
Reply to Reviewer Comments 

General comments 

In this brief communication the authors present the results of a Sentinel-1-based automated near-real time 

flood mapping approach applied for detecting inundations caused in the frame of Hurricane Dorian on the 

Bahamas. Even if the inundations on the Bahamas were huge and very impressing the most important 

limitations of the work are in my view 1) the sole application of an already reported approach to a small 

subset of existing data sets which had been acquired over the Bahamas during this event, 2) the missing 

validation of the flood mapping results and 3) the lack of consideration of the work of other authors which 

achieved significant progress in SAR-based flood mapping within the last years. 

We would like to thank the reviewer for his/her constructive comments. We have revised the paper 

according to all the reviewer’s comments, and we are detailing our response (in green) in this document. 

1) The reviewer is correct in stating that this paper discusses about a sole application of an already 

reported approach. However, this is the first times that this algorithm has been used in near-real 

time during an event, being now fully-automated. For these reasons, we chose the “Brief 

Communication” format to timely “disseminate information and data on topical events of 

significant scientific and/or social interest within the scope of the journal”. In order to publish 

timely results, we did not test the case using all existing methods and we will argue in a following 

response that it is unnecessary to do so.  

 

2) The RAPID system has been quantitatively validated using different methods by (Shen et al. 

2019a) and (Yang et al. 2019) in different events and locations against different reference 

datasets. In the revised version of the manuscript we are reporting the accuracy values from the 

validation performed in those studies. Since RAPID has been thoroughly validated by other 

studies, this paper is a brief communication about the Bahamas inundation instead of the system 

development. Furthermore, we cannot find an independent third-party reference flood map extend 

to validate the estimates from the RAPID system. There are flood maps for September 2 and 

September 4, 2019 derived by ESA/EMS, but those are based on the same SAR observations. We 

included, in the new version of our manuscript, a comparison with these EMS maps. 

 

3) Thank you for raising this point. The work of other authors had been extensively discussed in 

(Shen et al., 2019a) and (Shen et al., 2019b). Unfortunately, due to the nature of this paper, it 

cannot contain an extensive literature review. In the previous version of this manuscript we chose 

to cite only all the data sources used, and the work at the basis of this manuscript. In the revised 

version we also include some of the most important papers written by other authors: “Only a few 

SAR-based flood delineation methods (e.g. Horritt et al. 2003, Martinis et al. 2009, Matgen et al., 

2011, Giustarini et al. 2012, Lu et al. 2014, Chini et al. 2017, Cian et al. 2018) have the potential 

to be fully automated (Shen et al. 2019b).” However, we would like to point out that although 

many algorithms claim a certain level of automation, they are limited in applications. For 

example, some method require bimodal histogram, while other are based on simple threshold-

based methods suffering by over-detection of artificial surfaces. Most methods cannot directly be 

applied without human interference. The RAPID system overcomes all these issues and is the 

only system that requires no human interference from the identification of potential flooded areas 

to the final generation of flood maps from SAR. We retrospectively outputted all Sentinel-1 

captured flood events in the CONUS area from 2016 to 2019, which is the main contribution of 

(Yang et al. 2019). Since the RAPID system, being fully automated, is more automated than other 

existing system, we 1) were the first to release the Bahamas flood maps to the public (half day 



earlier than Copernicus/EMS), and 2) did not only map selected events of high impact or the peak 

of the selected event, but also reported every captured event in the CONUS area and every 

captured day in an event. 

Specific comments 

1. Abstract: In my view the focus of this contribution is not clear. The method for detecting flooding 

based on SAR data is already published by the authors and, as this is a brief communication, there 

is of course only shortly reported on the details of the methodology. Therefore, the focus of this 

publication should be on the huge flood event on the Bahamas. However, only Sentinel-1 data on 

two dates in early September has be analysed. By integrating other Earth Observation data sets 

acquired during this event (e.g. in the frame of the International Charter Space and Major 

Disasters) and also additional Sentinel-1 data acquired in September 2019 (e.g. on September 14) 

the evolution of this flood event could be better described (the RAPID approach could be of 

course a component to complete the description of this event). 

