10

15

20

https://doi.org/10.5194/nhess-2019-296
Preprint. Discussion started: 10 September 2019
(© Author(s) 2019. CC BY 4.0 License.

A joint probabilistic index for objective drought identification: the
case study of Haiti

Beatrice Monteleone!, Brunella Bonaccorso?, and Mario Martina'

'Scuola Universitaria Superiore IUSS Pavia, Pavia, 27100, Italy
2Department of Engineering, University of Messina, S. Agata, Messina, 98166, Italy

Correspondence: Beatrice Monteleone (beatrice.monteleone @iusspavia.it)

Abstract. Since drought is a multifaceted phenomenon, more than one variable should be considered for a proper understand-
ing of such extreme event in order to implement adequate risk mitigation strategies such as weather or agricultural indices
insurance programs, or disaster risk financing tools. This paper proposes a new composite drought index that accounts for
both meteorological and agricultural drought conditions, by combining in a probabilistic framework two consolidated drought
indices: the Standardized Precipitation Index (SPI) and the Vegetation Health Index (VHI). The new index, called Probabilistic
Precipitation Vegetation Index (PPVI), is scalable, transferable all over the globe and can be updated in near-real time. Fur-
thermore, it is a remote-sensing product, since precipitation are retrieved from satellite and the VHI is a remote-sensing index.
In addition, a set of rules to objectively identify drought events is developed and implemented. Both the index and the set of
rules have been applied to Haiti. The performance of PPVI has been evaluated by means of the Receiver Operating Character-
istics curve and compared to the ones of SPI and VHI considered separately. The new index outperformed SPI and VHI both
in drought identification and characterization, thus revealing potential for an effective implementation within drought early

warning systems.

1 Introduction

Droughts affect every year an increasing number of people. In the years from 2014 to 2018 more than 70 drought events have
been reported all over the world and about 450 million people suffered because of drought-related impacts (CRED, 2017).
Due to its complexity, various definitions of the phenomenon have been proposed by different institutions, such as the World
Meteorological Organizations (WMO), the Food and Agriculture Organization (FAO) and the United Nations Convention to
Combat Desertification (UNCCD). All the institutions focus their attention on a specific aspect of drought: the WMO on the
lack of precipitation, the FAO on the decline in crop productivity and the UNCCD on the loss of arable land.

In addition, the quantification of drought effects is a complicated task, since drought impacts are non-structural, widespread
over large areas, and of different type and magnitude within the drought-affected area, also depending on economic, social and
environmental system vulnerabilities (Wilhite, 2000).

Drought identification through an objective and automatic determination of drought onset, termination and severity allows

the timely adoption of appropriate risk management strategies, such as weather index insurance programs (Barnett and Mahul,
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2007), agricultural index insurance programs (Jensen and Barrett, 2017), disaster financing (Guimardes Nobre et al., 2019;
Linnerooth-Bayer and Hochrainer-Stigler, 2015) and early action planning (Drechsler and Soe, 2016).

Drought features are usually determined through the use of two instruments: indicators, which are variables and parameters
used to assess drought conditions (such as precipitation, temperature, and others), and indices, which are numerically com-
puted values from meteorological or hydrological inputs (World Meteorological Organization and Global Water Partnership,
2016). More than 100 indices have been developed by the scientific community (Zargar et al., 2011), each one focusing on
a specific aspect of drought (meteorological, hydrological, agricultural and so on). Meteorological drought is related to pre-
cipitation shortages; hydrological drought refers to periods of precipitation shortfall on surface or subsurface water supply ??,
while agricultural drought is conventionally linked to soil moisture deficit. Insufficient soil moisture leads to crop failure and
consequent yield reduction; therefore the first economic sector suffering because of drought is agriculture, particularly in those
areas where it relies on rainfall. A deeper understanding of agricultural drought dynamics can promote the adoption of risk
reduction strategies, such as crop insurance programs.

In recent years various remote-sensing indices have been developed and can be employed in agricultural drought monitoring.
The most widespread is the Normalized Difference Vegetation Index (NDVI), which uses NOAA AVHRR satellite data to
monitor vegetation greenness (Kogan, 1995a). The main advantages of the NDVI are the very high spatial resolution and the
global coverage. The NDVI has already been applied in drought monitoring, such as in (Gu et al., 2008). Many products were
derived from the NDVI, such as the Vegetation Condition Index (VCI), which compares the current NDVI to the range of
values observed in the same period in previous years (Liu and Kogan, 1996; Kogan, 1995b) and the Standardized Vegetation
Index (SVI), which describes the probability of vegetation condition deviation from normal (Peters et al., 2002). A suite of
agricultural drought indices is presented in Table 1.

Since drought is a complex phenomenon, a single index or indicator can be insufficient to fully characterize drought severity
and extent. The combination of more than one indicator can be precious to evaluate all the variables involved in drought
monitoring, such as precipitation, soil moisture, and streamflow. Over the past 20 years many composite indicators, relying on
two or more drought indices or indicators, have been proposed to overcome the issues related to the use of a single variable.
Table 2 shows a list of selected composite indices that can be used in agricultural drought monitoring since, in their formulation
soil moisture, vegetation condition or variables related to water availability for plants are included.

