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1 General comment

For this study the authors put a lot of effort in analyzing an operational used
weather forecast model with respect to its performance and applicability on
heavy precipita- tion events (HPE) in the Mediterranean region. The authors
create a 30-year long 10 member hindcast ensemble using different parameteri-
zation schemes for convection and compared simulated HPEs with observations.
HPEs are of great importance for that region as they are relatively frequent in
the autumn and early winter season. Se- vere flooding and damaging are related
hazards. This study falls within in the scope of NHESS. The title of this study
sounds very promising in giving some real benefits to improve the performance
of numerical models in predicting extreme events. Unfortunately, this is not the
case in my opinion and I miss the added value of this study. My fundamental
concern with this study is the chosen model. The authors used PEARP, an en-
semble using the global model of the French Weather Service ARPEGE. Even
though it has an in-model nesting of different grids down to a highest horizon-
tal resolution of 10 km over France, convection is parameterized using known
convection schemes as described in the data section 2. But, deep moist convec-
tion generates most of the precipitation amounts during HPEs in the western
Mediterranean. The global model with parameterized convection is not meant
to simulate such events properly. I would have expected an analysis of predic-
tion errors using a higher resolved regional and convection permitting model
like AROME or ALADIN, both also run operational by the French Weather
Service. Therefore, the authors’ conclusions, e.g. that the size of simulated
object is larger than in observations but the amplitude is reduced, seem to me
quiet obvious and more a consequence of the parameterization, which is already
known and nothing new.

Beside my maybe wrong expectation, I do see the point, that the coarser
model is cheaper in computation time and therefore it is worth looking at sys-
tematic errors, but as there is a trend to more and more higher resolutions for
weather forecasts it should be stated clearly what the benefits of the coarse
model would be. Nevertheless, the presented methodology is interesting and
suitable for such kind of study. Furthermore, analyzing possible systematic er-
rors especially in predicting extremes is also very im- portant and improvements
would give benefit to different applications. Beside my main concern above, I
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have a few major comments and some specific points listed below.

RESPONSE: Thanks to the referee for this global comment. We agree that
we have to clarify in the paper the reasons of the use of a global model rather
than a convection-permitting high-resolution one. The first reason is, as stated
by the referee, the numerical cost of a 30-year high-resolution reforecast. At
the moment, such a tool (based for example on the AROME model) does not
exist at Météo-France and the numerical cost involved in its building would have
been too high for the study. The second reason is that one goal of the study was
to explore systematic forecast errors up to 4-day lead-time. Although we agree
that high resolution models (eg 2.5 km for the Météo-France AROME-EPS) are
of primary interest for very short lead-time forecast (e.g less than 48h lead-time)
we think that small-scale predictability is roughly lost beyond 2-day lead-time.
Using a global operational 10-km EPS allows to explore HPE predictability up
to several days. We also agree with the referee that the fact that the size of
simulated rainfall objects is larger than in observations and their amplitude is
reduced is not surprising and may be mainly a consequence of the parameter-
ization. However we would like to point out that the conclusions of our paper
are based on the study of around 200 cases of HPE, over a 30-year period, and
include verification for very high rainfall thresholds. Most of previous papers
on the subject focus on one or a few iconic cases. Here, using reforecast allows
to hold this systematic review of French HPEs over the last 30 years and the
opportunity to use very high thresholds for verification (something that cannot
be done in operational verification due to the shortness of the verification peri-
ods). Some sentences have been added to the introduction and the conclusion to
explain more clearly the aims and conclusions of the paper. They are detailed
below.

2 Major comments

• The paper is hard to read due to some language deficits especially when
it comes to the technical parts. I would strongly recommend a revision on
sentence structure, grammar, comma, or word usage.

RESPONSE: A professional proofreading to correct English language deficits
has been performed.

• The authors only analyzed precipitation fields and differences between the
param- eterization schemes for deep convection using the SAL method. A
broader look on other quantities like ambient and/or convection favoring
conditions is missing. Initial and boundary conditions as well as model
physics related to the model resolution have a significant influence on the
simulation of convection as presented, for example, in Kunz et al, 2018
(doi: 10.1002/qj.3197), Khodayar et al., 2018 (doi: 10.1002/qj.3402) or
Caldas-Álvarez et al., 2019 (doi: 10.5194/asr-14-157-2017). Furthermore,
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local dy- namic pattern also influence the initialization of convection es-
pecially in mountainous terrain or on islands (e.g. Ehmele et al, 2015; doi:
10.1016/j.atmosres.2014.10.004), so a misrepresentation of these also lead
to distinct differences between model and observations. A third thing are
specific weather patterns which have an influence on ambient conditions
and convection. Errors or deviations in the model regarding such patterns
will also cause a bad representation of HPEs as well. A connection of
weather patterns to convection across Central Europe (including France)
can be found, for in- stance, in Piper et al., 2019 (doi: 10.1002/qj.3647).

