Authors response to Referee #1

We thank Referee #1 for the feedback provided. All the comments and the suggestions were useful to
improve the quality and the readability of the paper. Detailed responses to each comment are given below
together with the changes that will be done in the revised version of the manuscript. RC indicates the referee
comments, AC the authors comments. To help referees to visualize the changes that will be done in the
revised version of the manuscript we reported both the original manuscript’s text and the authors changes
to the manuscript.

RC1: Line 31: the two question marks should be deleted
AC: it's a mistake due to a missing reference.

Original manuscript: Meteorological drought is related to precipitation shortages; hydrological drought
refers to periods of precipitation shortfall on surface or subsurface water supply ??, while agricultural
drought is conventionally linked to soil moisture deficit.

Author’s changes to the manuscript (Lines 31-32): Meteorological drought is related to precipitation
shortages; hydrological drought refers to periods of precipitation shortfall on surface or subsurface water
supply (Sheffield & Wood, 2011) while agricultural drought is conventionally linked to soil moisture deficit.

RC1: Line 248-251: The authors should explain why they used the Spearman correlation instead of the most
common Pearson correlation coefficient. Of course, there is a reference concerning this subject (Wedgbrow
et al., 2002) but this obliges the reader to find the reference in order to be informed.

AC: We have reconsidered the use of the Pearson correlation coefficient instead of Spearman. In fact, the
use of the Pearson correlation coefficient could be preferable when dealing with normal variables. Therefore,
the Spearman correlation coefficient has been substituted with the Pearson correlation coefficient. The
manuscript will be changed accordingly.

Original manuscript: While in the majority of the papers the Pearson correlation coefficient was employed,
in the present study the Spearman correlation coefficient was preferred as a measure of the statistical
relationship between the indices, as suggested in (Wedgbrow et al., 2002). The number of significant
correlations at 5% and 1% was evaluated for four SPI aggregation timescales (Table 8). The highest number
of significant correlations was found in the cases of SPI2 and SPI3, which exhibit very similar performances
at 1% significant level. This finding is in agreement with previous studies such as (Hongshuo et al., 2014) that
found that VHI and SPI3 have the highest correlation for croplands, whereas VHI and 6-month SPI have the
highest correlation for forest in the Southwest of China; and (Ma’rufah, 2017) that found that significant
correlation coefficient values on SPI3 and VHI are common in the southern part of Indonesia. Since SPI3 has
been used in literature and the percentage of significant correlation at 1% level is relevant, it has been
decided to aggregate SPI over a 3 months period and use SPI3 in the following discussion.

Table 8: Number of significant correlations between VHI and various SPI aggregation timescales. Value is expressed as percentage
evaluated with respect to the total number of grid cells (987).

% significant correlations 5% | % significant correlations 1%

SPI1 94.53 90.78
SPI12 97.26 95.44
SPI3 96.66 95.34

SP16 89.77 85.61




Author’s changes to the manuscript (Lines 248-259): The Pearson correlation coefficient was employed in
the present study as a measure of the statistical relationship between the indices. The number of significant
correlations at 5% and 1% was evaluated for four SPI aggregation timescales (Table 8). The highest number
of significant correlations was found in the cases of SPI2 and SPI3, which exhibit very similar performances
at 1% significant level. This finding is in agreement with previous studies such as (Hongshuo et al., 2014) that
found that VHI and SPI3 have the highest correlation for croplands, whereas VHI and 6-month SPI have the
highest correlation for forest in the Southwest of China; and (Ma’rufah, 2017) that found that significant
correlation coefficient values on SPI3 and VHI are common in the southern part of Indonesia. Since SPI3 has
been used in literature and the percentage of significant correlation at 1% level is relevant, it has been
decided to aggregate SPI over a 3 months period and use SPI3 in the following discussion.

Table 8: Number of significant correlations (Pearson correlation coefficient) between VHI and various SPI aggregation timescales.
Value is expressed as percentage evaluated with respect to the total number of grid cells (987).

% significant correlations 5% | % significant correlations 1%
SPI1 93.52 91.29
SPI2 96.76 95.34
SPI3 96.15 94.83
SPI6 90.07 85.82

RC1: Line 300-301: “It's clear from Fig.6 that PPVI identified the reported drought events better than SPI3
and VHI. AUC was 0.828 for PPVI, 0.740 for SPI3 and 0.784 for VHI.” We cannot observe the values 0.828 for
PPVI, 0.740 for SPI3 and 0.784 for VHI referred in the figures.

AC: The sentence can be rephrased, and the Figure 6 can be adjusted as follows.

Original manuscript: It’s clear from Fig.6 that PPVI identified the reported drought events better than SPI3
and VHI. AUC was 0.828 for PPVI, 0.740 for SPI3 and 0.784 for VHI.

Author’s changes to the manuscript (Lines 300-304): It’s clear from Fig. 6 that the red curve, representing
PPVI, is the furthest from the diagonal line in all the panels of the figure. The Area Under the Curve (AUC)
was used as criteria to establish which index gave the best performances. AUC values are shown in Fig. 6 for
each index and various configurations of the model.
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Figure 6: Comparison among the performances of SPI3, VHI and PPVI in identifying reported drought events; thresholds Z, Zs and Z\,
are varying, z = —1.1, z; = 0 and zy = 40; n = 80 and four cases for N are shown: (a): N = 10%; (b): N = 20%; (c):N = 30% and (d):
=50%.