Multiple methods for taking into account the multivariate behaviour of drought have been explored (Hao and Singh, 2015;
Hao, 2016). The VegDRI, for example, uses a data mining approach to combine multiple inputs such as the SPI, the NDVI
and the Palmer Drought Severity Index (PDSI). A weighted linear combination of the inputs is quite common; it is applied to
construct the Composite Drought Indicator (CDI) for Morocco, the Vegetation Health Index (VHI) and the Objective Blend of
Drought Indicators (OBDI). The United States Drought Monitor (USDM) also applies a weighted linear combination of the
inputs but adds an expert judgment to define the drought class.

In the last years multiple studies focused the attention on modelling the joint behaviour of two drought characteristics or
indices applying bivariate or multivariate statistical approaches. In various cases bivariate distributions are developed by means

of copulas as in (Serinaldi et al., 2009) and (Bonaccorso et al., 2012), where the joint behaviour of various drought properties is
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investigated; or in (Shiau, 2006), where two-dimensional copulas are employed to study the joint behaviour of drought duration
and severity in Taiwan. (Shiau et al., 2007) investigates also the hydrological droughts of the Yellow River in China using a
bivariate distribution to model drought duration and severity jointly. Trivariate Plackett copula is used in (Songbai and Singh,
2010) to model drought duration, severity and inter-arrival time jointly.

The use of copulas to quantify the joint behaviour of drought indices is gaining popularity too. Many drought indices derived
by multivariate distributions have been proposed. For example the Multivariate Standardized Drought Index (MSDI) (Hao and
Aghakouchak, 2013), which combines the SPI and the Standardized Soil Moisture Index (SSI), uses copula to form joint
probabilities of precipitation and soil moisture content, while the Joint Drought Index (JDI) (Kao and Govindaraju, 2010) does
the same for obtaining the joint probabilities while considering precipitation and streamflow. AMDI-SA combines two drought
indices, the Modified SPI, and the Modified SSI, employing both the copula concept and the Kendall function (Bateni et al.,
2018). The use of copulas seems promising and is highly effective when dealing with two or more variables. An advantage of
copula functions is the fact that the index derived from this approach has a probabilistic form.

Both single and composite indices for agricultural drought monitoring showed some limitations, highlighted in Table 1 and
Table 2. Single indices often rely on multiple inputs or are available only for some locations or identify all types of vegetation
stresses. In any cases single indices do not account for the multivariate nature of drought. Composite indices often rely on
relatively new datasets; in many cases a short period of record is available (for example the VegDri records start in 2009) or
the index is not available in near-real time; some of them are specifically designed for a well identified region (the OBDI and
the USDM are available only for the USA, the Combined Drought Indicator (CDI) only for Europe); other indices do not
consider the meteorological aspect of drought (Temperature Vegetation Index, TVX, and Vegetation Temeprature Condition
Index, VTCI, are based on the NDVI and the land surface temperature); other ones do not have a sufficiently refined spatial
resolution (MSDI). Most of them, with the exception of AMDI-SA and MSDI are not expressed in probabilistic terms, therefore
uncertainty quantification and evaluation is not an easy task.

In this paper, we propose:

1. A new drought index, the Probabilistic Precipitation Vegetation Index (PPVI), that takes the advantage of well consol-
idated indices, the Standardized Precipitation Index (SPI) (Mckee et al., 1993) and the Vegetation Health Index (VHI)
(Kogan, 1997) and tries to overcome their individual limitations by coupling them in a probabilistic framework through

the use of a bivariate normal distribution function.

2. A framework to identify a drought event using the new index, i.e. a set of rules for the definition of a drought event.
When the set of conditions is verified, a drought event is identified based on the new index. Otherwise, no drought event

is identified.

With respect to the indices already available in literature, we will show in this paper that the new index has some interesting

features:

* it is able to identify drought-driven events of vegetation stress;
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* it is parsimonious in terms of number of inputs required;

* it is a remote sensing product with high spatial and temporal resolution;

* it is based on quasi-near real time datasets, with a relatively short latency time (less than one week);
» more than 30 years of records are available at global scale for its calibration.

The paper is structured as follows: Sect.2 describes the datasets employed in the development of the new index and presents
the methodology used to combine the SPI and the VHI; Sect. 3 illustrates the application to the case study, shows the vali-
dation process of the new index and compares the performance of the new index to those of the SPI and the VHI considered
separately; in addition the advantages related to the adoption of the index and the possible applications in agricultural drought

risk management are summarized.

