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Abstract. In this communication, we present application of the automated near-real-time (NRT) system called RAdar-
Produced Inundation Diary (RAPID) to European Space Agency Sentinel-1 SAR images to produce flooding maps for 

Hurricane Dorian in the northern Bahamas. RAPID maps, released two days after the event, show that coastal flooding in the 
Bahamas reached areas located more than 10 km inland, covering more than 3,000 km2 of continental area. RAPID flood 40 

estimates from subsequent SAR images show the recession of the flood across the islands, and present high agreement scores 
when compared to Copernicus Emergency Management Service (Copernicus EMS) estimates. 

1 Introduction 

Hurricane Dorian was the strongest Atlantic hurricane at landfall in terms of maximum sustained winds (185 mph, 83 ms -1), 
tied with the 1935 Labor Day Hurricane (Landsea et al., 2014). Dorian’s first record-breaking landfall occurred at 16:40 45 
UTC and its second at 18:00 UTC on September 1, 2019, in the Abaco Islands in the northern Bahamas (NHC 2019). A third 

landfall occurred at 03:00 UTC on September 2 at the eastern end of Grand Bahama and was characterized by maximum 
sustained winds of 180 mph. Tropical storm conditions battered the northern Bahamas for 72 hours, and locations in 

northeastern Grand Bahama suffered hurricane conditions for more than 40 hours. Between 08:00 UTC on September 2 and 
14:00 UTC on September 3, the National Hurricane Center issued 30 consecutive hourly public advisories (NHC 2019) 50 
indicating Hurricane Dorian was either moving at 1 mph or was s tationary, resulting in prolonged extreme conditions over 

the same areas. The prolonged damaging and record-breaking winds were just one aspect of this storm - one that was 
measured directly and in near real time (NRT) by aircraft missions (HRD 2019). In addition, the combined effect of storm 
surge and heavy precipitation brought about the extensive flooding that was the major cause of “unprecedented and 

extensive devastation,” as described by Bahamian Prime Minister Hubert Minnis , and of deaths whose number has yet to be 55 
determined. Neither precipitation nor coastal surge could be directly measured because of the lack of a ground-based 

observational network. 

In this and other remote areas around the world where ground-based measurements are not available, precipitation can be 

assessed using near-real-time (NRT) satellite estimates available through the National Aeronautics and Space Administration 
(NASA) Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG), version 06 60 
(Huffman et al. 2019). Without these automated estimates, gaining prompt situational awareness becomes difficult, which 

can cause delays in rescue operations. 

Several space missions acquire synthetic aperture radar (SAR) data derived from low Earth observation (LEO) satellites that 

can be used for NRT systems: Sentinel-1, from the European Space Agency (ESA; Torres et al. 2012), TerraSAR-X, from 
the German Aerospace Center (DLR; Werninghaus and Buckreuss 2009), CosmoSkyMed, from the Italian Space Agency 65 
(ASI; Covello et al. 2010), RADARSAT-2, from the Canadian Space Agency (CSA; Morena et al. 2004), and ALOS-

2/PALSAR-2, from the Japan Aerospace Exploration Agency (JAXA; Kankaku et al. 2013). Among these, only Sentinel-1 
provides public access to SAR data that can be used to estimate flooding. 
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The nature of LEO satellites makes SAR data sparse, however, and, unlike with precipitation products, gaps cannot be filled 

using geosynchronous satellites. In fact, the spatial resolution needed for accurate flooding maps is three orders of magnitude 70 
higher than that required for a global precipitation product. Even when observations are present, no detailed processing 

methods exist for real-time retrieval of flooding data because underdetection or overdetection issues necessitate manual labor 
(Shen et al. 2019a). 

Recently, we published the RAdar-Produced Inundation Diary (RAPID) NRT fully automated system (Shen et al. 2019a), 

which involves the processing of high-resolution (10 meters) SAR images to allow the creation of rapid and efficient flood 75 
inundation maps by addressing both underdetection and overdetection. Differently than optical sensors, SAR images are 

nearly not affected by adverse weather conditions. As discussed in the methodology section below, the system is triggered 
(Yang et al. 2019) by IMERG precipitation estimates (Huffman et al. 2019), and it processes Sentinel-1 SAR data. 