 

Thank you for this comment. We agree with the reviewer about the clarity of the focus of our 

paper. In particular, we are not presenting the methodology for an automated system, but we are 

presenting the application of that system. For this reason we modified the following sentence of 

the abstract by adding the words “an application of”: 

 

“we present an application of the automated near-real-time (NRT) system called RAdar-

Produced Inundation Diary (RAPID) to European Space Agency Sentinel-1 SAR images to 

produce flooding maps for Hurricane Dorian in the northern Bahamas.” 

 

The reviewer’s question related to other Earth Observation data may arise by our lack of 

specificity on the resolution. In the previous version of the manuscript we generically wrote about 

“high-resolution”. However, the resolution of this product is much higher than other high-

resolution products: it is 10 meters (we included this information in the current version). Most of 

the other products are either at a lower resolution, or optical. Optical sensors do not work in 

adverse weather conditions are not reliable for an immediate response to hurricanes. To make this 

difference clear, we added the following sentence in the paper: 

 

“Differently than optical sensors, SAR images are not influenced by adverse weather conditions.” 

 

Moreover, in the revised version we now include a comparison with the EMS product (which is 

based on the same SAR observation) in Figure 2, in the new Table 1, and in text: 

 

“The agreement (overall, user, producer) scores between RAPID and EMS flooding maps for the 

Abaco Islands on September 2 and September 4, derived from the confusion matrix shown in 

Table 1, were (77%, 90%, 41%) and (89%, 61%, 86%), respectively. The high overall and user 

agreement scores for the September 2 flooding are also depicted in the flood maps of Figure 2 

indicating a very good overlap of the two products over the coast of Great Abaco, while the 

relatively low producer agreement comes from the lack of flood detection by the EMS algorithm 

over the multiple near-sea-surface-elevation islands, located in the front of the western coast of 

Great Abaco. The relatively low user agreement score between the two products on September 4 

is due to the fact that RAPID classifies some non-flooded areas within the EMS flooded 

boundary, which are expected to occur as a consequence of the flood recession.” 



Figure 2: Ocean background from World Ocean Base map (ESRI et al. 2014; list of contributors available 
at: http://downloads.esri.com/esri_content_doc/da/WorldOcean_ContributorsDA64.pdf).  Flooded 
and non-flooded areas on September 2 and September 4, 2019 derived from the RAPID algorithm that 
processed SAR data from the Sentinel-1 overpasses, and flooded boundary from EMS. 

 

   September 2 – Great Abaco  September 4 – Grand Bahama 

Confusion Matrix 
  EMS  EMS 

  Flooded Non-flooded  Flooded Non-flooded 

RAPID 

Flooded 
  2,274,927 

(14.5%) 

3,318,143 

(21.1%) 

 
1,880,609 (13.2%) 

32,989 

(2.3%) 

Non-

flooded 

  
260,335 (1.7%) 

9,847,017 

(62.7%) 

 
1,219,786 (8.6%) 

10,710,519 

(75.9%) 

Table 1: Confusion matrix between RAPID and EMS flooding products for September 2, 2019 

overpass over Great Abaco (left) and for September 4, 2019 overpass over Grand Bahama (right). 

For each matrix, number and percentage of pixels is reported. 

 



We also mentioned visible products available on the International Charter Space and Major 

Disasters website, which confirm the results we found for Andros Island: 

 

“RAPID flooding estimates of area and inland extent on the Andros Island are in agreement with 

the coarser resolution product composited from VIIRS (375m) and ABI (1km) passive 

radiometers, displayed on the International Charter “Space and Major Disasters” website  at 

https://disasterscharter.org/image/journal/article.jpg?img_id=3519568&t=1568272371731.” 

 

Finally, we would like to mention that the September 14 image, being acquired more than 10 days 

after the passage of the hurricane, shows just a very limited amount of flooded area. We believe it 

is not necessary to include this image in the brief communication. 

 
 

2.  Line 38: Please replace Alos-2 by ALOS-2/PALSAR-2 

 

Thank you for this comment. We replaced Alos-2 with ALOS-2/PALSAR-2 in the revised 

manuscript. 