2 Datasets and Methods
2.1 Datasets

Two remote-sensing datasets were used: one for precipitation and the other for the VHI. Precipitation was retrieved from the
satellite-only Climate Hazard Group Infrared Precipitation (CHIRP) dataset. CHIRP has a quasi-global coverage (50°S - 50°N),
high spatial resolution (0,05°) and daily, pentadal and monthly temporal resolution. Records start from 1/1/1981. CHIRP was
chosen because it has been specifically developed to monitor agricultural drought. The use of CHIRP instead of CHIRPS (the
Climate Hazard Group Infrared Precipitation with Stations) is related to the data latency time, which is shorter in the case of
CHIRP since it doesn’t include data from weather stations. The development and the main characteristics of the dataset are
described in (Funk et al., 2015). In the present study CHIRP with a daily temporal resolution was used to have the possibility
to compute weekly precipitation. Data are available on the project website (Climate Hazard Group, 1999).

The Vegetation Health Index was retrieved from the Global Vegetation Health Products (Global VHP) of the National
Oceanic and Atmospheric Administration Center of Satellite Applications and Research (Kogan, 1997). Data can be retrieved
at the NOAA website (NOAA, 2011). The dataset contains Blended-VHP derived from VIIRS (2013-present) and AVHRR
(1981-2012) GAC data. The dataset has 4km spatial resolution, weekly temporal resolution, and global coverage. Both the

selected datasets are freely available.
2.2 Methods
2.2.1 The Standardized Precipitation Index

As previously mentioned, two consolidate drought indices were combined: the SPI and the VHI. The SPI was selected because
it is a commonly used index to detect meteorological drought, it is standardized, therefore SPI values can be compared even in

different climate regimes and it is recommended by the WMO (World Meteorological Organization, 2009).
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SPI computation is based on a long-term precipitation record for a desired period. The precipitation record is then fitted
to a probability distribution (in this work a gamma distribution was used), which is then transformed into a normal distribu-
tion. Traditionally monthly precipitation records are employed, and SPI is computed aggregating precipitation at a predefined
timestep (for example 1 month, 3 months, 6 months, 9 months and 12 months are the aggregation periods suggested by the
WMO (World Meteorological Organization, 2009)).

In the present work, weekly precipitation records were used. The SPI aggregation period was then selected and the index,
computed over one of the the traditional aggregation periods, was updated every week. SPI is normal distributed by definition.
Conventionally drought starts when SPI is lower than -1 and ends when SPI comes back to the value of 0 (Mckee et al., 1993).
Drought classification according to SPI, as proposed in (Mckee et al., 1993), is reported in Table 3. The percentages reported
in the third column of Table 3 indicate the probability for SPI values to fall within the range reported in the second column of

the same table.
2.2.2 The Vegetation Health Index

The VHI is a remote-sensing index developed to include the effects of temperature on vegetation; in fact, it combines the
VCI with the Temperature Condition Index (TCI) (Kogan, 1995a), which is another remote-sensing index used to determine
vegetation stress caused by temperature and excessive wetness. One drawback of the VHI is the impossibility to identify the
cause of the vegetation stress; in fact, vegetation can suffer because of various events: excessive wetness, pests, fires, droughts
or others. It is a biophysical indicator of a lack of precipitation but can also be seen as representing drought impacts on the
ground (Bachmair et al., 2016). It goes from 0, which stands for vegetation in very bad conditions to 100, meaning perfectly
healthy vegetation. The classification scheme of VHI, as proposed in (Dalezios et al., 2017), is presented in Table 4.
The VHI is standardized according to the following equation:

VHI-VHI
VHIg4 = ——— 6]

g

where V H 1 is the mean of the distribution and o its standard deviation. The standardized variable, V' H I,;, has a distribution

with 0 mean and 1 as standard deviation.
2.2.3 The Probabilistic Precipitation Vegetation Index (PPVI)

The Probabilistic Precipitation Vegetation Index (PPVI) is a composite index that takes into account both meteorological
drought through the SPI, and agricultural drought conditions by including the VHI.

In order to combine the two consolidated indices the following preparatory steps are performed:
1. Extraction of the area under study from both the datasets;
2. Regridding of both precipitation and the VHI to bring them to the same spatial resolution (0,05°);

3. Aggregation of precipitation at weekly timescale (CHIRP has daily temporal resolution);
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4. Computation and weekly update of SPI according to the methodology proposed in (USDA Risk Management Agency
et al., 2006), where precipitation are fitted to a gamma distribution. The goodness of fit to the gamma distribution has

been verified by means of probability plot.
5. Standardization of the VHI, as previously described.

The combination of SPI and VHI is performed using a bivariate normal distribution function, as it is defined by (Kotz
et al., 2000). The normality of the SPI and V H I, distributions has been verified as will be shown in Sect. 3.2. Therefore it
is acceptable to assume that the joint probability of the two considered distributions takes the form of the bivariate normal for

correlated variables:

f(s U)—;ex (—
’ _271'05%\/1—/)2 P 2(1-p?)

where the following notation is adopted: the SPI is identified as s and the V H I, is identified as v. The mean and the standard