In this brief communication, we present the early results we delivered with the RAPID NRT automated system two days 

after Hurricane Dorian hit the Bahamas, just a few hours after SAR data for the event became publicly available. We provide 80 
a short description of the methodology, and we detail the extent of flood inundation by analyzing RAPID maps. 

2 Methodology 

Only a few SAR-based flood delineation methods (e.g. Horritt et al. 2003, Martinis et al. 2009, Matgen et al., 2011, 

Giustarini et al. 2012, Lu et al. 2014, Chini et al. 2017, Cian et al. 2018) have the potential to be fully automated (Shen et al. 
2019b). The RAPID algorithm (Shen et al. 2019a) is an automated system capable of producing NRT inundation maps by 85 
processing SAR observations. Because of the considerable computation, storage, and data transfer time that would be needed 

to run the RAPID algorithm blindly for every SAR image worldwide, we implemented a zoom-in triggering mechanism 
(Yang et al. 2019) that allows selection of areas of the world where flooding is possible. Areas are defined by the availability 
of SAR images associated with land that has received at leas t 60 mm of accumulated precipitation during the previous day or 

potentially fluvial flood areas indicated by hydrological station observations. Within the continental United States (CONUS) 90 
area, we use the National Oceanic and Atmospheric Administration (NOAA) NEXt-Generation RADar (NEXRAD) 

precipitation product (NOAA 1991) and the U.S. Geological Survey (USGS) WaterWatch(https://waterwatch.usgs.gov/).We 
use NASA’s IMERG, version 06 (Huffman et al. 2019), for the rest of the world (Yang et al. 2019). 

After being triggered, the RAPID core algorithm (Shen et al. 2019a) handles both polarizations of SAR images in Ground 

Range Detected (GRD) mode through four steps: (1) identification of water and land pixels through a binary classification; 95 
(2) selection of water pixels connected to known water bodies and water areas not connected to known water bodies; (3) 

generation of a buffer region around the identified water bodies to reduce false negatives using less restrictiv e thresholds 
derived from the radar noise model; and  (4) correction of the classification through a machine-learning algorithm that uses 
high-resolution topography (Farr et al. 2007), hydrography (Yamazaki et al. 2019), water occurrence (Pekel et al. 2016), and 

river bathymetry (Allen and Pavelsky 2018, Chen et al. 2019, Yamazaki et al. 2014). In step (2), the noise-reduced persistent 100 
water extent (know water body) is computed using at least 5 overpasses acquired during non-flood conditions for each pixel. 

The RAPID system has been quantitatively compared in past studies with manually derived flood maps using (overall, user, 
producer) agreement scores, representing (accuracy, true positive rate, precision) parameters of the confusion matrix. 

Specifically, for Hurricane Harvey, RAPID was  compared with the Dartmouth Flood Observatory (DFO) comprehensive 
flood map of August 30, 2017 (Shen et al., 2019) and against the USGS Dynamic Surface Water Extent (DSWE) 105 
Northwestern flood map of June 25, 2019 (Yang et al, 2019). RAPID yielded consistently high agreement scores for Harvey 

(93%, 75%, 77%) and the Northwestern flood (96%, 84%, 76%). For Hurricane Dorian, we are presenting a comparison 
between RAPID and the Copernicus Emergency Management Service (Copernicus EMS) first estimate maps (available at 
https://emergency.copernicus.eu/mapping/list-of-components/EMSR385/FEP/ALL), both derived from the Sentinel-1 SAR 

observations. Copernicus EMS flooding maps are not available for the entire SAR images, but only for the Abaco Islands on 110 
September 2, 2019, and for Grand Bahama on September 4, 2019. 

https://waterwatch.usgs.gov/
https://emergency.copernicus.eu/mapping/list-of-components/EMSR385/FEP/ALL
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3 Results 

Because of the extremely high amounts of precipitation related to Hurricane Dorian (up to more than 1,400 mm over three 
days; see figure 1), the RAPID system was automatically triggered for the northern Bahamas. Sentinel-1 SAR data were 

available at 23:44 UTC on September 2 and at 11:09 UTC on September 4, 2019. 115 

At the time of the first overpass on September 2, Dorian was located 20 km to the north of Grand Bahama (figure 1). 