RC1: Lines 326-328: ‘Short-term droughts are often not reported in text-based documents, and information
on drought start and end date were retrieved from documents that mainly described the impacts related to
drought. PPVI showed a good agreement with reported information in identifying the areas of the country
hit by the drought.” In Fig. 7, in the ‘Observation’ sub-figure, no department is highlighted in red. Does this
mean that no drought was observed, or is this a mistake? In the former case, the authors should comment
on this situation. In Figures 7 to 9 there is a comparison of indices and ‘Observation’ concerning the various
departments of Haiti. Please define the criteria according to which a department is highlighted in red
(drought conditions). Table 11. ‘Reported as drought’: Define the criteria of this classification.

AC: In Fig.7 no department was highlighted in red since no drought was observed during that week according
to text-based documents regarding droughts in Haiti. Departments are highlighted in red if, according to the
documents cited in Table 7, drought was observed during that week in the department. The same criteria
were adopted in Table 11 to establish if, according to observations, a department was in drought.

Figure 7, 8 and 9 will be modified to include a legend to clearly distinguish between departments in drought
and departments not in drought. A description of the criteria used to define drought according to observation



will be given. The text of the manuscript will be modified to clarify the criteria adopted to identify drought in
the various departments.

Author’s changes to the manuscript: (Lines 310 — 319): At first, week 45 of 1995 was considered. No drought
events were reported in that period according to the information available in the analysed documents (see
Table7). Figure 7 shows that, while SPI3 identified all the southern part of the country as dry areas and VHI
showed vegetation suffering in two departments (Centre and West), PPVI did not show signs of drought,
except for a minor number of grid cells. Figure 8 shows that in 2015, when the whole country was reported
to be in severe drought conditions (see Table 7 and (NOAA, 2017; OXFAM & Action conte la Faim, 2015)),
PPVI captured well the pattern, only a few grid cells were not in drought conditions. The SPI3 was also able
to catch the situation, while for the VHI only 58% of the county was in drought. During week 8 of 2012, only
the Northern part of the country was in drought (Fig. 9), as highlighted by (USAID & FEWSNET, 2012) (see
Table 7). Five departments were reported to be stressed (North, North West, North East, Artibonite, Centre,
see Table 7). All the three indices showed the North West as the department most affected by drought when
considering the percentage of the department area hit by the drought. PPVI then classified Artibonite, North,
Centre and North East, while SPI3 as second and third most affected departments identified South and Grand
Anse and VHI Centre and Nippes (Table 11).

Observations

=

[ nNo drought
Il Drought

A

Figure 7: Comparison of the performance of SPI3, VHI, and PPVI in identifying the areas hit by drought. Week 45 of 1995. Departments
highlighted in red are the ones in drought according to observations (Table 7), red cells are the ones in drought condition according
to the various indices.
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Figure 8: Same as Fig. 7 but for week 33 of 2015. Departments highlighted in red are the ones in drought according to observations,
red cells are the ones in drought condition according to the various indices.
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Figure 9: Same as Fig. 7 but for week 8 of 2012. Departments highlighted in red are the ones in drought according to observations,
red cells are the ones in drought condition according to the various indices.



Table 11. Performance of PPVI, SPI3, and VHI in identifying departments hit by drought during week 8 of 2012 and comparison with
observations. Observations are retrieved from the text-based documents reported in Table 7.

% of the area Ranking of affected departments
Department | Reported asin PPVI SPI3 VHI PPVI SPI3 VHI
drought

North West | Yes 93.1 91.7 47.2 1 1 1
Artibonite Yes 75.1 72.8 34.1 2 7 5
North Yes 74.6 82.1 10.4 3 9
Centre Yes 67.2 54.3 45.7 4 10 2
North East Yes 62.1 72.4 34.5 5 8 4
West No 61.8 72.1 32.7 6 9 6
Nippes No 51.2 75.6 36.6 7 5 3
Grand Anse No 47.8 82.1 10.4 8 3 8
South No 32.6 75.3 9 9 6 10
South East No 30.8 84.6 20 10 2 7

RC1: A comparison of PPVI performances to the ones of other composite indices, would be a considerable
improvement.

AC: As already discussed in the manuscript (lines 365-368), a comparison with other composite indices is
hard, due to the unavailability of composite indices with the same characteristics of PPVI. In fact, previous
composite indices do not include both the meteorological and the agricultural aspect of drought or are not
available globally or cannot be computed with only remote sensing datasets. In addition, VHI is already a
composite drought index since it is derived from the linear combination of TCI and VCI. Therefore, in the
manuscript, a comparison of PPVI performance with respect to the ones of a composite drought index was
already performed.
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Authors response to Referee #2

We would like to thank Referee #2 for the insightful comments on the paper. Detailed responses to each
comment are given below together with the changes that will be done in the revised version of the
manuscript. RC indicates the referee comments, AC the authors comments. To help referees to visualize the
changes that will be done in the revised version of the manuscript we reported both the original manuscript’s
text and the authors changes to the manuscript.

RC2: Use of CHIRP dataset instead of the CHIRPS dataset. Please justify why the CHIRP dataset is used for the
study area. Based on the study of Funk el al., 2015 it is proved that constraining the CHIRP by the CHPclim
reduces systematic errors and the CHIRPS dataset produces low MAE and bias statistic than the CHIRP
dataset.