+
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deviation of the SPI distribution f(s) are respectively, by construction, ys = 0 and o5 = 1 and the mean and standard deviation
of the V H I, distribution, f(v) are respectively p,, = 0 and o, = 1. The covariance matrix ¥ and the correlation coefficient p

are defined according to Eq. 3 and Eq.4 respectively, where o, is the covariance between s and v.
Y= ° 3)

pe T )
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To check the assumption of normality for the joint distribution, the joint probability values, retrieved from Eq.2 are plotted
against the bivariate empirical cumulative distribution values (Fig.1), as done in (Kao and Govindaraju, 2010). The bivariate

empirical copula for the random variables s and v has been evaluated according to (Nelsen, 2006) using the following equation:

m’'m

= =— ®)
m m

C’(i j) #(s<supv<vg)  my

where s(;y and v(;y, (1 < i,j < m) are ordered statistics of the SPI sample of size m, m; is the number of samples (1), v(x))
satisfying (s(x) < 83y and vy < v(;)) with 1 <k < m. The resulting plot is shown in Fig.1.

Since the data lays on the 45°line it is fair to assume that the joint probability f(s,v) is normal. Therefore, a normalization
of the index is performed through normal quantile transformation.

By keeping the same probability intervals of the SPI, we can compute the PPVI values for the drought classification as it is

shown in Table 5.
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2.2.4 Identification of drought events

Once the index is defined the set of rules to establish when a grid cell is in drought should be identified. In particular, two

parameters have to be identified:

1. A threshold Z of the index that marks the beginning of a drought in a grid cell.
2. A threshold z that marks the end of a drought in the same grid cell.

According to the model here proposed a drought in a grid cell starts when the index is lower than Z and ends when the index
is above to z. Then regional drought events are defined. Again, two parameters are identified: N and n. A drought events starts

if more than N grid cells are in drought conditions and ends if less than n grid cells are in drought conditions.
2.2.5 Skill assessment

Observations of drought are compared with the model outputs for various combinations of thresholds Z, z, N and n. The
Receiver Operating Characteristic (ROC) curve is used for this comparison. The ROC curve was at first used in signal detection;
its use in meteorological applications is documented and well described in (Joliffe and Stephenson, 2012). The ROC curve is
employed to classify instances, as in the present case. The ROC curve was already employed in various studies to compare the
performance of a model versus observations with varying thresholds (Zhu et al., 2016; Khadr, 2016). The contingency matrix
(shown in Table 6) is a two by two matrix to visualize the disposition of a set of instances. True positive or hits are represented
by the weeks that are reported to be in drought conditions in the observations and are correctly identified as drought weeks
by the model. True negatives (correct rejections) are represented by those weeks that are not in drought according to both
the observations and the model. Those weeks that are recorded as drought according to the observations but are not identified
as drought weeks by the model, are considered as false negatives (missing events), while false positives (false alarms) are
represented by the weeks that are not in drought conditions according to the observations but are identified as drought weeks
by the model. In this paper for each combination of thresholds Z, z, N and n, Probability of Detection (POD), or hit rate, and
Probability of False Detection (POFD), or false alarm rate, are computed according to (Joliffe and Stephenson, 2012) with the

following equations:

TP

POD =25 FN ©
TN

where TP,TN,FP and FN are defined as in Table 6.
The optimal threshold for a ROC curve is the one for which the distance from the 45°degree line is maximum (Zhu et al.,
2016). The performances of the model based on PPVI in identifying drought events have been evaluated on the case study

described in the next section.
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2.2.6 Case study

The case study region is Haiti. The country, which has an extension of 27.750 km? is located in the Caribbean’s Great Antilles
and shares the island of Hispaniola with the Dominican Republic. The climate is predominantly tropical, with daily tempera-
tures ranging between 19°C and 28°C during winter and between 23°C and 33°C during summer. The island topography is
varied; the central region is mainly mountainous, while the northern and western regions are near the coastline. Annual precip-
itation in the central region averages 1.200 mm, while in the lowlands it is about 550 mm (GFDRR, 2011). Haiti is subject to
the variability associated with El Nifio and La Nifia phenomena, with El Nifio bringing drier and hotter conditions and La Nifia
colder and wetter climate. Haiti experiences a first rainy season from April to July and a second, and most important, from
August to the end of November. The dry season starts in December and goes on until the end of March (FEWSNET, 2019).

Haiti is divided administratively into 10 departments (Fig. 2), with people living mainly in the West, where the capital Port-
au-Prince is located, and in the Artibonite. The total population in 2017 was about 11 million people (World Bank, 2017). Haiti
is the poorest country in the Western Hemisphere, the economy is mainly agricultural. 67% of the country’s area is devoted
to agriculture, but only 4,35% of the agricultural area is irrigated (Trading Economics, 2013), posing a major threat to local
production.

Haiti produces over half of the world’s vetiver oil (used in cosmetics), and mangos and cocoa are the most important export
crops. Two-fifths of all Haitians depend on the agriculture sector, mainly small-scale subsistence farming. The country is prone
to all types of natural hazards. Earthquakes, storms, hurricanes, landslides, and droughts have caused huge damages and losses
in recent years. Haiti was ranked as the third most affected country by extreme weather events in terms of lives lost and
economic damages in the period from 1994 to 2013 (GFDRR, 2011). More than 96% of the population lives in areas at risk of
two or more hazards. The most frequent disasters are floods and storms but, when considering the number of affected people,
droughts are the disasters involving the highest number of persons (Fig. 3).