 

3. Line 43: There exist several automatic approaches/complete processing chains for detecting flood 

extent from different kind of radar satellite data (e.g. from TerraSAR-X, Sentinel-1, 

CosmoSkyMed). Multiple references have been published related to this topic within the last 

years by different organisations. Some of these references should be cited in this publication.  

 

The combined methods that can provide a complete processing for detecting flood extent from 

different kind of radar satellite data have been discussed in “Inundation Extent Mapping by 

Synthetic Aperture Radar: A Review” by Shen et al., 2019, which reads as follows: 

https://disasterscharter.org/image/journal/article.jpg?img_id=3519568&t=1568272371731


 

“Martinis et al. (2009) applied SBA –split-based approach- (Bovolo and Bruzzone 2007) to 

determine the global threshold for binary (water and non-water) classification. In SBA, a SAR 

image is first divided into splits (sub-tiles) to determine their individual thresholds using the 

Kittler and Illingworth (KI) method (Kittler and Illingworth 1986), global minimum, and quality 

index. Then, only qualified splits showing sufficient water and non-water pixels are selected to 

get the global threshold. The OO segmentation algorithm (implemented in e-cognition software) 

is used to segment the image into continuous and non-overlapping object patches at different 

scales. Then the global threshold is applied to each object. Eventually, topography is used as an 

option to fine-tune the results.  

SBA is employed to deal with the heterogeneity of SAR backscattering from the same object in 

time and space. The intention of applying the OO segmentation algorithm is to reduce false 

alarms and speckle noise. OO was, however, originally designed for high-resolution optical 

sensors, which have no consideration of noise like speckle and water-like areas. The fine-tuning 

procedure can only deal with floodplain extended from identified water bodies, leaving inundated 

areas isolated from known water sources. To avoid the drawback of fixing tile size to SAR images 

of different places and resolution (Bovolo and Bruzzone 2007; Martinis et al. 2015; Martinis et 

al. 2009), Chini et al. (2017) propose the hierarchical SBA (HSBA) method with variable tile size, 

and they post-processed the binary water mask derived by HSBA using RGA and CD, similar to 

Giustarini et al. (2013); Matgen et al. (2011). 

The ACM, also known as the snake algorithm (Horritt 1999), was, to the authors’ knowledge, the 

first image segmentation algorithm designed for SAR data. It allows a certain amount of 

backscattering heterogeneity, while no smoothing across segment boundaries occurs. A smooth 

contour is favored by the inclusion of curvature and tension constraint. The algorithm spawns 

smaller snakes to represent multiple connected regions. The snake starts as a narrow strip 

moving along the course of a river channel, ensuring it contains only flooded pixels. Overall, it 

can deal with low signal to noise ratio.  

Horritt et al. (2003) used ACM to map waterlines under vegetation. They started from known 

pure ocean pixels to map the active contour of open water and then to map the second active 

contour, which was the waterline beneath vegetation. Two radar signatures—the enhanced 

backscattering at C-band and the HH-VV phase difference at L-band—forced the ACM. Unlike 

the OO method, which aggregates objects from the bottom (pixel level) to the top, the 

segmentation in ACM requires seeding pixels, whose detection is difficult in an automated 

approach. In addition, similar to RGA, ACM cannot detect inundated areas isolated from a 

known water body.” 

 

In our manuscript, we modified the first sentence in the Methodology section for including the 

above and additional references: 

 

“Only a few SAR-based flood delineation methods (e.g. Horritt et al. 2003, Martinis et al. 2009, 

Matgen et al., 2011, Giustarini et al. 2013, Lu et al. 2014, Chini et al. 2017, Cian et al. 2018) 

have the potential to be fully automated (Shen et al. 2019b).” 

 

However, we would like to mention that, to the authors’ knowledge, Sentinel-1 is the only open 

data that is frequently availabe globally. In our paper we are only comparing Sentinel-1 based 

flood mapping results since satellites mentioned by the reviewer are not accessible by everyone 

including the authors. 