AC: The authors are aware of the biases in the CHIRP dataset, but they aim at proposing an index for drought
monitoring in near-real time; therefore, they selected the product with the shortest latency time. The main
reason for using CHIRP instead of CHIRPS is the reduced latency time of the first dataset. In fact, as reported
by (Funk et al., 2015), CHIRPS latency time is about three weeks; a preliminary version of CHIRPS with a 2-
day latency time is available for GTS and Mexico only. In the case of CHIRP, latency time is about 2 days, and
the product is available all over the world. CHIRP latency time can be checked at (Climate Hazard Group,
2015) by looking at the availability of the images.

Original manuscript: The use of CHIRP instead of CHIRPS (the Climate Hazard Group Infrared Precipitation
with Stations) is related to the data latency time, which is shorter in the case of CHIRP since it doesn’t include
data from weather stations.

Author’s changes to the manuscript (lines 107-111): The use of CHIRP instead of CHIRPS (the Climate Hazard
Group Infrared Precipitation with Stations) is related to the data latency time. Since the aim of the work is
the development of an index for near-real time drought monitoring, the product with the shortest latency
time was selected. CHIRPS data have a latency time of about three weeks (Funk et al., 2015), while CHIRP’s
latency is about 2 days, as can be checked on the dataset website (Climate Hazard Group, 2015)

RC2: It would be interesting to see a comparison of the observed precipitation pattern with the used rainfall
dataset. How close is the used dataset with the observed rainfall in Haiti? Please, provide scientific evidence
in the revised manuscript which demonstrates the superiority of the used dataset when compared with the
CHIRPS dataset for spatial and temporal (monthly) rainfall modelling at the study area.

AC: Unfortunately, as highlighted by (Mari et al., 2015) “Systematic collection of rainfall through rain gauges
has been relatively rare in post-earthquake Haiti, with on-the-ground rainfall measurements available only
for Ouest (by USGS) and Sud (by Haiti Regeneration Initiative) departments”. A map of existing rain gauges
in Haiti reported in Eisenberg et al. (2013) shows the presence of only 5 gauges all over the country recording
for a short period of time. Thus, a comparison between observed precipitation and rainfall retrieved from
satellite images is not very feasible. The authors tried to overcome the issue providing a comparison with
observed drought events, retrieved from text-based documents and international disasters databases, in
Section 3.4 of the manuscript.

RC2: Vegetation Health Index: It should be mentioned that all remote sensing indices could be expressed as
deviations from the mean using the standardization procedure (i.e. Mckee at al., 1993) as used by Peters et
al. [2002]. Hence the adopted classification of VHI using Eq. 1 is a transformation procedure of the typical
VHI (from 0 to 1) to a normal distribution using the standardization procedure as proposed by Peters et
al.,[2002]. | recommend to the authors to clarify this issue on the revised manuscript and to mention that
equal weighting is used for VCl and TCI.



AC: All these comments will be addressed in the revised manuscript as follows.

Original manuscript: The VHI is a remote-sensing index developed to include the effects of temperature on
vegetation; in fact, it combines the VCIl with the Temperature Condition Index (TCl), which is another remote-
sensing index used to determine vegetation stress caused by temperature and excessive wetness. One
drawback of the VHI is the impossibility to identify the cause of the vegetation stress; in fact, vegetation can
suffer because of various events: excessive wetness, pests, fires, droughts or others. It is a biophysical
indicator of a lack of precipitation but can also be seen as representing drought impacts on the ground
(Bachmair et al., 2016). It goes from 0, which stands for vegetation in very bad conditions to 100, meaning
perfectly healthy vegetation. The classification scheme of VHI, as proposed in (Dalezios et al., 2017) is
presented in Table 4.

The VHI is standardized according to the following equation:

VHI — VHI

VHISt = e

where VHI is the mean of the distribution and o its standard deviation. The standardized variable, VHI;,
has a distribution with 0 mean and 1 as standard deviation.

Author’s changes to the manuscript (lines 134-144): The VHI is a remote-sensing index developed to include
the effects of temperature on vegetation; in fact, it combines the VCI with the Temperature Condition Index
(TCI) which is another remote-sensing index used to determine vegetation stress caused by temperature and
excessive wetness. The VHI is based on a linear combination of VCl and TCI, VHI = aVCI + (1 — a)TCI. As
suggested by Kogan et al. (2016), when VCI and TCl contributions are not known a@ = 0.5. One drawback of
the VHI is the impossibility to identify the cause of the vegetation stress; in fact, vegetation can suffer because
of various events: excessive wetness, pests, fires, droughts or others. It is a biophysical indicator of a lack of
precipitation but can also be seen as representing drought impacts on the ground (Bachmair et al., 2016). It
goes from 0, which stands for vegetation in very bad conditions to 100, meaning perfectly healthy vegetation.
The classification scheme of VHI, as proposed in Dalezios et al. (2017), is presented in Table 4.

The VHI is standardized to make comparisons with the SPI easier. As mentioned by Peters et al. (2002), all
remote-sensing indices can be expressed as deviations from the mean; therefore, the standardized variable,
VHI, is computed according to the following equation:

VHI — VHI
VHI = ——

Thus, the same procedure proposed in Peters et al. (2002) in the case of the NDVI has been applied to the
VHI.