Droughts threat the livelihoods of Haitians in many different ways. The scarcity of crops production means a rise in food
prices, that brings to widespread food insecurity since the major part of people can’t afford the increase. Unavailability of
drinking water leads to cholera outbreaks among the population. Water is an issue also for breeders, who lose livestock on
which they rely for milk production and meat consumption. In the period from 1980 to present more than 10 drought events
have been reported by the government or the humanitarian organizations working in Haiti (Table 7). The worst drought was
the one of 2014-2017, affecting more than 3 million inhabitants (about one-third of Haiti’s population).

Effective drought management is crucial for Haiti, but at present, a reliable early warning system for drought is still lacking.
Weather stations on the ground are few and data records are often very short, therefore not useful for drought monitoring
purposes on the entire country. Satellite images can be an effective and not expensive way to improve drought management

and preparedness in the country.



240

245

250

255

260

265

https://doi.org/10.5194/nhess-2019-296
Preprint. Discussion started: 10 September 2019
(© Author(s) 2019. CC BY 4.0 License.

3 Results and Discussion
3.1 Correlation analysis

Haiti has been divided into 987 grid cells, accounting for 90% of the country area. 1941 weeks were considered, starting from
week 35 of 1981 and ending with week 52 of 2018. The release date of a new VHI image was considered as the starting date
for a week. In the present study, four precipitation aggregation periods were considered (1 months, 2 months, 3 months and 6
months) and the corresponding values of SPI (SPI1, SPI2, SPI3 and SPI6) were computed in order to select the SPI aggregation
timescale to be used to create the PPVI.

To evaluate the strength of the statistical relationship between the SPI at various timescales and the VHI a correlation
analysis was then performed. Various studies have already evaluated the correlation among drought indices or between drought
indices and exogenous variables; for example (Bonaccorso et al., 2015) investigated the correlation between SPI and NAO,
while (Hongshuo et al., 2014) investigated the correlation between SPI (various aggregation periods) and the VHI. While in
the majority of the papers the Pearson correlation coefficient was employed, in the present study the Spearman correlation
coefficient was preferred as a measure of the statistical relationship between the indices, as suggested in (Wedgbrow et al.,
2002). The number of significant correlations at 5% and 1% was evaluated for four SPI aggregation timescales (Table 8).

The highest number of significant correlations was found in the cases of SPI2 and SPI3, which exhibit very similar perfor-
mances at 1% significant level. This finding is in agreement with previous studies such as (Hongshuo et al., 2014), that found
that VHI and SPI3 have the highest correlation for croplands, whereas VHI and 6-month SPI have the highest correlation for
forest in the Southwest of China; and (Ma’rufah et al., 2017) that found that significant correlation coefficient values on SPI3
and VHI are common in the southern part of Indonesia. Since SPI3 has been used in literature and the percentage of significant
correlation at 1% level is relevant, it has been decided to aggregate SPI over a 3 months period and use SPI3 in the following

discussion.
3.2 Normality of SPI and VHI distributions

Before computing PPVI as described in the previous sections, a test on the normality of the SPI3 and V H I; distributions was
performed. The goodness of fit of the SPI3 and the V H I, distributions was verified through the histograms in Fig. 4 (panel
(a) and (b) respectively), where the boxplots represent the relative frequencies of the SPI3 and V H I, values. Both the SPI3

and the V H I, data can therefore be considered normally distributed.
3.3 Selection of threshold values

PPVI was computed as described in Sect. 2.2 and its performance in identifying past drought events in Haiti when used in
combination with the set of rules described in Sect. 2.2.4 was evaluated. To this end, the ROC curve classification methodology
was applied. The set of rules implied that at first, cells in drought conditions were identified: drought started in a specific grid

cell at week W when PPVI was lower than the threshold Z and ended when PPVI was up to the threshold z in the same grid cell



270

275

280

285

290

295

300

https://doi.org/10.5194/nhess-2019-296
Preprint. Discussion started: 10 September 2019
(© Author(s) 2019. CC BY 4.0 License.

at a week w (with w coming after W). Then a regional drought event was identified: the drought event started when more than
N cells at a specific week WW; were in drought conditions and ended at a week W5 when few than n grid cells were in drought
conditions. The comparison was performed on a weekly basis, with observations derived from the reported events described in
Table 7.

The ROC curves were computed according to the following methodology: at first a combination of the thresholds Z, z, N and
n was selected. On the basis of the set of rules established in Sect. 2.2.4, the ability of the selected combination of thresholds
in reproducing the observations was assessed by computing 7P, TN, FP and FN as defined in Table 6, together with POD and
POFD. A couple (POFD, POD) represents a point in a ROC graph. Then one threshold among Z, z, N and n was selected.
The selected threshold was variable during the analysis, while the other three were kept constant. The step of variation was
identified according to the threshold maximum and minimum values. For each combination of the four thresholds (the varying
one and the three fixed) TP, TN, FP, FN and POD and POFD were computed. The resulting set of couples (POFD, POD)
represented the ROC curve for the considered set of thresholds.