RESPONSE: We agree with the referee that many factors can be con-
sidered as sources of HPEs forecast errors such as uncertainties in the
initial state of the forecast, the synoptic-scale configuration, the local dy-
namical effects, etc. Here our goal was not to analyse the HPEs forecast
errors through all their potential sources but to focus on errors that comes
from the parameterizations of the main physical processes (for initial state
errors, it is assume that, as, for a given day, all forecast of the reforecast
have the same initial state, initial state uncertainties will have the same
impact on each of the 10 forecasts) The use of a multi-physics approach
is classical in ensemble forecasting and one main goal of our study was to
evaluate this approach through a systematic analysis of forecast errors of
each set of physical parameterizations. This is also the reason why we fo-
cused on rainfall field as we assume that misrepresentation of processes in
the parameterizations or bad combinations of schemes in the multi-physics
will finally produce forecast errors in the rainfall field.

• What is the added value of this study? This is the crucial thing of this
study and should be strongly pointed out not only but especially in the
conclusions section. Additionally, some concrete statements on how to
apply the results in terms of future model improvements should be given
so that the reader can really benefit from this study.

RESPONSE: We agree with the referee that the paper does not enough
point out the main benefits of the study. The main goals, conclusions and
benefits of the study have been emphasized in the revised manuscript.
As an example, we have mentioned in the conclusion that this forecast
analysis gives practical information to modellers as well as to forecasters.
To modellers of ensemble prediction systems, the study clearly shows the
limits of the multiphysics approach in the representation of model errors.
Indeed the study shows that ’the real variability’ of such an approach
could be limited to only a very few ’actual different behaviours’ of the dif-
ferent physics. This conclusion is also important for forecasters who use
operational system based on multiphysics approach and all the informa-
tion on forecast errors extracted from the study could help them to better
understand the behaviour of the operational system. The conclusion has
been re-organised and expanded with clearer points about the results of
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the study.

CHANGE: Specific statements have been proposed through some modifi-
cations in the whole manuscript. Here we report the major modifications
concerning the Abstract, Introduction and Conclusion sections.

Abstract: text from [1 4] to [1 11] is replace by:
“In this study, we analyze the HPE forecasting ability of the multi-physics
based ensemble model operational at Météo-France Prévision d’Ensemble
ARPEGE (PEARP). The analysis is based on 30-year (1981-2010) ensem-
ble hindcasts which implement the same 10 physical parametrizations, one
per member, run every 4 days. Over the same period a 24-hour precipi-
tation dataset is used as the reference for the verification procedure. Fur-
thermore, regional classification is performed in order to investigate the
local variation of spatial properties and intensities of rainfall fields, with a
particular focus on HPEs. As gridpoint verification tends to be perturbed
by the double penalty issue, we focus on rainfall spatial pattern verifica-
tion thanks to the feature-based quality measure SAL that is performed on
the model forecast and reference rainfall fields. The length of the dataset
allows to sub-sample scores for very intense rainfall at a regional scale
and still get significant analysis demonstrating that such a procedure is
consistent to study model behaviour in HPE forecasting. In the case of
PEARP, we show that the amplitude and structure of the rainfall patterns
are basically driven by the deep convection parametrization.”

Introduction: from [2 31] to the end:
“Ehmele et al. (2015) emphasized the important role played by complex
orography, the mutual interaction between two close mountainous islands
in this case, on heavy rainfall under strong synoptic forcing conditions.
Nevertheless, other regions are also affected by rainfall events with a great
variety of intensity and spatial extension. Ricard et al. (2011) studied this
regional spatial distribution based on a composite analysis and showed the
existence of mesoscale environments associated with heavy precipitating
events. Considering four sub-domains, they found that the synoptic and
mesoscale patterns can greatly differ as a function of the location of the
precipitation.

Extreme rainfall events are generally associated with coherent structures
slowed down and enhanced by the relief, whose extension is often larger
than a single thunderstorm cell. At some point, this mesoscale organi-
zation can turn into a self-organization process leading to a mesoscale
convective system (MCS) when interacting with their environment, which
in turn leads to high intensity rainfall (Nuissier et al., 2008).

