lead time (Fig. S2), the dispersion of AR location is much higher when 

compared with the reality and even with the control forecast shown in Fig. 3. In addition, both Landfall 

IVT error and AR-axis error (Fig. 4), for both control and ensemble members, show a decrease in the 

forecasted IVT as we consider longer lead times. 

 

4.2. Mean performance of the ECMWF forecasts during 2012-2016 

In the previous section we have analyzed one case study, evaluating both control and ensnemble forecasts 

against analysis. We extended the evaluation of the IVT forecast metrics for all events occurring during 

the extended winters of the study period (from 2012-2013 to 2015-2016). Similarly to the case study 

presented in Fig. 4., the same metrics have been computed for all AR landfall cases (207), and the average 

error is obtained as presented for the control forecast in Fig.5 and for the ensemble forecast in Fig. 6. 

When analyzing the control forecast of ARs over Western Iberia (Fig .5), it is possible to identifysome 

systematic errors/biases. Regarding the mean errors (Fig. 5a) a northward landfall bias is systematically 

found for longer lead times, especially for those longer than 5 days, which can reach up to 800km at +14 

days. In addition, regarding the AR-axis angle error, the results show a slightly negative bias in respect to 

those actually observed. Since we consider the 0º angle as west-east orientated and that AR events over 

Portugal tend to present a southwest-northeast orientation (Ramos et al., 2015), this systematic bias 

reflects a lower tilt in the AR orientation at longer time forecasts, or in other words, a tendency for more 

zonal forecasts (Fig. 5a). When analyzing the IVT magnitude, both landfall IVT error and AR-axis IVT error 

have a negative bias, as a result of: i) the error in the landfall location; ii) an underestimation of the ARs 

intensity. Comparing both metrics in more detail, it can be noted that the ARs-axis IVT bias is lower than 

the landfall IVT error, showing that while the IFS is forecasting the intensity of the ARs quite well (with 

just a small underestimation in intensity associated to lead times), the landfall location bias leads to 

significant IVT forecast errors at the location where the AR actual landfall is observed. The mean absolute 

errors were also computed for the same metrics (Fig. 5b), unsurprisingly presenting higher errors for 

landfall distance, location biases occur both northwards and southwards, thus partially canceling 

themselves, as shown in Fig. 5a. Nevertheless, this difference is not that large, thus reinforcing the 

systematic tendency for a bias towards the north in longer lead time forecasts. A similar rationale is 

applicable to the incidence angle, where errors in the tilt of the ARs in different directions tend to cancel 

out. As so, mean absolute errors tend to be around 45º at longer lead times (Fig. 5b). Overall it is possible 

to affirm that the case study evaluated in Fig. 4 presents similar biases to those obtain here with the 

average of the entire set of ARs considered.  

The mean weighted errors/biases of the ensemble forecasts (i.e. all the 50 ensemble members) for all 

events are presented in Fig. 6. The same methodology as in Fig. 4 is followed here, and the ensemble 



mean is presented, along with the spread in the ensemble forecast (shown here as the 25th and 75th 

percentiles forecast distribution). The results are very similar to the ones found for the control forecast 

(Fig. 5) with a positive bias (northly) in the position of the AR landfall as we move to higher lead times, 

along with a negative bias (less AR intensity) in the landfall IVT error and AR -axis IVT error. However, the 

dispersion in the ensemble forecast is higher in the landfall distance than the in the other IVT error 

metrics, reinforcing that the model forecasts the ARs but lacks skill in forecasting the right location of their 

landfalls.  

It is vital to stress the use of the ensemble forecast in this kind contitions. In  Fig. 4 and Fig. 6., we compare 

the control forecast with the ensemble mean and the ensemble errors metrics. Both control forecast and 

ensemble forecast Landfall and IVT error shows a northly bias and a negative IVT bias on the landfall 

location, respectively. Ramos et al., 2016, showed that the number of ARs affecting Iberia is relatively 

lower when compared with the contiguous western France or even the UK using the ERA-Interim 

reanalysis. This means that on average most of the AR go further north, and the ones hitting Iberia are 

not that frequent. Taking this into account, one can hypothesize, that the northerly bias and respective 

negative bias in IVT intensity in the ARs forecasts at longer lead times can reflect that the model tends to 

its climatology, which is to have ARs further north, as shown in Ramos et al., 2016. A similar behaviour 

occurs for the blocking frequency (Euro-Atlantic sector and the Pacific sector) using the the NCEP Climate 

Forecast System version 2 (CFSv2), in which for longer lead time the model tends to reach its climatology 

(Jia et al., 2014).  