RC2: Furthermore, please discuss why VHI is used using the approach of Kogan and why VHI and TCl are not
first standardized and then combined with equal [see also Bento et al., 2018a,b] weighting in a probabilistic
form to give the VHI (similar approach to PPVI or the approach of multivariate distributions using parametric
[Hao and AgaKouchack, 2013] or a non-parametric approaches [Hao and AgaKouchack, 2014]

AC: The VHI as proposed by Kogan was used since it is a consolidated product, already applied to monitor
vegetation health in various studies concerning different topics such as food security (Kogan, 2019),
insurance (Bokusheva et al., 2016) and drought identification (Pei et al., 2018; Sholihah et al., 2016). As above
mentioned, the VHI was standardized to facilitate the interpretation of the index inside the bivariate context.
PPVI values do not change if PPVI is computed by combining SPI3 and non-standardized VHI through the
bivariate normal distribution function (see panel (a) of Fig. 1). In addition, the authors computed VHI; by a



linear combination of standardized TCI (T CI,;) and standardized VCI (VCI;), applying equal weighting of the
two indices, with TCI; and VCIg; computed according to Peters et al. (2002). PPVI values do not change, as
shown in panel (b) of Figure 1.
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Figure 1: (a): relationship between PPVI computed from VHIy and PPVI computed from VHI; (b): relationship between PPVI computed
fromVHIg and PPVI computed from VHI, retrieved from linear combination of VCls and TCl;.

RC2: Comparison with identified drought events. Is it possible to include a section with a comparison of PPVI
with historical identified drought events? This comparison could exemplify the proposed index and
strengthen the scientific quality of the manuscript.

AC: The comparison with identified drought events, reported in Table 7 of the original manuscript and
identified from text-based documents such as governmental reports and international disaster databases, is
already reported in the manuscript in Section 3.4, “Indices comparison”, where PPVI performance in
reproducing observed drought events is compared with SPI3 and VHI performance. To make the manuscript
clearer on this aspect, Section 3.4 “Indices comparison” will be renamed in “Comparison of drought indices
with observed drought events”. In addition, Figure 2 will be added in Section 3.4 (as Figure 7 in the revised
manuscript) to allow an easy comparison between drought indices performance in identifying observed
drought events.
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Figure 2: comparison between observed drought events and drought events identified by PPVI, SPI3 and VHI when calibrated with the
best performing parameters shown in Table 10. The comparison is shown for the period from 2000 to 2018.
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Table 10 will be modified to show the best performing parameters not only for PPVI but for all the three
indices.

Table 10: Best configuration parameters for the model when applied with PPVI, SPI3 and VHI.

|z E | N [ n TN FP FN TP POFD | POD




PPVI -1.8 -1.1 30% 8% 957 379 99 506 | 0.284 | 0.836

SPI3 -1.3 0 20% 8% 943 393 157 448 | 0.294 | 0.740
VHI 22 40 10% 8% 935 401 150 455 | 0.300 | 0.752
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List of changes made in the manuscript

Line 18: Organizations changed with Organization.

Line 31: “subsurface” has been deleted.

Line 31: question marks have been deleted, a reference has been included.
Line 41: (Gu et al.,2008) changed in Gu et al. (2008).

Line 52: VegDri has been defined.

Line 60: (Serinaldi et al.,2009) and (Bonaccorso et al., 2012) changed in Serinaldi et al. (200) and Bonaccorso
et al. (2012).

Line 61: (Shiau et al., 2006) changed in Shiau et al. (2006).

Line 64: (Songbai and Singh, 2010) changed in Songbai and Sing (2010).

Line 70: AMDI-SA has been defined.

Line 79: Temeprature has been corrected.

Lines 108-110: the sentence has been changed according to the answer given to Referee #2.
Line 111: (Funk et al.2015) changed in Funk et al. (2015).

Line 131: (Mckee et al.,1993) changed in Mckee et al. (1993).

Line 137: a sentence has been added to answer Referee #2 comments.

Line 141: (Dalezios et al.2017) changed in Dalezios et al. (2017).

Line 142: a sentence has been added to answer Referee #2 comments.

Line 153: (USDA Risk Management Agency et al., 2006) changed in USDA Risk Management Agency et al.
(2006).

Line 157: (Kotz et al., 2000) changed in Kotz et al. (2000).

Line 165: Eq. 3 and Eq. 4 changed in Egs 3 and 4.

Line 170: (Nelsen, 2006) changed in Nelsen (2006).

Line 189: (Joliffe and Stephenson, 2012) changed in Joliffe and Stephenson (2012).
Line 248: NAO has been defined.

Line 249: (Hongshuo et al., 2014) changed in Hongshuo et al. (2014).

Lines 249-260: The Spearman correlation coefficient has been substituted with the Pearson correlation
coefficient. Results have been changed accordingly.

Line 290: Section “Indices comparison” has been renamed into “Comparison of drought indices with observed
drought events”.

Line 294: a sentence has been changed to address referees’ comments.
Lines 301-304: a sentence has been added to address referees’ comments.

Line 320: a sentence has been added to describe the newly introduced Figure 7.



Figure 6: AUC values have been corrected.
Figure 7: introduced to answer to the comments of Referee #2.
Figure 8-9-10: Figures have been changed to make them clearer.

Table 8: adjusted to report the number of significant correlations according to the Pearson correlation
coefficient instead of the Spearman ones.

Table 10: best performing values for SPI3 and VHI have been added.