Among the list of factors contributing to HPE creation, some are clearly
only within the scope of high resolution convection permitting models. In-
deed, vertical motion and moisture processes need to be explicitly solved
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to get realistic representation of convection. On the other hand, as we
have just highlighted, some other factors linked with synoptic circula-
tions or orography representations can be well estimated in global models,
in particular when horizontal resolution gets close to 15-20 km. Conse-
quently, the corresponding predictability of such factors can reach advan-
tageous lead times for early warnings, i.e. longer than the standard 48
hours that the limited area model may be expected to achieve. Indeed, if
long term territorial adaptations are necessary to mitigate the impact of
HPEs, a more reliable and earlier alert would be beneficial in the short
term. Weather forecasting coupled with hydrological impact forecasting is
the main source of information for triggering of weather warnings. Severe
weather warnings are issued for the 24-hour forecast only. However, in
some cases, the forecast process could be issued some days prior to the
severe weather warnings. A better understanding of the sources of model
uncertainty at such time-range may provide a major source of improve-
ment for early diagnosis.

Forecast uncertainties can be related to initialization data (analysis) or
lateral boundary conditions, and it has been investigated with both de-
terministic models (Argence et al., 2008) and ensemble models (Vié et al.,
2010). Several journal articles showed that predictability associated with
intense rainfall and flash-floods decreases rapidly with the event scale
(Walser et al., 2004; Walser and Schär, 2004; Collier, 2007). Several stud-
ies based on ensemble prediction systems have shown that such models
may have a great ability in sampling the sources of uncertainty in HPE
probabilistic forecasting (Du et al., 1997; Petroliagis et al., 1997; Stensrud
et al., 1999; Schumacher and Davis, 2010; World Meteorological Organiza-
tion, 2012). In ensemble forecasting, the uncertainty associated with the
forecast is usually assessed by taking into account initial and model error
propagation. As for the initial uncertainty, major meteorological centers
implement different methods the most common of which are singular vec-
tors (Buizza and Palmer, 1995; Molteni et al., 1996) , bred vectors (Toth
and Kalnay, 1993, 1997) and perturbed observation in analysis process
(Houtekamer et al., 1996; Houtekamer and Mitchell, 1998). The model
error is related to grid-scale unsolved processes in the parametrization
scheme and is assessed in the models with two main techniques. Some
models use stochastic perturbations of the inner-model physics scheme
(Palmer et al., 2009), others use different parametrization schemes in each
forecast member (Charron et al., 2009; Descamps et al., 2011).

The global ensemble model implemented at Météo-France Prévision d’Ensemble
ARPEGE (PEARP; Descamps et al., 2015) is based on the second tech-
nique, also known as a multi-physics approach. Compared to the stochas-
tic perturbation, the error model distribution cannot be explicitly formu-
lated in the multi-physics approach. It is then difficult to know a priori
the influence of the physics scheme modifications on the forecast ability
of the model. This is even more the case when highly non-linear physics
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with high order of magnitude processes are considered. In order to im-
prove the understanding and interpretation of ensemble forecasts in tense
decision-making situations as well as for model development and improve-
ment purposes, it would be of great interest to have a full and objective
analysis of the model behaviour in terms of HPE forecasting. This is one
of the main aims of this study.

In order to achieve such a systematic analysis, standard rainfall verifica-
tion methods can be used. They are usually based on grid-point based
approaches. These techniques, especially when applied to intense events,
are subject to time or position errors leading to low scores (Mass et al.,
2002) also known as the double penalty problem (Rossa et al., 2008).
To counteract this problem, spatial verification techniques have been de-
veloped with the goal of evaluating a forecast quality from a forecaster
standpoint. Some of these techniques are based on object-oriented veri-
fication methods (AghaKouchak et al., 2011; Ebert and McBride, 2000;
Davis et al., 2006, 2009; Mittermaier et al., 2015; Wernli et al., 2008).The
feature-based quality measure SAL (Wernli et al., 2008, 2009) is also used
in this study. Another element required to achieve such an analysis is the
availability of forecast datasets long enough to get a proper sampling of
the events to verify.