 

5. Objective verification of the IVT forecasts 

In the previous section we proposed some metrics to analyze control and probabilistic IVT/ARs forecasts 

errors in the IFS for the Iberian Peninsula. In this section, we provide an objective verification of the IVT 

forecast, but considering in greater detail the landfall location and how to use it for a possible application 

in terms of control forecast for ARs landfall. Firstly, and bearing in mind the regional boxes presented in 

Fig. 2, and the case study presented in Fig. 3, the percentage of ensemble members providing 

correct/incorrect forecasts regarding the regional boxes is summarized in Fig. 7. As it can be seen, the 

forecast issued the day before the event was almost perfect, with most members predicting the location 

correctly in the North Portugal box (green bar). As lead time increases, the percentage of correct forecast 

decreases until day 5, but still a large fraction of members predicts the AR to make landfall in one of the 

adjacent boxes (yellow bars), until around day 7. At longer lead times, the percentage of members 

predicting landfall in boxes further away (red bars) and predicting no landfall or no AR (brown bar) 

increases significantly. 

We now present the contingency table for the ensemble forecasts of IVT for all the events (>450 kg/m/s) 

during the 4 winters considered in this study (Fig. 8). Each different box corresponds to a lead time (from 

1 to 14 days) and the different boxes corresponds to the observed vs predicted landfall location 

corresponding the bluish colors correspond to the location of each landfall box shown on Fig. 2. The box 

for lead time 1 day presents additional info to help reading the contingency tables: i) the x-axis 

representing “yes” forecasts for each box; ii) the y-axis representing “yes” observations for each box; iii) 

the color code presented for day +1 corresponds to the boxes presented in Fig. 2); iv) the last column and 

row, with the white circle and crosses, represent events that have been observed but not predicted and 



vice-versa, respectively. Note that the numbers in the left axis represent the number of observed events 

in each box. A perfect forecasting model would only present values in the diagonal (NxN).  

Results confirm what was partly shown in Fig. 6, as the error in the landfall locations increases with the 

lead time, and an increasing fraction of the ensemble members forecasting the landfall outside the Iberian 

Peninsula (further north of Galicia or further south of Algarve) or not even forecasting an AR. However, 

for shorter lead times (day -1 to day-3) the forecast error is quite low, with the ARs landfall being predicted 

very well, considering the small size of the regional boxes (less than 1º latitude each). In addition, the 

contingency table also confirms the northward landfall bias of most forecasts, with the left side of the 

table being more populated, meaning that forecasted location is more frequent in the northern boxes, 

when compared to observations. It is also shown that a few ensemble members pick up the AR, therefore 

it can be argued that system IFS is skillful, however with low probability of occurrence in the right location. 

Finally, different verification forecast metrics widely used are also computed for the different ARs landfall 

cases, and for each box (as in Fig. 2). The metrics used are the probability of detection (POD), Success Rate 

(RS), False Alarm Rate (FAR) and the BIAS (Wilks, 2006) and their formulation is shown in the 

supplementary material (Fig. S3). As mentioned before, and due to the increase in landfall error with lead 

time, these systematic errors are also expected to be reflected in the verification forecast metrics. Both 

POD and RS decrease as we move further ahead in lead times, getting closer to zero from lead time higher 

than 5 days (Fig. 9). On the contrary, the FAR is expected to increase with the lead time, staying above 0.5 

in all boxes from lead times of 5 days or more.  The relatively fast decline with lead time in these metrics 

is not surprising, as they are computed for very small target areas, and just reflects that a very accurate 

forecast of landfall location becomes difficult at lead times longer than 5 days, i.e. when considering the 

mesoscale. Still, as shown before at a synoptic scale, the model is able to forecast high probabilities of an 

AR affecting Western Iberia at longer lead times. This suggests that an effective warning system can be 

developed with reasonable lead times, although very detailed local forecasts of AR activity can only be 

achieved at short time scales. 