Table 11: the caption has been changed to specify the criteria for identifying departments in drought
according to historical documents.
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Abstract. Since drought is a multifaceted phenomenon, more than one variable should be considered for a proper understand-
ing of such extreme event in order to implement adequate risk mitigation strategies such as weather or agricultural indices
insurance programs, or disaster risk financing tools. This paper proposes a new composite drought index that accounts for
both meteorological and agricultural drought conditions, by combining in a probabilistic framework two consolidated drought

5 indices: the Standardized Precipitation Index (SPI) and the Vegetation Health Index (VHI). The new index, called Probabilistic
Precipitation Vegetation Index (PPVI), is scalable, transferable all over the globe and can be updated in near-real time. Fur-
thermore, it is a remote-sensing product, since precipitation are retrieved from satellite and the VHI is a remote-sensing index.

In addition, a set of rules to objectively identify drought events is developed and implemented. Both the index and the set of
rules have been applied to Haiti. The performance of PPVI has been evaluated by means of the Receiver Operating Character-

10 istics curve and compared to the ones of SPI and VHI considered separately. The new index outperformed SPI and VHI both
in drought identification and characterization, thus revealing potential for an effective implementation within drought early

warning systems.

Copyright statement. TEXT

1 Introduction

15 Droughts affect every year an increasing number of people. In the years from 2014 to 2018 more than 70 drought events have
been reported all over the world and about 450 million people suffered because of drought-related impacts (CRED, 2017).
Due to its complexity, various definitions of the phenomenon have been proposed by different institutions, such as the World
Meteorological Organizations-Organization (WMO), the Food and Agriculture Organization (FAO) and the United Nations
Convention to Combat Desertification (UNCCD). All the institutions focus their attention on a specific aspect of drought: the

20 WMO on the lack of precipitation, the FAO on the decline in crop productivity and the UNCCD on the loss of arable land.
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In addition, the quantification of drought effects is a complicated task, since drought impacts are non-structural, widespread
over large areas, and of different type and magnitude within the drought-affected area, also depending on economic, social and
environmental system vulnerabilities (Wilhite, 2000).

Drought identification through an objective and automatic determination of drought onset, termination and severity allows
the timely adoption of appropriate risk management strategies, such as weather index insurance programs (Barnett and Mahul,
2007), agricultural index insurance programs (Jensen and Barrett, 2017), disaster financing (Guimaraes Nobre et al., 2019;
Linnerooth-Bayer and Hochrainer-Stigler, 2015) and early action planning (Drechsler and Soe, 2016).

Drought features are usually determined through the use of two instruments: indicators, which are variables and parameters
used to assess drought conditions (such as precipitation, temperature, and others), and indices, which are numerically computed
values from meteorological or hydrological inputs (World Meteorological Organization and Global Water Partnership, 2016).
More than 100 indices have been developed by the scientific community (Zargar et al., 2011), each one focusing on a specific
aspect of drought (meteorological, hydrological, agricultural and so on). Meteorological drought is related to precipitation
shortages; hydrological drought refers to periods of precipitation shortfall on surface or-subsurface—water—supply—22water
supply (Sheffield and Wood, 2011) , while agricultural drought is conventionally linked to soil moisture deficit. Insufficient
soil moisture leads to crop failure and consequent yield reduction; therefore the first economic sector suffering because of
drought is agriculture, particularly in those areas where it relies on rainfall. A deeper understanding of agricultural drought
dynamics can promote the adoption of risk reduction strategies, such as crop insurance programs.

In recent years various remote-sensing indices have been developed and can be employed in agricultural drought monitoring.
The most widespread is the Normalized Difference Vegetation Index (NDVI), which uses NOAA AVHRR satellite data to
monitor vegetation greenness (Kogan, 1995a). The main advantages of the NDVI are the very high spatial resolution and the
global coverage. The NDVI has already been applied in drought monitoring, such as in als Gu et al. (2008) .
Many products were derived from the NDVI, such as the Vegetation Condition Index (VCI), which compares the current NDVI
to the range of values observed in the same period in previous years (Liu and Kogan, 1996; Kogan, 1995b) and the Standardized
Vegetation Index (SVI), which describes the probability of vegetation condition deviation from normal (Peters et al., 2002). A
suite of agricultural drought indices is presented in Table 1.

Since drought is a complex phenomenon, a single index or indicator can be insufficient to fully characterize drought severity
and extent. The combination of more than one indicator can be precious to evaluate all the variables involved in drought
monitoring, such as precipitation, soil moisture, and streamflow. Over the past 20 years many composite indicators, relying on
two or more drought indices or indicators, have been proposed to overcome the issues related to the use of a single variable.
Table 2 shows a list of selected composite indices that can be used in agricultural drought monitoring since, in their formulation
soil moisture, vegetation condition or variables related to water availability for plants are included.

Multiple methods for taking into account the multivariate behaviour of drought have been explored (Hao and Singh, 2015,
2016). The VegbRIVegetation Drought Response Index (VegDRI), for example, uses a data mining approach to combine
multiple inputs such as the SPI, the NDVI and the Palmer Drought Severity Index (PDSI). A weighted linear combination

of the inputs is quite common; it is applied to construct the Composite Drought Indicator (CDI) for Morocco, the Vegetation
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Health Index (VHI) and the Objective Blend of Drought Indicators (OBDI). The United States Drought Monitor (USDM) also
applies a weighted linear combination of the inputs but adds an expert judgment to define the drought class.