In our study, we profit from a reforecast dataset based on a simplified
version of the PEARP model available over a 30 year period. Such re-
forecast datasets have been previously shown to be relevant for calibrat-
ing operational models in various ways. In (Hamill and Whitaker, 2006;
Hamill et al., 2008; Hamill, 2012; Boisserie et al., 2015), the reforecast is
used as a learning dataset to fit statistical models to calibrate forecast
error corrections that are then applied on operational forecasting outputs.
(Boisserie et al., 2015; Lalaurette, 2003) have shown the possibility of us-
ing a reforecast dataset as a statistical reference of the model to which the
extremeness of a given forecast is compared. In this paper, we analyze the
ensemble model PEARP forecast predictability at lead times between day
2 and day 4 of daily rainfall amounts. This analysis is performed on the
long reforecast 30-year dataset. One aim is to determine whether a multi-
physics approach could be considered as a model error sampling technique
appropriate for a good representation of HPEs in the forecast at such lead
times. In particular, the behaviour of the different physics schemes im-
plemented in PEARP have to be estimated individually. One main side
aspect of this work focuses on developing a methodology suitable for eval-
uating the performances of an ensemble reforecast in a context of intense
precipitation events using an object oriented approach. In particular we
focus on intense precipitation over the French Mediterranean region. In
addition to the analysis of diagnostics from the SAL-metric, a statistical
analysis of 24-hour rainfall objects identified in the forecasts and the ob-
servations is performed in order to explore the spatial properties of the
rainfall fields.

6



The data and the methodology are presented in section 2. Section 2.1
describes the reforecast ensemble dataset and section 2.2 details the cre-
ation of the daily rainfall reference, the HPEs statistical definition and the
regional clustering analysis. Results arising from the spatial verification
of the overall reforecast dataset are presented in section 3.1. Section 3.2
presents SAL diagnostics divided into all different physical parametriza-
tion schemes of the ensemble reforecast, and for the spatial properties of
individual objects. Conclusions are given in section 4.”

Conclusion section from [28 493] to [30 526] is replaced by:
“The peak-over-threshold criterion leads to the selection of 192 HPEs,
confirming that the most impacted region are the Cévennes area and part
of the Alps. The composite analysis for the five clusters shows that each
cluster is associated with a specific class and location of 24-hour pre-
cipitation events. It was found that 86% of the number of HPEs are
included in clusters 2, 3 and 5. Cluster 2 and 3 HPEs predominantly im-
pact the Cévennes and Alps area, while cluster 5 HPEs are located over
the Languedoc-Roussillon region. Moreover clusters 3 and 5 include the
most extreme ones. Only diagnostics for clusters 2, 3 and 5 are considered.

The SAL object-quality measure has been applied distinctly to the ten
physics schemes (one per member) of the reforecast dataset and compared
to the rainfall reference. It shows that the model’s overall behaviour for
HPE forecasting is characterized by negative A-components and positive
S-components. As in grid-point rainfall verification, all the SAL compo-
nents get worse as a function of lead time. Then the model HPE rainfall
objects tend to be more extended and less peaked. Even though their
corresponding domain-average amplitude is weaker, it doesn’t mean that
the event maximum intensity is always weaker. This result is important
showing to modelers that even for intense rainfall events when orography
interaction and quasi-stationarity meso-scale systems play a great role, the
model tends to reproduce rainfall patterns with greater extension, rather
than both smaller extension and weaker intensity patterns.

In order to show regional disparities in the model behaviour, the SAL
diagnostics have been divided according to the clusters and it shows in-
teresting results. First, the A component negative contribution for the
whole sample is higher, showing that in average more underestimation
than overestimation is observed for the Aplitude SAL-component. It is
notably the case for the most extreme clusters (over the Cévennes and
over the Languedoc-Roussillon). However, when considering both posi-
tive and negative contributions to the integrated A-component, the most
extreme cluster (cluster 3) leads to better scores. This could mean that the
variability of the A-component is postively reduced for the most intense
events. This is quite surprising and could reinforce the role of orography
in this error decrease. As for the S-component distribution, we showed
it is slightly positively skewed for cluster 2 and 3, while for cluster 5 the
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distribution of the S-component is more centered. Likewise for the A-
component the integrated balance of positive and negative S-component
contributions lead to better results for cluster 3 and 5. It is even more re-
markable for cluster 5, for which the S-component reaches the best score.
Though though it is difficult at this point to determine whether this char-
acterizes an actual contrast in the model behaviour or if it is due to the
physical properties of the cluster 5 events. One hypothesis could be related
to the large number of single objects characterizing this cluster.