 

6. Conclusions 

The occurrence (or not) of extreme precipitation days in different river basins is highly sensitive to the 

latitudinal location of the ARs landfall as shown for the Iberian Peninsula (Ramos etl., 2015). This is due to 

the ARs being relatively narrow corridors of strong horizontal water vapor transport, therefore their 

landfall position has influence on the occurrence of a possible extreme precipitation event and its specific 

location.  With this in mind, we assessed the forecast accuracy at different lead times regarding ARs 

landfall position, intensity and incidence angle by using the IVT. To achieve this goal, we used the ECMWF 

operational ensemble forecasts up to 15 days, for extended winter seasons between the winters of 

2012/2013 and 2015/2016, and assessed the skill (or accuracy) of IVT probabilistic forecasts through a 

probabilistic verification procedure. 

The main conclusions are as follows: 

• The IVT forecasts shows higher predictive skill than precipitation forecasts for lead times higher 

than 5 days, when considering extreme precipitation events associated to ARs over Portugal. In addition, 



we show that there is a higher agreement amongst the IVT ensemble members for early awareness at 

such lead times, than that found for the precipitation ensemble. 

• We identified the systematic errors in AR forecasts using a designed objective verification scheme 

for IVT/ARs applied to the ECMWF Ensemble. There is a good predictive skill of the model in terms of ARs 

landfall over the domain at short term forecast. However, at longer lead times, the location of the landfall 

is less reliabley, and ARs landfall tends to be predicted too much to the north in western Iberian Peninsula, 

and their intensity tends to be underestimated. 

• In addition, when using the ensemble members to check the forecast skill for the specific ARs 

landfall location (using 6 regional boxes), it becomes clear that the predictive skill at larger spatial scales 

(the entire domain) tends to be reasonable, while the predictive skill at regional scales tends to be 

considerably smaller.   

• These results show the potential added value to forecast mid-range AR related precipitation 

events using the IVT, as well as the possibility to develop warning systems based on IVT ensemble 

forecasts.  

Accordingly, we presented a methodology that can be used in an operational context, consisting on the 

probabilities of ARs striking different regional boxes. This probability is based on the fraction of Ensemble 

members providing IVT forecasts above a threshold in each box, thus providing an estimate on the 

probabilities of occurrence and on the expected landfall location. As our analysis for increasing lead times 

shows, confidence on control forecasts should quickly rise at lead times shorter than a week, but early 

awareness can be expected at longer lead times. This methodology can be easily replicated using different 

forecast systems (e.g. the Global Forecast System, GFS) and applied to different regions of the globe after 

a similar verification as we proposed is performed.  
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Figure captions 

 



Figure 1. Receiver Operating Characteristic curves (ROC curves) for the IVT and precipitation ensemble 

forecasts during Atmospheric River days (ARs) from the ECMWF model, using Portuguese surface 

meteorological stations during the 2012-2016 extended winters (October-March) as a benchmark, and 

considering events above the 95th percentile (a). The solid lines are for the IVT and dashed lines for 

precipitation. Different curve colors represent different lead times for the forecasts (1, 5, 9 and 13 days). 

Area under the ROC curves for lead times up to 14 days (b), where the confidence intervals are also shown.  

The mean percentage of ensemble members forecasting IVT (pink) and precipitation (purple) above the 

95th percentile for lead times up to 14 days during extreme rainfall events associated to ARs (observed 

precipitation above the 95th percentile associated to an AR over Western Iberia) is shown in (b). 

 

Figure 2. The six regional boxes considered for the verification of IVT probabilistic forecasts in Western 

Iberia at lead times up to 14 days: i) sea North; ii) Galicia; iii) North Portugal; iv) Central Portugal; v) South 

Portugal; vi) sea South. 