 

 

4. Line 54: It would be better to cite directly the references related to automated flood delineation 

and not to refer only to previous work of the authors (Shen et al. 2019b) 



 

Thank you for this comment. We are now citing directly the references related to automated flood 

delineation: 

 

“Only a few SAR-based flood delineation methods (e.g. Horritt et al. 2003, Martinis et al. 2009, 

Matgen et al., 2011, Giustarini et al. 2013, Lu et al. 2014, Chini et al. 2017, Cian et al. 2018) 

have the potential to be fully automated (Shen et al. 2019b).” 

 

Also in this case, for a detailed literature review, we are still referring to Shen et al. 2019b, which 

reads as follows: 

 

“Toward automation, Matgen et al. (2011) developed the M2a algorithm to determine the 

threshold that makes the non-water pixels (below the threshold) best fit a gamma distribution—a 

theoretical distribution of any given class in a SAR image. They then extended flooded areas 

using RGA from detected water pixels using a larger threshold—99 percentile of the “water” 

backscatter gamma distribution—arguing that flood maps resulting from region growing should 

include all “open water” pixels connected to the seeds. Then they applied a change detection 

technique to backscattering to reduce over-detection within the identified water bodies caused by 

water-like surfaces, as well as to remove permanent water pixels.  

Based on the same concept, Giustarini et al. (2013) developed an iterative approach to calibrate 

the segmentation threshold, distribution parameter, and region growing threshold (M2b). They 

applied the same segmentation threshold to the dry reference SAR image to obtain the permanent 

water area. They claimed, however, that if the intensity distribution of the SAR image were not 

bimodal, the automated threshold determination might not work.  

Lu et al. (2014) used a changed detection approach, first to detect a core flood area that 

contained a more plausible but incomplete collection of flood pixels, and then to derive the 

statistical curve of the water class to segment water pixels. The major advantage of this approach 

is that a bimodal distribution is not compulsory. In practice, a non-bimodal distribution often 

occurs. The change detection threshold might be difficult to determine and globalize.  

Assuming even prior probability of flooded and non-flooded conditions, Giustarini et al. (2016) 

computed probabilistic flood maps that characterize the uncertainty of flood delineation. The 

probability reported in this study, however, related to the uncertainty neither in extent nor in 

time. Rather, it was the uncertainty of a SAR image classification based on backscattering.  

Taking advantage of big earth observation (EO) data, the two most recent studies—Cian et al. 

(2018) and Shen et al. (2019)—implemented full automation of inundation retrieval. With the CD 

principle underpinning both methods, they employed multiple dry references instead of one 

supported by operational satellite SAR data for multiple years.  

Cian et al. (2018) developed two CD-based flood indices, the Normalized Difference Flood Index 

(NDFI) and the Normalized Difference Vegetated Flood Index (NDVFI), assuming a number of 

revisits for each pixel in dry conditions was available.” 

 

5. Line 65: It should be at least mentioned which Sentinel-1 data type (GRD or SLC) and 

polarization is used for extracting the flooding 

 

Thank you. The Sentinel- data type is GRD and RAPID uses both channels in the dual 

polarization modes but could also work if occasionally single polarization or fully polarization 

data were provided. We added this information in the revised version: 

 

“the RAPID core algorithm (Shen et al. 2019a) handles both polarizations of SAR images in 

GRD mode through four steps”. 

 



6. Result section: It would be important to perform an accuracy assessment of the flood masks 

 

As responded in our item 2 to the general comments, for Bahamas, it is difficult to find another 

fully independent reference of flood extent at the same time, at a comparably high resolution, and 

covering the same area. However, the RAPID system has already been validated in two instances: 

for Hurricane Harvey and for the Northwestern Floods. In the current version of the manuscript, 

beyond mentioning these validations, we also included a comparison with EMS maps for the 

Bahamas. We included the details of the validation in the Methodology section: 

 

“The RAPID system has been quantitatively validated in past studies against manually derived 

flood maps using (overall, user, producer) agreement scores, representing (accuracy, true 

positive rate, precision) parameters of the confusion matrix. Specifically, for Hurricane Harvey, 

RAPID was validated against the DFO comprehensive flood map of August 30, 2017 (Shen et al., 

2019) and against the USGS DSWE Northwestern flood map of June 25, 2019 (Yang et al, 2019). 