The impact of the different physics schemes has also been investigated,
moThe impact of the different physics schemes has also been investigated,
and it mostly emphasized the role of the deep convection physical parame-
terization. Considering the SAL diagnostics, the two main deep convection
schemes, B85 and PCMT, clearly determine the behaviour of the model in
HPE forecasting until lead time ranges longer than three days, after which
no significant differences appear. This difference is clearly in favour of the
PCMT scheme which performs better than B85 for both SAL A and S
components and in the majority of the subsampled scores considering the
HPEs or the regional clusters. However, this PCMT asset is not huge, and
both physics schemes can contribute to good or bad forecasts. The main
significant difference is for the S-component for the most intense rainfall,
which shows that PCMT better approximates the structure of the rainfall
patterns in these cases.

In light of the ability of our method to produce significant results even
after several subsampling steps, we decided to study further statistical
characterization of the SAL rainfall objects. It has been shown that in
most cases, one large object stands out among other smaller objects, which
often gathers the most part of the rain signal. For cluster 5, character-
ized by the Languedoc-Roussillon HPEs, the rainfall distribution could
even be considered as a single object rainfall field. Then we focused on
the ranked distributions (quantile-quantile analysis) of the object masses
to compare the rainfall model overall climatology of the model with the
reference. First, this analysis showed that in particular the weakest pre-
cipitation are overestimated by all physics schemes. However, looking
at the object mass distributions for the whole period, we find they are
relatively close between all the physics schemes and the observation for
most extreme rainfall events, especially for the PCMT deep convection
scheme. This statistical result implies that a global model should be able
to reproduce a reliable distribution of rainfall objects along a long time
period, e.g. the climate of the model and of the observations are close to
each other. Therefore, in the case of PEARP, most of the forecast errors
are mainly related to a low consistency between observed and forecasted
fields, rather than to an inability of the prediction system to produce
intense precipitation amounts.

This last result, objectively quantified for high rainfall event thresholds
(around 100 mm to 500 mm) on a long enough period, is important for
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two reasons. The first concerns atmospheric modelers, showing that the
physics schemes are able to reproduce climatological distributions of the
most challenging rainfall events. On this basis, future research could in-
vestigate other sources of uncertainties like from the analysis setup and
implement ensuing model improvements. The model physics perturbation
technique should then play a greater role in the control of the ensem-
ble dispersion. In this perspective, the novel reanalysis ERA5 would be
interesting to use, in particular its perturbed members, to improve the
uncertainty from initial conditions in the reforecast. The second lesson
to be learned from this study is that it is worth spending time to study
a model behaviour on intense events forecasting as it provides important
learning to ensemble model end-users, in particular in the context of de-
cision making based on weather forecast. Quantifying systematic errors
could also be used to favorably improve their inclusion in nested forecast
tools processes.

In terms of methodology, this study also highlights that the combination
of SAL verification and clustering is a relevant approach to show sys-
tematic errors associated with regional features for intense precipitation
forecasting. This achievement is only enabled by the availability of a long
reforecast dataset. This methodology could be further extended to a dif-
ferent model and another geographic region, on the condition of sampling
a large number of HPEs. ”

In order to reply to the recommendation of referee Number 1, some short-
ening has been done:
Technical description of k-sample Anderson-Darling test has been removed.
Lines from [18 367] to [18 368]. Eq. (9) and (10) are removed. Tables
5 and 6 are removed. Tables 7,8,9, and 10 have been replaced by a new
figure. Fig. 12 and the corresponding text is removed.

3 Minor comments

1 18 ’[...] daily rainfall amounts associated to a one single event’, ’a single
event’ or ’one single event’

RESPONSE: The text has be corrected

CHANGE: “a single event”

2 27 ’4) a synoptic system to slow the convective system [...]’, I think you mean
’to hold’ or better ’to retain’

RESPONSE: The text has be corrected

CHANGE: “a quasi-stationary convective system that persists over the
threat area”
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2 30ff Another study analyzing extreme precipitation in the Mediterranean, also
both pure convective and convection-stratiform mix, and related mecha-
nisms and processes is presented in Ehmele et al., 2015 (doi: 10.1016/j.atmosres.2014.10.004).

RESPONSE: Thanks to the referee for this bibliographic suggestion. This
reference has been added to the Introduction.

CHANGE: [2 31] the following sentence is added “Ehmele et al. (2015)
emphasized the important role played by complex orography, the mutual
interaction between two close mountainous islands in this case, on heavy
rainfall under strong synoptic forcing conditions”

3 88 ’affected by the precipitation’, not ’precipitations’

RESPONSE: The text has been corrected

CHANGE: As suggested by the reviewer

• Figure 1: speaking of domain D, it should be given in the plot where D
exactly is. Is it the red box in (a) meaning the whole plot area of (b) and
(c)?