Sentinel-1 data covered the northeastern sector of Grand Bahama and all of Great Abaco, both located in the southeastern 
sector of the hurricane and therefore affected by southwesterly winds. Lower-elevation areas on the west coast of Great 
Abaco were suffering onshore tropical storm force winds, and flooding in these territories was extensive, covering 518 km2 

of land, or 26% of the island (figure 2a). 120 

On September 2, offshore hurricane-force winds affected lower-elevation areas along the northern coast of Grand Bahama, 

which had been affected by onshore hurricane-force winds during the previous day. Despite the blowing of the winds away 
from the coast, proximity to the center of the hurricane did not allow the storm surge to ret reat significantly. For this reason, 
these locations were also still experiencing extensive flooding: 138 km2 of the 308 km2 covered by the SAR images were 

flooded, amounting to 45% of eastern Grand Bahama (figure 2a). Since the first overpass occurred several hours after the 125 
passage of the hurricane, the flooded area shown in figure 2a represents a conservative estimate. 

The second Sentinel-1 overpass entirely captured Great Abaco, Grand Bahama, Andros, New Providence, and other smaller 
islands of the archipelago on September 4, when Dorian was located 300 km to the north of Grand Bahama. Despite the 

absence of storm surge at the time of the overpass, 17% of Great Abaco was still flooded, while flooding on Grand Bahama 
had mostly receded (14% of the island was still flooded). 130 

On September 3, high amounts of precipitation also fell on Andros Island, located approximately 200 km to the south of 

Dorian’s path. The flooding map resulting from the automated trigger of the RAPID algorithm also showed extensive  
flooding on the low-lying terrain of this island, which received onshore winds during the entire duration of the event (figure 

2b). On September 4, the inundated area was 2,193 km2 (37% of the island), and flooding reached more than 10 km inland. 
RAPID flooding estimates of area and inland extent on the Andros Island are in agreement with the coarser resolution 135 
product composited from the passive radiometers Visible Infrared Imaging Radiometer Suite (VIIRS) at (375m) pixel 

spacing and the Advanced Baseline Imager (ABI) at (1km) passive radiometers, displayed on the International Charter 
“Space and Major Disasters” website  at 

https://disasterscharter.org/image/journal/article.jpg?img_id=3519568&t=1568272371731. 

The agreement (overall, user, producer) scores between RAPID and Copernicus EMS flooding maps for the Abaco Islands 140 

on September 2 and September 4, derived from the confusion matrix shown in Table 1, were (77%, 90%, 41%) and (89%, 
61%, 86%), respectively. The high overall and user agreement scores for the September 2 flooding are also depicted in the 
flood maps of Figure 2ab indicating a very good overlap of the two products over the coast of Great Abaco, while the 

relatively low producer agreement comes from the lack of flood detection by the Copernicus EMS algorithm over the 
multiple near-sea-surface-elevation islands, located in the front of the western coast of Great Abaco. The relatively low user 145 
agreement score between the two products on September 4 is due to the fact that RAPID classifies some non-flooded areas 

within the Copernicus EMS flooded boundary, which are expected to occur as a consequence of the flood recession. 

According to the conservative flooding estimates shown in these maps, the total area covered by flooding in the Bahamas 

exceeded 3,000 km2, spread over areas hundreds of kilometers away from each other. To assess the inundation extent over 
such vast and dispersed areas, recognition flights take days, and they cannot operate during such extreme weather conditions 150 

as were presented by the long-lasting hurricane-force winds in the Bahamas. In contrast, a system such as RAPID can 
provide flooding estimates for any area of the world within hours of the data’s becoming available. RAPID has the potential 
to be a fundamental tool for a fast and efficient emergency response. 

https://disasterscharter.org/image/journal/article.jpg?img_id=3519568&t=1568272371731
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4 Closing Remarks 

Hurricane Dorian heavily damaged the northern Bahamas with extreme winds and precip itation and extensive flooding, 155 
causing deaths whose number is yet unknown. When extensive large-scale weather-related devastation occurs in areas of the 

world that do not have in situ observation networks, an assessment of the situation based on hydrometeorological parameters 
is often difficult. 