In the last years multiple studies focused the attention on modelling the joint behaviour of two drought characteristics or in-
dices applying bivariate or multivariate statistical approaches. In various cases bivariate distributions are developed by means of
Serinaldi et al. (2009) and Bonaccorso et al. (2012) , where
the joint behaviour of various drought properties is investigated; or in (Shiau;2006)-Shiau (2006) , where two-dimensional cop-
ulas are employed to study the joint behaviour of drought duration and severity in Taiwan. (Shiat-et-al-2067)-Shiau et al. (2007)
investigates also the hydrological droughts of the Yellow River in China using a bivariate distribution to model drought dura-

tion and severity jointly. Trivariate Plackett copula is used in (Sengbat-and-Singh;2640)-Songbai and Singh (2010) to model

drought duration, severity and inter-arrival time jointly.

copulas as in

The use of copulas to quantify the joint behaviour of drought indices is gaining popularity too. Many drought indices derived
by multivariate distributions have been proposed. For example the Multivariate Standardized Drought Index (MSDI) (Hao and
Aghakouchak, 2013), which combines the SPI and the Standardized Soil Moisture Index (SSI), uses copula to form joint prob-
abilities of precipitation and soil moisture content, while the Joint Drought Index (JDI) (Kao and Govindaraju, 2010) does the
same for obtaining the joint probabilities while considering precipitation and streamflow. The composite Agrometeorological
Drought Index accounting for Seasonality and Autocorrelation (AMDI-SA) combines two drought indices, the Modified SPI,
and the Modified SSI, employing both the copula concept and the Kendall function (Bateni et al., 2018). The use of copulas
seems promising and is highly effective when dealing with two or more variables. An advantage of copula functions is the fact
that the index derived from this approach has a probabilistic form.

Both single and composite indices for agricultural drought monitoring showed some limitations, highlighted in Table 1 and
Table 2. Single indices often rely on multiple inputs or are available only for some locations or identify all types of vegetation
stresses. In any cases single indices do not account for the multivariate nature of drought. Composite indices often rely on
relatively new datasets; in many cases a short period of record is available (for example the VegDri records start in 2009) or
the index is not available in near-real time; some of them are specifically designed for a well identified region (the OBDI and
the USDM are available only for the USA, the Combined Drought Indicator (CDI) only for Europe); other indices do not
consider the meteorological aspect of drought (Temperature Vegetation Index, TVX, and Vegetation Femeprature-Temperature
Condition Index, VTCI, are based on the NDVTI and the land surface temperature); other ones do not have a sufficiently refined
spatial resolution (MSDI). Most of them, with the exception of AMDI-SA and MSDI are not expressed in probabilistic terms,
therefore uncertainty quantification and evaluation is not an easy task.

In this paper, we propose:

1. A new drought index, the Probabilistic Precipitation Vegetation Index (PPVI), that takes the advantage of well consol-
idated indices, the Standardized Precipitation Index (SPI) (Mckee et al., 1993) and the Vegetation Health Index (VHI)
(Kogan, 1997) and tries to overcome their individual limitations by coupling them in a probabilistic framework through

the use of a bivariate normal distribution function.
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2. A framework to identify a drought event using the new index, i.e. a set of rules for the definition of a drought event.
When the set of conditions is verified, a drought event is identified based on the new index. Otherwise, no drought event

is identified.

With respect to the indices already available in literature, we will show in this paper that the new index has some interesting

features:
* it is able to identify drought-driven events of vegetation stress;
* it is parsimonious in terms of number of inputs required;
* it is a remote sensing product with high spatial and temporal resolution;
* it is based on quasi-near real time datasets, with a relatively short latency time (less than one week);
» more than 30 years of records are available at global scale for its calibration.

The paper is structured as follows: Sect.2 describes the datasets employed in the development of the new index and presents
the methodology used to combine the SPI and the VHI; Sect. 3 illustrates the application to the case study, shows the vali-
dation process of the new index and compares the performance of the new index to those of the SPI and the VHI considered
separately; in addition the advantages related to the adoption of the index and the possible applications in agricultural drought

risk management are summarized.

2 Datasets and Methods
2.1 Datasets

Two remote-sensing datasets were used: one for precipitation and the other for the VHI. Precipitation was retrieved from
the satellite-only Climate Hazard Group Infrared Precipitation (CHIRP) dataset. CHIRP has a quasi-global coverage (50°S -
50°N), high spatial resolution (6;650.05°) and daily, pentadal and monthly temporal resolution. Records start from 1/1/1981.
CHIRP was chosen because it has been specifically developed to monitor agricultural drought. The use of CHIRP instead of
CHIRPS (the Climate Hazard Group Infrared Precipitation with Stations) is related to the data latency time;-which-is—sherter

n’ s, Since the aim of the work is the development of
an index for near-real time drought monitoring, the product with the shortest latency time was selected. CHIRPS data have

a latency time of about three weeks (Funk et al., 2015) , while CHIRP’s latency is about 2 days, as can be checked on the
dataset website (Climate Hazard Group, 2015) . The development and the main characteristics of the dataset are described

in (Fanketal52045)-Funk et al. (2015) . In the present study CHIRP with a daily temporal resolution was used to have the

possibility to compute weekly precipitation. Data are available on the project website (Climate Hazard Group, 1999).