RESPONSE: Thanks to the referee for this suggestion to give better spec-
ifications about the domain. The domain D corresponds solely to the
model grid shown in blue in (c)

CHANGE: In Figure 1: “Panel c shows the 0.1◦ × 0.1◦ model grid (in
blue), along with the location of three key areas. The domain D is located
within the borders of the model grid (panel c).”

• Table 1: Why only this combinations of parameterization schemes? CAPE
is only used for one simulation while B85 is used 5 times or PCMT 3 times,
for example TKE + CAPE is missing and so on. Why don’t you use equal
numbers of every possible combination?

RESPONSE: Thanks to the referee for this question concerning the com-
bination of physical schemes. In this study we assessed the multiphysics
approach implemented in the operational Ensemble Prediction System
PEARP. In the context of verification of an operational model, the same
physical packages as the ones implemented in PEARP are used. These
combinations are developed, tested and maintained by a scientific team at
CNRM/Météo-France.

CHANGE: [112 4] “The same nine different physical parametrizations as
the ones used in PEARP (see Table 1) are added to the one corresponding
to the ARPEGE deterministic physical package.”

7 160ff First you say threshold T = 85mm, but then it is 100mm. So what is the
correct threshold you have used? Is it the same threshold or something
different? This needs to be clarified. Furthermore, you define a HPE
with a single grid point reaches 100mm. You have interpolated to point
observations to a regular grid. Is it possible that you miss events due to
this interpolation meaning that an exceedance of 100mm at a single grid
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is too high? What about HPEs with rainfall amounts below the threshold
for 24h but excessive rainfall over 48h or 72h?

RESPONSE: Thanks to the referee for requiring details about the classifi-
cation of HPEs. The use of different thresholds can be misleading, indeed.
First a 85 mm threshold has been selected to split the domain into two re-
gions. Grid observation points where the 99.5 percentile is larger than 85
mm corresponds to regions where intense rainfall commonly occur (sub-
region A in the article), while the remaining region (essentially the plain
area) tends to be characterised by a lower number of intense rainfall, cor-
responding to few cases of HPEs (sub-region B in the article). Then,
in the sub-region A we applied the 99.5 percentile threshold to identify
HPEs, whereas a 100 mm is applied on the sub-region B. In this latter
sub-region we preferred to use 100 mm rather than the 99.5 percentile
threshold because this latter threshold would be equal to low values (30-
40 mm). These precipitation amounts are unlikely associated with HPEs.
Second, we agree that the interpolation may have an impact on the HPEs
selection, as interpolated values are filtered. Then, it is possible that some
events could be missed due to the interpolation procedure. However, we
believe that this approach is more proper than a selective method com-
puted over each rain-gauges. The identification of HPEs per grid point
assures a spatial homogeneity and a temporal continuity over the 30-year
period.
In this study, we focused on daily precipitation, as, e.g., in Ricard et al.
(2011), or Ramos et al. (2015). An integration over a longer period (like
48h or 72h) would have reduced the number of cases and available fore-
casts. On the other hand, the use of precipitation values at a larger
frequency would have dramatically reduced the number of available ob-
servation rain-gauges.

CHANGE: text from [7 159] to [8 172] is replaced by “We proceed as
follows: first the domain is split into two sub-regions based on the occur-
rence of climatological intense precipitations during the 30 year period.
The sub-region A includes all the points whose climatological 99.5 per-
centile is lower or equal to a threshold T , subregion B includes all the
other points. Threshold T , after several tests, has been set to 85 mm.
This choice was made in order to separate the domain into two regions
characterized by different frequency and intensity of HPEs. Subregion A
designates a geographical area where a large number of cases of intense
precipitation are observed. Subregion B primarily covers the plain area,
where HPE frequency is lower. For this reason, two different level thresh-
olds values are selected to define an event, depending on the subregion.
More specifically, a day is classified as an HPE if one point of sub-region A
accumulated rainfall is greater than 100 mm or if one point of sub-region B
rainfall is greater than its 99.5 percentile. The selection led to a classifica-
tion of 192 HPEs, corresponding to a climatological frequency of 5% over
the 30-year period. The 24-hour rainfall amount maxima within the HPE
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dataset ranges from 100 mm to 504 mm. It is worth mentioning that since
we consider daily rainfall, rainfall events that would have high 48 hour or
72 hour accumulated rainfall may be disregarded. Figure 2 shows for each
point of the domain the number of HPE, as well as the composite analysis
of HPEs. The composite analysis involves computing the grid point aver-
age from a collection of cases. The signal is enhanced along the Cévennes
chain and on the Alpine region. It should be noted that some points are
never taken into account for the HPE selection (grey points of Fig. 2),
because the required conditions have not been met. The analysis of the
rainfall fields across the HPE database exhibits the presence of patterns
of different shape and size, revealing potential differences in terms of the
associated synoptic and mesoscale phenomena (not shown). ”

7 165 so 192 HPE days in 30% is 5%, I agree. The 99.5% percentile would be
18 days in 30 years. Can you please explain the difference?