The analysis was repeated by varying another threshold among Z, z, N and n. As an example, Fig. 5 shows four ROC curves
for the thresholds in Table 9. Thresholds N and n in Table 9 are expressed as the percentage of the country’s area instead as
the number of grid cells. For each of the curves the best performing set of (Z, z, N and n) was selected by identifying the point
farther from the 45°line, as done by (Zhu et al., 2016). The Area Under the Curve (AUC) was used as criteria to establish which
of the ROC curves should be preferred (as was done by (Dutra et al., 2014; Mason and Graham, 2002; Zhu et al., 2012)). An
AUC near to 1 indicates good performance, while AUC of 0.5 indicates the model has no predictive skills. From Fig. 5 it is
clear that the curve corresponding to the parameters defined as ”Set 2” in Table 9 should be preferred, since the AUC is the

closest to 1.
3.4 Indices comparison

The aim of this paragraph is not to validate in absolute terms the proposed methodology since the data record is too short to
serve both for calibration and for validation. In the present section, instead, we provide a validation by comparing PPVI with
widely recognized and used indices such as SPI and VHI.

The performance of PPVI was then compared to the one of SPI3 and VHI considered separately. Thresholds analogous to Z
and z were defined for SPI3 and VHI. Thresholds Zg and zg mark respectively the beginning and the end of drought conditions
in a grid cell according to SPI3 and thresholds Zy and 2y do the same in the case of VHI. Again the four thresholds Z, z, N,
and n were varied in order to identify the optimal values. As an example Fig. 6 shows a comparison among the ROC curves
for the three indices. In each panel of Fig. 6, n and z, zg and zy (for PPVI, SPI3 and VHI) remained constant, while Z, Zg and
Zy were varying; N was fixed in each panel but varied among the panels. Z varied from -4 to -1.1 with a step equals to 0.1; Zg
varied from -3 to 0 with a step equals to 0.1 and Zy, varied from 10 to 40 with a step equal to 5.

It is clear from Fig. 6 that PPVI identified the reported drought events better than SPI3 and VHI. AUC was 0,828 for PPVI,
0,740 for SPI3 and 0,784 for VHI. The AUC value of PPVI was in line with similar results reported in literature (Mwangi et al.,
2014). As can be seen from Fig. 6, the new index provided better results with respect to the ones obtained with SPI3 or VHI

10
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considered separately. In all the four configurations shown in Fig. 6, the AUC for the curve constructed with PPVI was higher
than the ones for SPI3 and VHI. The AUC values are in line with the ones considered good in the literature (see (Khadr, 2016))
for drought predictive skills. The optimal thresholds to configure the model were then determined by selecting the point farther
from the 45°line, as done by (Zhu et al., 2016). The best configurations parameters are shown in Table 10 and comes from the
PPVI curve shown in panel (c) of Fig. 6. The drought events were therefore identified using the optimal parameters (Table 10).

The ability of the model in identifying the country area hit by the drought was also assessed. A visual comparison among
the area under drought identified by the three indices was performed, as was done by (Dutta and Kundu, 2015).

Here some significant weeks are shown. At first, week 45 of 1995 was considered. No drought events were reported in that
period. Figure 7 shows that, while SPI3 identified all the southern part of the country as dry areas and VHI showed vegetation
suffering in two departments (Centre and West), PPVI did not show signs of drought, except for a minor number of grid cells.
Figure 8 shows that in 2015, when the whole country was reported to be in severe drought conditions, PPVI captured well the
pattern, only a few grid cells were not in drought conditions. The SPI3 was also able to catch the situation, while for the VHI
only 58% of the county was in drought. During week 8 of 2012, only the Northern part of the country was in drought (Fig.
9); five departments were reported to be stressed (North, North West, North East, Artibonite, Centre, see Table 7).All the three
indices showed the North West as the department most affected by drought when considering the percentage of the department
area hit by the drought. PPVI then classified Artibonite, North, Centre and North East, while SPI3 as second and third most
affected departments identified South and Grand Anse and VHI Centre and Nippes (Table 11).

Severity, duration and mean areal extent of the drought events identified by PPVI were computed. Severity was computed
as the sum of all the values identified by the condition that a grid cell is in a drought condition when PPVI is lower than -1.8
and exits from drought when PPVI is up to -1.1. Duration is expressed in months and the mean areal extent is the average
percentage of area in drought during a specific event. Results are presented in Table 12.

PPVI showed overall a better capacity in identifying drought events with respect to SPI3 and VHI considered separately.
However, some false alarms still remain. This can be linked to the uncertainty in information on past drought events for the
analysed area. Short-term droughts are often not reported in text-based documents, and information on drought start and end
date were retrieved from documents that mainly described the impacts related to drought. PPVI showed a good agreement with

reported information in identifying the areas of the country hit by the drought.