The Vegetation Health Index was retrieved from the Global Vegetation Health Products (Global VHP) of the National

Oceanic and Atmospheric Administration Center of Satellite Applications and Research (Kogan, 1997). Data can be retrieved
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at the NOAA website (NOAA, 2011). The dataset contains Blended-VHP derived from VIIRS (2013-present) and AVHRR
(1981-2012) GAC data. The dataset has 4km spatial resolution, weekly temporal resolution, and global coverage. Both the

selected datasets are freely available.
2.2 Methods
2.2.1 The Standardized Precipitation Index

As previously mentioned, two consolidate drought indices were combined: the SPI and the VHI. The SPI was selected because
it is a commonly used index to detect meteorological drought, it is standardized, therefore SPI values can be compared even in
different climate regimes and it is recommended by the WMO (World Meteorological Organization, 2009).

SPI computation is based on a long-term precipitation record for a desired period. The precipitation record is then fitted
to a probability distribution (in this work a gamma distribution was used), which is then transformed into a normal distribu-
tion. Traditionally monthly precipitation records are employed, and SPI is computed aggregating precipitation at a predefined
timestep (for example 1 month, 3 months, 6 months, 9 months and 12 months are the aggregation periods suggested by the
WMO (World Meteorological Organization, 2009)).

In the present work, weekly precipitation records were used. The SPI aggregation period was then selected and the index,
computed over one of the the traditional aggregation periods, was updated every week. SPI is normal distributed by definition.
Conventionally drought starts when SPI is lower than -1 and ends when SPI comes back to the value of O (Mckee et al., 1993).
Drought classification according to SPI, as proposed in {Mekee-etat-+993)-Mckee et al. (1993) , is reported in Table 3. The
percentages reported in the third column of Table 3 indicate the probability for SPI values to fall within the range reported in

the second column of the same table.
2.2.2 The Vegetation Health Index

The VHI is a remote-sensing index developed to include the effects of temperature on vegetation; in fact, it combines the
VCI with the Temperature Condition Index (TCI) (Kogan, 1995a), which is another remote-sensing index used to determine
vegetation stress caused by temperature and excessive wetness. The VHI is based on a linear combination of VCI and TCI,
VHI=aVCI+(1-—

a)TC1. As suggested by Kogan et al. (2016) , when VCI and TCI contributions are not known v = 0.5.

One drawback of the VHI is the impossibility to identify the cause of the vegetation stress; in fact, vegetation can suffer because
of various events: excessive wetness, pests, fires, droughts or others. It is a biophysical indicator of a lack of precipitation but
can also be seen as representing drought impacts on the ground (Bachmair et al., 2016). It goes from 0, which stands for
vegetation in very bad conditions to 100, meaning perfectly healthy vegetation. The classification scheme of VHI, as proposed
in (Palezios-etal;206+7)-Dalezios et al. (2017) , is presented in Table 4.

The VHI is standardized to make comparisons with the SPI easier. As mentioned by Peters et al. (2002) . all remote-sensing
indices can be expressed as deviations from the mean; therefore, the standardized variable, V.I{ 1y, is computed according to



the following equation:

VHIst:VHI—VHI 0

g

where V H I is the mean of the distribution and o its standard deviation. Thus, the same procedure proposed in Peters et al. (2002) in
the case of the NDVI has been applied to the VHI. The standardized variable, V H I;, has a distribution with 0 mean and 1 as

155 standard deviation.
2.2.3 The Probabilistic Precipitation Vegetation Index (PPVI)

The Probabilistic Precipitation Vegetation Index (PPVI) is a composite index that takes into account both meteorological
drought through the SPI, and agricultural drought conditions by including the VHI.

In order to combine the two consolidated indices the following preparatory steps are performed:
160 1. Extraction of the area under study from both the datasets;
2. Regridding of both precipitation and the VHI to bring them to the same spatial resolution (0,05°);

3. Aggregation of precipitation at weekly timescale (CHIRP has daily temporal resolution);

4. Computation and weekly update of SPI according to the methodology proposed in (ISBARisk-Management-Ageney-et-al;2006)-
USDA Risk Management Agency et al. (2006) , where precipitation are fitted to a gamma distribution. The goodness of

165 fit to the gamma distribution has been verified by means of probability plot.
5. Standardization of the VHI, as previously described.

The combination of SPT and VHI is performed using a bivariate normal distribution function, as it is defined by Ketz-et-al52000)-
Kotz et al. (2000) . The normality of the SPI and V' H I, distributions has been verified as will be shown in Sect. 3.2. Therefore
it is acceptable to assume that the joint probability of the two considered distributions takes the form of the bivariate normal

170 for correlated variables:

f(s.0) = 1 1 [(Sus)2+(vuv)2+2p(5us)(vuu)D )

B QWJSOUMGXP (_2(1—,02) Os Oy 050y

where the following notation is adopted: the SPI is identified as s and the V H I, is identified as v. The mean and the standard
deviation of the SPI distribution f(s) are respectively, by construction, ps = 0 and o5 = 1 and the mean and standard deviation
of the V H I distribution, f(v) are respectively p,, = 0 and o,, = 1. The covariance matrix X and the correlation coefficient p

175 are defined according to EgEgs. 3 and Eg-4 respectively, where oy, is the covariance between s and v.
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To check the assumption of normality for the joint distribution, the joint probability values, retrieved from Eq.2 are plotted
against the bivariate empirical cumulative distribution values (Fig.1), as done in (Kao and Govindaraju, 2010). The bivariate
180 empirical copula for the random variables s and v has been evaluated according to {Nelsen;2006)-Nelsen (2006) using the

following equation:

c (l J') _#<s@mv<vg) _m 5

m’m m m
where 5(;) and v(;), (1 < 4,7 < m) are ordered statistics of the SPI sample of size 1, m; is the number of samples (s(x),v())
satisfying (s() < 8¢y and vy < v(j)) with 1 <k < m. The resulting plot is shown in Fig.1.
185 Since the data lays on the 45°line it is fair to assume that the joint probability f(s,v) is normal. Therefore, a normalization
of the index is performed through normal quantile transformation.
By keeping the same probability intervals of the SPI, we can compute the PPVI values for the drought classification as it is

shown in Table 5.
2.2.4 Identification of drought events

190 Once the index is defined the set of rules to establish when a grid cell is in drought should be identified. In particular, two

parameters have to be identified:
1. A threshold Z of the index that marks the beginning of a drought in a grid cell.
2. A threshold z that marks the end of a drought in the same grid cell.