RESPONSE: Thanks to the referee for suggesting a clearer explanation
about the number of identified HPEs. Since the peak-over-threshold ap-
proach is separately applied to each point, it is sufficient to observe an
exceeding at a given point over the domain to identify an HPE. Similarly,
a co-occurence due to the exceeding of thresholds at several grid points at
a given day is still considered as one single event at that specific day. As a
result, the total number of HPE does not corresponds to 0.005 frequency.
It would have been the case if the peak-over-threshold approach had been
applied to the whole domain. However, using this approach almost only
HPEs impacting the Cévennes area would have been detected, since the
most intense events have been observed over this area. This latter evidence
explains why a grid-point threshold has been preferred.

• Table 2: I do not understand the difference between HPEs (%) and Frac-
tion of HPEs (%). Can you please specify?

RESPONSE: Thanks to the referee for this question. This needed to be
clarified. A specification is added to the Table 2 labels.

CHANGE: Table 2: “HPEs(%) refers to the ratio between the number of
HPEs within the cluster and the total number of HPEs. Fraction of HPEs
(%) refers to the ratio between the number of HPEs within the cluster
and the total number of dates included in the corresponding cluster.”

9 196 Cluster 5 contains 86% of the HPEs. In Table 2, it says Fraction of HPEs
is 65.2%. Should this be the same?

RESPONSE: Thanks to the referee for reporting this mistake about the
Fraction of HPEs. We should have state that 86% of HPEs is included in
among clusters 2,3 and 5. The text has been corrected.

CHANGE: [9 194] “86%”→“65%”, “Clusters 2,3 and 5 collect together
86% of the HPEs.”
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11 248 Equation (6): I think the ’x element of Objk’ should not be below the
fraction but behind?

RESPONSE: Thanks to the referee for this suggestion. The notation in
Equation 6 is modified as suggested.

CHANGE:

Vk =
Mk

maxR(x;x ∈ Objk)
. (1)

13 280ff Are there some simulated HPE days among the false alarms?

RESPONSE: Thanks to the referee for this question. It is useful to specify
the number of HPEs within the False Alarms, because it would imply that
some intense simulated events would not be verified. We have found that
no simulated HPEs occur among the False Alarms.

CHANGE: [13 282] “No HPE days belong to the misses...”, add “and no
simulated HPE days belong to the false alarms.”

15 306ff As already mentioned, differences could results from the parameterization
schemes as convection could not be resolved by the model. Also initial
conditions like soil moisture have a significant influence (for references see
main comment above)

RESPONSE: Thanks to the referee for giving some suggestions about the
key factors associated with the positive S-component.

CHANGE: [15 308] “An hypothesis to explain such a result might be that
in order to reach rainfall amounts that occurs in HPEs, the model needs
to produce rainfall processes of larger extension.”→ “Differences in A-
component may result from the use of parameterizations, which leads to
an underestimation of rainfall amounts. This deficiency may be related
to the convection part not represented in the parametrization scheme. It
may also be related to the representation of orography at a coarse reso-
lution. As shown by Ehmele et al. (2015), an adequate representation of
topographic features and local dynamic effects are required to correctly
describe the interaction between orography and atmospheric processes.
Furthermore, initial conditions have been shown to have a significant in-
fluence on rainfall forecasting (Kunz et al., 2018; Khodayar et al., 2018;
Caldas-Álvarez et al., 2017)”

• Figure 7: Differences in A-component may result from the parameteri-
zation which lead to an underestimation of rainfall mounts. Deviations
in the S-component can origin in misrepresentation of the orography and
other local dynamic effects.

RESPONSE: Thanks to the referee for providing physical explanations
about the behaviour of S and A component.

CHANGE: see previous suggestion of modification
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• Table 4: The correlations are very weak and care has to be taken for the
interpretation.

RESPONSE: We agree that correlation is not very large. However, since
the statistical test is significant, we could expect that these two quantities
may be at least partially related

CHANGE: [16 327] “Although correlations are statistically significant, it
is worth noting that values are quite weak (in particular for cluster 5).”