4 Conclusions

The timely identification of drought events is of great importance in agricultural areas, especially when rainfed agriculture
is practiced. At the same time, the evaluation of the damages caused by drought is a key point to select appropriate risk
management strategies, such as weather index insurance programs, agricultural index insurance, disaster financing and early
action planning. The new composite index proposed in this paper, the Probabilistic Precipitation Vegetation Index, PPVI, is a
powerful tool since it can identify events of vegetation stress, and at the same time, select among those the ones actually due to

drought, thanks to the contemporary use of both VHI and SPI. As such it can be helpful in agricultural drought monitoring and
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can be used to identify drought events affecting a region, their severity and their duration as was shown in the case of Haiti. In
particular, PPVI can be precious in those areas where rainfed agriculture is of vital importance since people rely on it for food
production for personal consumption.

Among the interesting aspects of PPVI, there is the fact that few data are required for its computation: only precipitation and
the VHI. This aspect is crucial, since many composite indicators able to identify agricultural droughts already exist, but large
amounts of data are required to compute them. For example, the United States Drought Monitor combines more than 40-50
inputs, while other indices specific for agricultural drought monitoring, such as the VegDRI and the VegOut, require the use
of temperature and oceanic indices. The number of parameters required to compute PPVI is lower even with respect to OBDI,
SWS, CDI or CDSI.

A second most important advantage is that, since the SPI was computed starting from satellite precipitation (CHIRP dataset)
and that the VHI is a remote-sensing drought index, PPVI is also a remote-sensing product. The use of datasets with global
coverage means that PPVI is easily transferable and scalable over the entire globe. In addition, PPVI can be a very useful tool
in areas with scarce gauge coverage as the Caribbean Islands. Both precipitation and the VHI have a very high spatial and
temporal resolution, thus allowing drought monitoring from satellite even in small areas. PPVI can be computed even in those
regions with short data records, since the VHI has more than 30 years of records (data collection began in August 1981); and
CHIRP precipitation are available from January 1981.

Both the SPI and the VHI are updated at weekly time-step since every week a new VHI image is released and the CHIRP
precipitation dataset has a daily temporal resolution, therefore PPVI can be updated more frequently than other composite
indices, such as CDI, which is updated every 10 days. In addition, due to the relatively short latency time (less than one week) of
both the datasets employed to create PPVI, the index is available in near-real time, therefore allows the timely implementation
of drought mitigation strategies. This last feature is of particular interest when PPVI is used to implement measure to reduce
drought risk in agriculture, where a timely identification of drought is crucial to prevent damages to the sector.

Many advantages are also related to the adoption of the set of rules here proposed to identify drought events. First of all, these
rules enable an objective and standardized identification of drought events from the mathematical point of view. Additionally,
they can be adjusted according to the needs and the objectives of various possible end users of the model, such as farmers,
governments or insurance companies.

The performances of PPVI in identifying drought events were tested in a specific case study (Haiti) and compared to the ones
of SPI and VHI considered separately. PPVI performed better than the single indices considered separately in reproducing past
drought events. PPVI identified drought areas in Haiti better than SPI and VHI even from the spatial point of view, thus it is
more reliable than a single index. A comparison of PPVI performances with respect to the ones of other composite indices was
not performed in the present study due to the unavailability of composite indices with the same characteristics of PPVI. In fact
previous composite indices do not include both the meteorological and the agricultural aspect of drought or are not available

globally, or cannot be computed with only remote sensing datasets.
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Figure 1. PPVI validation: empirical copula versus bivariate joint probability function. The red line corresponds to the 45°line. Joint proba-

bility values have been computed from Eq. 2, while empirical copula values according to Eq. 5.
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Figure 4. 4(a): distribution of SPI values; 4(b):distribution of V H I, values. The red line represents the pdf of the standard normal
distribution; boxplots represent the percentage of values lying in the range; 12 ranges were considered; starting from -6 and ending with 6

with a step equal to 1.
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Figure 5. ROC curves for the set of thresholds reported in Table 9.
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Observations SPI3 VHI PPVI

Figure 7. Comparison of the performance of SPI3, VHI, and PPVI in identifying the areas hit by drought. Week 45 of 1995. Departments
highlighted in red are the ones in drought according to observations, black cells are the ones in drought condition according to the various

indices.
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Observations
!‘ - \ k

Figure 8. Same as Fig. 7 but for week 33 of 2015. Departments highlighted in red are the ones in drought according to observations, black

cells are the ones in drought condition according to the various indices.
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Observations SPI3 VHI PPVI

Figure 9. Same as Fig. 7 but for week 8 of 2012. Departments highlighted in red are the ones in drought according to observations, black

cells are the ones in drought condition according to the various indices.
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Table 3. Drought classification based on SPI according to (Mckee et al., 1993).

Category SPI Probability (%)
Extremely wet 2.00 and above 23
Severely wet 1.50 to 1.99 4.4
Moderately wet  1.00 to 1.49 9.2
Near normal -0.99 to 0.99 68.2
Moderately dry  -1.49 to -1.00 9.2
Severely dry -1.50 to -1.99 44
Extremely dry -2 and below 23
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Table 4. Drought classification based on VHI according to (Dalezios et al., 2017).

