
Reply to Reviewer Comments 

Comment: 

First of all, sorry I am a bit late with this and I hope my comments are still useful. I think they have also 

been highlighted in part and in other words by the other reviewer and the authors already posted some 

comments. The case study presented is interesting but what is lacking is some detail on the actual data 

processed, some kind of validation (although difficult here) but then some cross validation at least with 

other available maps processed either from the same Sentinel-1 by other organizations or maps processed 

from other EO imagery. It would also be useful to put the processing and used processing chain in context 

with other fully automated methods used - there are now many of those, for example HASARD by LIST 

or the chain used at DLR ZKI or indeed maps from the Dartmouth Flood Observatory. Such maps can 

then also be used to cross-validate and get a good idea about the sensitivity/uncertainty in the presented 

flood maps. I am not sure about the nature and scope of brief communications in NHESS but at this point 

the presented paper reads like a story or account of the event rather than a brief communication of science 

and assessment of results.  

Response: 

We would like to thank the reviewer for his/her constructive comments. We agree with the reviewer: 

despite being the RAPID algorithm fully validated for historical cases, validation (or more specifically 

cross-validation) for this event was missing in the original version of the manuscript. In the revised 

manuscript we are now including a comparison between the RAPID and the EMS product (which is based 

on the same SAR observation) in Figure 2, in the new Table 1, and in text, and discuss differences 

between the two products. 

In particular, we added this paragraph at the end of the Methodology section: 

“The RAPID system has been quantitatively validated in past studies against manually derived flood 

maps using (overall, user, producer) agreement scores, representing (accuracy, true positive rate, 

precision) parameters of the confusion matrix. Specifically, for Hurricane Harvey, RAPID was validated 

against the DFO comprehensive flood map of August 30, 2017 (Shen et al., 2019) and against the USGS 

DSWE Northwestern flood map of June 25, 2019 (Yang et al, 2019). RAPID yielded consistently high 

agreement scores for Harvey (93%, 75%, 77%) and the Northwestern flood (96%, 84%, 76%). For 

Hurricane Dorian, we are presenting a comparison between RAPID and the Copernicus Emergency 

Management Service (EMS) first estimate maps (available at 

https://emergency.copernicus.eu/mapping/list-of-components/EMSR385/FEP/ALL), both derived from the 

Sentinel-1 SAR observations. EMS flooding maps are not available for the entire SAR images, but only 

for the Abaco Islands on September 2, 2019, and for Grand Bahama on September 4, 2019.” 

We also added this paragraph towards the end of the Results section: 

“The agreement (overall, user, producer) scores between RAPID and EMS flooding maps for the Abaco 

Islands on September 2 and September 4, derived from the confusion matrix shown in Table 1, were 

(77%, 90%, 41%) and (89%, 61%, 86%), respectively. The high overall and user agreement scores for 

the September 2 flooding are also depicted in the flood maps of Figure 2 indicating a very good overlap 

of the two products over the coast of Great Abaco, while the relatively low producer agreement comes 

from the lack of flood detection by the EMS algorithm over the multiple near-sea-surface-elevation 

islands, located in the front of the western coast of Great Abaco. The relatively low user agreement score 

between the two products on September 4 is due to the fact that RAPID classifies some non-flooded areas 

within the EMS flooded boundary, which are expected to occur as a consequence of the flood recession.” 

https://emergency.copernicus.eu/mapping/list-of-components/EMSR385/FEP/ALL


We replaced Figure 2 with the following: 

 
Figure 2: Ocean background from World Ocean Base map (ESRI et al. 2014; list of contributors 

available at: 

http://downloads.esri.com/esri_content_doc/da/WorldOcean_ContributorsDA64.pdf).  Flooded 

and non-flooded areas on September 2 and September 4, 2019 derived from the RAPID algorithm 

that processed SAR data from the Sentinel-1 overpasses, and flooded boundary from EMS. 

 

And we added Table 1: 

   September 2 – Great Abaco  September 4 – Grand Bahama 

Confusion Matrix 

  EMS  EMS 

  
Flooded Non-flooded 

 
Flooded 

Non-

flooded 

RAPID 

Flooded 
  2,274,927 

(14.5%) 

3,318,143 

(21.1%) 

 1,880,609 

(13.2%) 

32,989 

(2.3%) 

Non-

flooded 

  260,335 

(1.7%) 

9,847,017 

(62.7%) 

 
1,219,786 (8.6%) 

10,710,519 

(75.9%) 

Table 1: Confusion matrix between RAPID and EMS flooding products for September 2, 2019 

overpass over Great Abaco (left) and for September 4, 2019 overpass over Grand Bahama (right). 

For each matrix, number and percentage of pixels is reported. 