In this brief communication, we analyzed the flooding related to Hurricane Dorian in the Bahamas  at 10 m pixel spacing 

through RAPID, which is an automated system producing near-real-time flood maps across the globe based on SAR images. 160 
Specifically, RAPID identifies possibly flooded areas using near-real-time high-resolution precipitation products and then 

processes SAR images to compute inundation maps.  

For Hurricane Dorian, RAPID inundation maps showed that, several hours after the passage of the storm, 26% of Great 

Abaco, 45% of eastern Grand Bahama, and 37% of Andros were flooded, for a total area exceeding 3,000 km2. We 
compared RAPID inundation maps with Copernicus EMS maps, both obtained from freely available, very high resolution 165 
ESA Sentinel-1 SAR observations, finding high agreement scores and we discussed the differences between the two 

products for the case in exam. We believe RAPID system’s ability to map such a large area of inundation as soon as SAR 
observations were available makes it the a fastest fully automated method for consistently assessing flood extension and 

providing situational awareness. 

The main limitation of the system is the occasional unavailability of timely satellite overpasses in conjunction with heavy 170 

precipitation events. For Hurricane Dorian, Sentinel-1 images were not available at the peak of the event in the most affected 
area. This limitation can be overcome through international collaborations, such as the International Charter “Space and 
Major Disasters”, Sentinel Asia, NASA-ISRO SAR Mission, and Copernicus Emergency Management Service – Mapping,  

that would increase the availability of data from other satellite missions. 

Future extensions of this work will allow us to combine the rapidly derived inundated areas with high-resolution terrain 175 

elevation to identify flood levels and inversely estimate the surges that caused the flooding. Using this information, we 
would be able to extend the flood inundation estimates outside the SAR coverage, e.g. derive the September 2 flooding over 
northwestern part of Grand Bahama, where Sentinel-1 observations are not available. Furthermore, an estimate of the surge 

level can be valuable information for comparing with model forecasts for this event. 
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Figure 1: Background map:  IMERG total accumulated precipitation between 00 UTC September 1 and 00 UTC September 4, 2019 

(shaded), boundaries of Sentinel-1 SAR images (rectangles), and location (targets) of Hurricane Dorian from National Hurricane 

Center public advisories (NHC, 2019). Bottom right front map: elevation (Farr et al. 2007) of the study area. In both maps, Bahamas 
boundaries are delineated using the Global Administrative Areas dataset (Hijmans et al. 2015) . 255 
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Figure 2: a) Flooded and non-flooded areas on September 2 and September 4, 2019 derived from  the RAPID algorithm that 

processed SAR data from the Sentinel-1 overpasses, and flooded boundary on September 2 from Copernicus EMS.  b) RAPID 

flooding map for the entire Northern and Central Bahamas, for the September 4, 2019 Sentinel -1 overpass. For both images, ocean 260 
background from World O cean Base map (ESRI et al. 2014; list of contributors available at: 

http://downloads.esri.com/esri_content_doc/da/WorldOcean_ContributorsDA64.pdf ). 

 

  September 2 – Great Abaco  September 4 – Grand Bahama 

Confusion Matrix 
 Copernicus EMS  Copernicus EMS 

 Flooded Non-flooded  Flooded Non-flooded 

RAPID 
Flooded  2,274,927 (14.5%) 3,318,143 (21.1%)  1,880,609 (13.2%) 32,989 (2.3% ) 

Non-flooded  260,335 (1.7% ) 9,847,017 (62.7%)  1,219,786 (8.6% ) 10,710,519 (75.9%) 

 

Table 1: Confusion matrix between RAPID and Copernicus EMS flooding products for September 2, 2019 overpass over Great 265 
Abaco (left) and for September 4, 2019 overpass over Grand Bahama (right). For each matrix, number and percentage of pixels i s 

reported. 
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