RAPID yielded consistently high agreement scores for Harvey (93%, 75%, 77%) and the 

Northwestern flood (96%, 84%, 76%). For Hurricane Dorian, we are presenting a comparison 

between RAPID and the Copernicus Emergency Management Service (EMS) first estimate maps 

(available at https://emergency.copernicus.eu/mapping/list-of-components/EMSR385/FEP/ALL), 

both derived from the Sentinel-1 SAR observations. EMS flooding maps are not available for the 

entire SAR images, but only for the Abaco Islands on September 2, 2019, and for Grand Bahama 

on September 4, 2019.” 

 

We described the comparison between EMS and RAPID for both September 2 and September 4 

in the Results section: 

 

“The agreement (overall, user, producer) scores between RAPID and EMS flooding maps for the 

Abaco Islands on September 2 and September 4, derived from the confusion matrix shown in 

Table 1, were (77%, 90%, 41%) and (89%, 61%, 86%), respectively. The high overall and user 

agreement scores for the September 2 flooding are also depicted in the flood maps of Figure 2 

indicating a very good overlap of the two products over the coast of Great Abaco, while the 

relatively low producer agreement comes from the lack of flood detection by the EMS algorithm 

over the multiple near-sea-surface-elevation islands, located in the front of the western coast of 

Great Abaco. The relatively low user agreement score between the two products on September 4 

is due to the fact that RAPID classifies some non-flooded areas within the EMS flooded 

boundary, which are expected to occur as a consequence of the flood recession.” 

 

   September 2 – Great Abaco  September 4 – Grand Bahama 

Confusion Matrix 
  EMS  EMS 

  Flooded Non-flooded  Flooded Non-flooded 

RAPID 

Flooded 
  2,274,927 

(14.5%) 

3,318,143 

(21.1%) 

 
1,880,609 (13.2%) 

32,989 

(2.3%) 

Non-

flooded 

  
260,335 (1.7%) 

9,847,017 

(62.7%) 

 
1,219,786 (8.6%) 

10,710,519 

(75.9%) 

Table 2: Confusion matrix between RAPID and EMS flooding products for September 2, 2019 

overpass over Great Abaco (left) and for September 4, 2019 overpass over Grand Bahama (right). 

For each matrix, number and percentage of pixels is reported. 

 

 

 

https://emergency.copernicus.eu/mapping/list-of-components/EMSR385/FEP/ALL


7. Figure 2 and 3: it would be important to describe which data source was used to separate between 

normal water conditions and flooding. It would be helpful to visualize layers of normal water 

extent in the figures. 

 

RAPID uses dry references for change detection. We vote (some studies name it the temporal 

filtering technique) each pixel using multiple dry references (no less than 5 overpasses) to create 

a noise-free persistent water extent (normal water extent). 

 

We added the following sentence in the Methodology section: “In step 2, the noise-free persistent 

water extent (know water body) is computed using at least 5 dry overpasses for each pixel.” 

 

8. Line 113: Without any information about the performance of RAPID and without any reference 

to other approaches in flood mapping reported in the literature I would suggest to remove the 

sentence: “We believe its ability to map such a large area of inundation so quickly makes RAPID 

the fastest fully automated method for assessing flood extension” 

 

Since in the revised version we are now providing the accuracy information of RAPID for 

different events, showing consistently high performance, we can safely make the conclusion. 

Other approaches have been extensively discussed in Shen et al., 2019a and, for brevity, cannot 

be discussed here. 

 

9. Line 115: These international collaborations or mechanisms exist and the authors should refer to 

them (e.g. International Charter “Space and Major Disasters”, Sentinel Asia, Copernicus 

Emergency Management Service - Mapping). 

 

Thank you for this comment. We included these collaborations in the revised version of our 

manuscript: 

 

“This limitation can be overcome through international collaborations, such as the International 

Charter “Space and Major Disasters”, Sentinel Asia, NASA-ISRO SAR Mission and Copernicus 

Emergency Management Service – Mapping, that may increase the availability of data from other 

satellite missions.” 
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