Category VHI
Extremely dry <10
Severely dry <20
Moderately dry < 30
Mild dry <40
Normal > 40
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Table 5. Drought classification according to PPVIL.

Category PPVI Probability (%)
Extremely wet 1.04 and above 23
Severely wet 0.58 to 1.03 4.4
Moderately wet  0.13 to 0.57 9.2
Near normal -1.68 t0 0.12 68.2
Moderately dry  -2.14 to -1.69 9.2
Severely dry -2.15t0 -2.59 44
Extremely dry -2.6 and below 23
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Table 6. Contingency table for the deterministic estimates of a series of binary events (Joliffe and Stephenson, 2012).

) Events Observed
Events estimated

Yes No Total
Yes T P (True Positive or Hits) F'P (False Positive or False Alarms) TP+ FP
No F'N (False Negative or Missing) T'N (True Negative or Corret rejections) FN +TN
Total TP+ FN FP+TN TP+ FP+FN+TN=T
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Table 8. Number of significant correlations between VHI and various SPI aggregation timescales. Value is expressed as percentage evaluated

with respect to the total number of grid cells (987).

% significant correlations 5% % significant correlations 1%

SPI1 94.53 90.78
SPI2 97.26 95.44
SPI3 96.66 95.34
SPI6 89.77 85.61
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Table 9. Example of set of thresholds used to draw ROC curves for model calibration. Thresholds N and n are expressed as the percentage

of the country’s area instead as the number of grid cells.

Z z N n  Step of variation
Set 1 -2 varying from-1.9to 0 25% 10% 0.1
Set2  varying from -3.5 to -1 -1 25% 10% 0.1
Set 3 -2 -1 25%  varying from 1% to 24% 1%
Set 4 -2 -1 varying from 11% to 25% 10% 1%
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Table 10. Best configuration parameters for the model when applied with PPVI.

V4 z N n TN FP FN TP POFD POD

-1.8 -1.1 300 80 957 379 99 506 0.284 0.836
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Table 11. performance of PPVI, SPI3, and VHI in identifying departments hit by drought during week 8 of 2012 and comparison with

observations.

% of the area Ranking of affected departments
Department  Reported as drought PPVI  SPI3  VHI PPVI SPI3 VHI
North West  Yes 93.1 917 472 1 1 1
Artibonite Yes 75.1 72.8 341 2 5
North Yes 746 821 104 3 4 9
Centre Yes 672 543 457 4 10 2
North East Yes 62.1 724 345 5 8 4
West No 61.8 721 327 6 9 6
Nippes No 512 756 366 7 5 3
Grand Anse  No 478 821 104 8 3 8
South No 326 753 9 9 6 10
South East ~ No 30.8 84.6 20 10 2 7
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Table 12. Drought events in Haiti according to PPVI, duration, severity and mean areal extent.

Event number  Start date End date Duration (months)  Mean intensity PPVI ~ Minimum PPVI  Mean areal extent (%)
1 22/04/1982  14/07/1983 14 -9.08 -2.45 31.32
2 20/12/1984  07/11/1985 10 -8.44 -2.27 47.18
3 11/09/1986  09/04/1987 6 -9.38 -2.21 42.33
4 03/08/1989  18/10/1990 14 -8.84 -2.41 32.09
5 14/02/1991  04/02/1993 23 -9.03 -2.34 43.95
6 16/09/1993  27/01/1994 4 -9.77 -2.18 37.29
7 28/07/1994  10/11/1994 3 -10.06 -2.38 53.27
8 13/03/1997  15/01/1998 10 -8.52 -2.46 39.20
9 30/03/2000  28/09/2000 5 -10.13 -2.12 72.30
10 23/11/2000  26/04/2001 -8.38 -2.33 25.63
11 09/08/2001  13/12/2001 -8.16 -2.19 37.46
12 04/04/2002  20/06/2002 2 -11.09 -2.16 31.36
13 12/12/2002  30/10/2003 10 -8.49 -2.17 30.74
14 15/04/2004  27/05/2004 1 -11.13 -1.98 20.16
15 25/11/2004  19/05/2005 5 -10.70 -2.67 79.52
16 23/03/2006  13/07/2006 3 -9.34 -2.01 22.39
17 28/02/2008  31/07/2008 5 -8.09 -2.20 27.25
18 17/09/2009  18/02/2010 5 -8.92 -2.37 58.27
19 21/04/2011  16/06/2011 1 -17.42 -2.23 45.60
20 29/12/2011  05/04/2012 3 -8.87 -2.24 60.07
21 19/07/2012  01/11/2012 3 -9.64 -2.27 44.00
22 07/03/2013  05/05/2016 37 -8.69 -2.65 35.20
23 15/09/2016  20/04/2017 7 -8.40 -2.10 16.42
24 02/11/2017  14/12/2017 1 -12.61 -2.19 19.68
25 12/07/2018  31/12/2018 5 -11.05 -2.45 60.69
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