 

Figure 3. Example of the evolution of the Operational Forecast of the IVT in an event affecting Western 

Iberia. a) Analysis of the IVT fields on January 4 2016 at 12UTC. b) control forecasts for that date issued 

with different lead times, from 1 to 14 days. 

 

Figure 4.  Example of the evolution with lead time for the accuracy of IVT probabilistic forecasts, for the 

event presented in Fig. 3. In a) the black line represents the error in the location of the maximum IVT (i.e. 

landfall distance) in the control run (in km), while the blue thick solid line represents the landfall distance 

for the Ensemble Forecasts. The blue shaded envelope accommodates the Ensemble spread, considering 

the 25th and 75th percentiles. In addition, the black arrows represent the errors in the angle (in degrees) 

of the AR axis for each forecast.  Panel b) shows the error in the IVT intensity (Kg/m/s) for each forecast 

at the observed landfall location. Black solid line, red solid line and red shaded envelope are as in panel 

(a). Panel c) shows the error in the maximum IVT at the specific locations where it has been observed and 

forecasted for each lead time, regardless of the landfall distance. Black solid line, dashed red line and red 

shaded envelop as in a) and b). The open circles represented in some lead times represent forecasts where 

the maximum IVT did not surpass a minimum threshold of 450 Kg/m/s within the target domain (i.e. 

regional boxes over Western Iberia). 

 

Figure 5. Statistics for the verification of the accuracy of the control forecast of IVT for all events affecting 

Western Iberia during the extended winters between 2012 and 2016 relative to mean errors (a) and 

absolute errors (b). Solid blue line represents the error in the location of the maximum IVT between 

observation and each forecast (in km). The solid red line shows the error in the IVT (Kg/m/s) for each 

forecast at the real landfall location (where the maximum IVT was observed), while the red dashed curve 

represents the error in the maximum IVT between the observed and each lead time forecast, 

independently of the location in each forecast. Black arrows represent the errors in the angle (in degrees) 

of the AR axis. 



 

 

Figure 6. Statistics for the verification of the accuracy of the Ensemble Forecast of IVT for all events 

affecting Western Iberia during the extended winters between 2012 and 2016. a) mean Landfall distance 

errors (in km) for the mean of the Ensemble Forecast (thick solid colored line) and the spread of the 

Ensemble (shading). b) As in a), but for the mean IVT error (in Kg/m/s) at the location of observed landfall. 

c) As in b), but at the location of the maximum IVT in each forecast. 

 

Figure 7. Percentage of Ensemble members forecasting IVT above 450 Kg/m/s in each of the regional 

boxes and for each lead time for the case study presented in Fig. 3 (January 4 2016). Green bars represent 

a spatially accurate forecast (in the box where the maximum IVT was observed). Yellow bars represent a 

forecast in an adjacent box to where it was actually observed. Red bars represent a forecast in one of the 

remainder boxes. The bars in the last line represent a completely missed forecast, by either: i) no AR 

forecast; ii) AR forecast outside of the 6 considered boxes in Western Iberia.  

 

Figure 8. Contingency tables for the accuracy of AR-related IVT forecasts by the ECMWF ensemble system, 

for lead times ranging between 1 and 14 days, during the winters spanning 2012-2016. The red shading 

represents the percentage of observations versus forecasts. Note that a perfect forecast system would 

only present shadings in the diagonal, as the y-axis represents observed events in each box (as presented 

in Fig.2) and the x-axis represents forecasts in each box. The number of events in each box is shown in the 

y-axis by the blue arrow. The last row/column represent either: i) observations/forecasts outside of the 6 

considered boxes; ii) no AR observed/predicted. 

 

Figure 9. Forecast verification metrics for IVT exceedances (>450 Kg/m/s) using the ECMWF Ensemble 

forecast system during the 2012-2016 extended winters in Western Iberia, and for lead times between 1 

and 14 days. Colored bars represent metrics for individual regional boxes, as where the darkest blue bar 

represents the most northerly box and the yellow bars the most southerly box (as depicted in Fig. 2). 

 