16 325 ’table 4’: Table always with capital ’T’

RESPONSE: Thanks to the referee for reporting this typo. The text has
been corrected.

CHANGE: As suggested by the reviewer

• Table 5: In general, this table is hard to read and understand. Which
bracket belongs to which cluster? For scheme combinations that where
used several times (e.g. B85) is it a mean value of all simulations? There
are a very few cases with statistically significant differing distributions.
It is also a bit confusing that one part of the table belongs to the A-
component and the other part to the S-component. Same for Table 6.
Maybe it is better to split this.

RESPONSE: Thanks to the referee for this comment. In order to respond
to the proposition of Referee 1 who asked to shorten the article, we have
decided to remove these tables to make the article more legible. A list of
the major modifications has been given in the first part of this document.

CHANGE: Tables 5 and 6 are removed.

19 381ff Where can I find this? You say in Table 5 + 6, but it is not given which
bracket belongs to which cluster. And how do I have to interpret the
numbers to get this statement.

RESPONSE: Thanks to the referee for this comment. Tables 5 and 6 are
removed.

19 385ff Where can I find the numbers to prove this?

RESPONSE: Thanks to the referee for this comment. Tables 5 and 6 are
removed. The statement at line [19 385ff] is removed too.

20 400 ’The departure from [...]’, I think you mean ’The deviation from’

RESPONSE: Thanks to the referee for this suggestion. The text has been
corrected.

CHANGE: As suggested by the reviewer

20 402ff Eq.(11)+(12) Are there other possibilities for the lower/upper boundary
of the integral instead of -2 or +2? Where does this come from? Please
specify.
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RESPONSE: Thanks to the referee for requiring this specification. These
boundaries are set since S and A components range by definition between
these values. We noticed that a typo occurred. We used alternatively x
or t in the integrals, whereas only one variable is required.

CHANGE: [20 400]“These functions are estimated over a bounded interval,
corresponding to the finite range of S and A components.” Eq. 11 and
12: t are replaced by x.

22 420ff ’[...] the S-component exhibits the highest error on the right side of the
distribution for B85 [...]’, according to the given tables, this is not true for
cluster 2 and LT34

RESPONSE: Thanks to the referee for noting this exception concerning
the behaviour of the S-component. Since tables are replaced by the figure,
this specific statement is modified and reformulated.

CHANGE: “In contrast to the A-component, the S-component exhibits
the highest err+ for B85 scheme for most of the cases (majority of + sign
in Fig. (new figure)(b)), whereas this trend is not systematic for PCMT
physics.”

• Figure 11: Differences for dashed lines not visible. I would recommend a
logarithmic y-axis or a separation into two y-axis (left and right)

RESPONSE: Thanks to the referee for suggesting some modification to
the plot. These plots are mainly conceived to highlight the differences in
terms of absolute value between the first object (solid line) and the second
object (dashed line). We believe that this difference should be less clear
using a logarithmic y-axis or a second axis.

25 446 too many brackets in a row

RESPONSE: Thanks to the referee for reporting this typo.

CHANGE: Extra brackets have been removed

• Figure 12: I wonder what is about objects that are larger than the inves-
tigation area?

RESPONSE: The large extension of the domain compared to the small-
sized geographical features results in objects smaller than the total ex-
tension of the domain of interest for the majority of the dates over the
period. However, it may happen that some objects that extend outside of
the domain of concern are limited by the boundaries.

CHANGE: [10 222] “Although objects are smaller than the domain for
most of the situations, a few objects extending outside the domain are
consequently limited by the boundaries of the region concerned.”

28 480ff Following Fig. 13, there is an underestimation of the model compared
to the observations for cluster 5 and a huge overestimation for cluster 2.
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Only for cluster 3 the distributions look similar over the total range. So
the statement given here is imprecise.

RESPONSE: Thanks to the referee for suggesting a more accurate speci-
fication. We agree that an overestimation concerns few extreme cases of
cluster 2 and an underestimation is observed for cluster 5, characterising a
very small portion of the distribution of observed pattern rainfall amounts.
Except for these deviations, distributions seem to match each other.

CHANGE: [28 479] “For the most extreme clusters, object mass distribu-
tion of physics is similar to the distribution drawn from the observation,
especially for cluster 5.”→“Except for some deviation concerning a few
extreme cases of cluster 2 and a small portion of distributions of cluster
5, object mass distribution of physics is similar to the distribution drawn
from the observation, especially for cluster 3.”
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