Beyond the additions implemented in the paper, we also visually compared, in Figure (a), the VV-pol 

SAR images on July 4 (dry condition, left) and on September 2 2019 (peak flooding, right). This visual 

and subjective comparison will not be included in the paper due to space limitations. From the 

comparison, however, it is evident that all the flat islands in oval 1 in Figure (a), are flooded. Large areas 

in oval 2 (zoomed in the bottom images for facilitating the comparison) are also partially flooded, despite 

they are not as dark as other areas. The same occurs for the other red circles. These flooded or partially 

flooded areas are not captured by the EMS algorithm (Figure 2), probably due to the use of fixed  

  

  
Figure a: VV-polarized SAR images (in dB scale) over Bahamas on July 4, 2019 (left column) and on 

September 2, 2019 (right column). 
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thresholds. In RAPID, the segmentation threshold is instead optimized individually for each image to 

reach the best goodness of fit of the theoretical water-class distribution.  

In order to put the RAPID processing chain in context with other automated methods, we introduced the 

following sentence: Only a few SAR-based flood delineation methods (e.g. Horritt et al. 2003, Martinis et 

al. 2009, Matgen et al., 2011, Giustarini et al. 2012, Lu et al. 2014, Chini et al. 2017, Cian et al. 2018) 

have the potential to be fully automated (Shen et al. 2019b).”All these references have been extensively 

discussed in Shen et al. 2019b, which reads as follows: 

 

“Toward automation, Matgen et al. (2011) developed the M2a algorithm to determine the threshold that 

makes the non-water pixels (below the threshold) best fit a gamma distribution—a theoretical distribution 

of any given class in a SAR image. They then extended flooded areas using RGA from detected water 

pixels using a larger threshold—99 percentile of the “water” backscatter gamma distribution—arguing 

that flood maps resulting from region growing should include all “open water” pixels connected to the 

seeds. Then they applied a change detection technique to backscattering to reduce over-detection within 

the identified water bodies caused by water-like surfaces, as well as to remove permanent water pixels. 

Based on the same concept, Giustarini et al. (2013) developed an iterative approach to calibrate the 

segmentation threshold, distribution parameter, and region growing threshold (M2b). They applied the 

same segmentation threshold to the dry reference SAR image to obtain the permanent water area. They 

claimed, however, that if the intensity distribution of the SAR image were not bimodal, the automated 

threshold determination might not work.  

Lu et al. (2014) used a changed detection approach, first to detect a core flood area that contained a 

more plausible but incomplete collection of flood pixels, and then to derive the statistical curve of the 

water class to segment water pixels. The major advantage of this approach is that a bimodal distribution 

is not compulsory. In practice, a non-bimodal distribution often occurs. The change detection threshold 

might be difficult to determine and globalize.  

Assuming even prior probability of flooded and non-flooded conditions, Giustarini et al. (2016) computed 

probabilistic flood maps that characterize the uncertainty of flood delineation. The probability reported 

in this study, however, related to the uncertainty neither in extent nor in time. Rather, it was the 

uncertainty of a SAR image classification based on backscattering.  

Taking advantage of big earth observation (EO) data, the two most recent studies—Cian et al. (2018) and 

Shen et al. (2019)—implemented full automation of inundation retrieval. With the CD principle 

underpinning both methods, they employed multiple dry references instead of one supported by 

operational satellite SAR data for multiple years.  

Cian et al. (2018) developed two CD-based flood indices, the Normalized Difference Flood Index (NDFI) 

and the Normalized Difference Vegetated Flood Index (NDVFI), assuming a number of revisits for each 

pixel in dry conditions was available.” 

About automation of the entire processing chain, on the LIST website, at https://www.list.lu/en/news/list-

contributes-to-monitor-mozambique-floods-with-satellite-imagery/ is written that: “The project partners 

intend to develop a fully automated tool - based on HASARD ® - that could generate different flood risk 

maps, with no human intervention, as soon as a flood disaster occurs.” Therefore, according to the 

information written on the website, HASARD triggering by LIST is currently not automated.  

The DLR ZKI needs to be activated too, and activation for Hurricane Dorian does not appear on the 

website: https://activations.zki.dlr.de/viewer/#/en/georss 

With the addition of the comparison between RAPID and EMS, the discussion of those results, and the 

addition of references related to other automated methods, we hope to have addressed the reviewer’s 

concerns about the science scope of this brief communication. 

https://www.list.lu/en/news/list-contributes-to-monitor-mozambique-floods-with-satellite-imagery/
https://www.list.lu/en/news/list-contributes-to-monitor-mozambique-floods-with-satellite-imagery/
https://activations.zki.dlr.de/viewer/#/en/georss