According to the model here proposed a drought in a grid cell starts when the index is lower than Z and ends when the index
195 is above to z. Then regional drought events are defined. Again, two parameters are identified: N and n. A drought events starts

if more than N grid cells are in drought conditions and ends if less than » grid cells are in drought conditions.
2.2.5 SKkill assessment

Observations of drought are compared with the model outputs for various combinations of thresholds Z, z, N and n. The Re-
ceiver Operating Characteristic (ROC) curve is used for this comparison. The ROC curve was at first used in signal detection; its

200 use in meteorological applications is documented and well described in Jeliffe-and-Stephensen;2042)-Joliffe and Stephenson (2012) .
The ROC curve is employed to classify instances, as in the present case. The ROC curve was already employed in various stud-
ies to compare the performance of a model versus observations with varying thresholds (Zhu et al., 2016; Khadr, 2016). The
contingency matrix (shown in Table 6) is a two by two matrix to visualize the disposition of a set of instances. True posi-

tive or hits are represented by the weeks that are reported to be in drought conditions in the observations and are correctly
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identified as drought weeks by the model. True negatives (correct rejections) are represented by those weeks that are not in
drought according to both the observations and the model. Those weeks that are recorded as drought according to the ob-
servations but are not identified as drought weeks by the model, are considered as false negatives (missing events), while
false positives (false alarms) are represented by the weeks that are not in drought conditions according to the observations
but are identified as drought weeks by the model. In this paper for each combination of thresholds Z, z, N and n, Probability

of Detection (POD), or hit rate, and Probability of False Detection (POFD), or false alarm rate, are computed according to

Joliffe-and-Stephenson; 2042)-Joliffe and Stephenson (2012) with the following equations:

TP
POD = ————

OP= TP FN ©
TN

where TP,TN,FP and FN are defined as in Table 6.
The optimal threshold for a ROC curve is the one for which the distance from the 45°degree line is maximum (Zhu et al.,
2016). The performances of the model based on PPVI in identifying drought events have been evaluated on the case study

described in the next section.
2.2.6 Case study

The case study region is Haiti. The country, which has an extension of 27.750 km? is located in the Caribbean’s Great Antilles
and shares the island of Hispaniola with the Dominican Republic. The climate is predominantly tropical, with daily tempera-
tures ranging between 19°C and 28°C during winter and between 23°C and 33°C during summer. The island topography is
varied; the central region is mainly mountainous, while the northern and western regions are near the coastline. Annual precip-
itation in the central region averages 1.200 mm, while in the lowlands it is about 550 mm (GFDRR, 2011). Haiti is subject to
the variability associated with El Nifio and La Nifia phenomena, with El Nifio bringing drier and hotter conditions and La Nifia
colder and wetter climate. Haiti experiences a first rainy season from April to July and a second, and most important, from
August to the end of November. The dry season starts in December and goes on until the end of March (FEWSNET, 2019).

Haiti is divided administratively into 10 departments (Fig. 2), with people living mainly in the West, where the capital Port-
au-Prince is located, and in the Artibonite. The total population in 2017 was about 11 million people (World Bank, 2017). Haiti
is the poorest country in the Western Hemisphere, the economy is mainly agricultural. 67% of the country’s area is devoted
to agriculture, but only 4,35% of the agricultural area is irrigated (Trading Economics, 2013), posing a major threat to local
production.

Haiti produces over half of the world’s vetiver oil (used in cosmetics), and mangos and cocoa are the most important export
crops. Two-fifths of all Haitians depend on the agriculture sector, mainly small-scale subsistence farming. The country is prone

to all types of natural hazards. Earthquakes, storms, hurricanes, landslides, and droughts have caused huge damages and losses
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in recent years. Haiti was ranked as the third most affected country by extreme weather events in terms of lives lost and
economic damages in the period from 1994 to 2013 (GFDRR, 2011). More than 96% of the population lives in areas at risk of
two or more hazards. The most frequent disasters are floods and storms but, when considering the number of affected people,
droughts are the disasters involving the highest number of persons (Fig. 3).

Droughts threat the livelihoods of Haitians in many different ways. The scarcity of crops production means a rise in food
prices, that brings to widespread food insecurity since the major part of people can’t afford the increase. Unavailability of
drinking water leads to cholera outbreaks among the population. Water is an issue also for breeders, who lose livestock on
which they rely for milk production and meat consumption. In the period from 1980 to present more than 10 drought events
have been reported by the government or the humanitarian organizations working in Haiti (Table 7). The worst drought was
the one of 2014-2017, affecting more than 3 million inhabitants (about one-third of Haiti’s population).

Effective drought management is crucial for Haiti, but at present, a reliable early warning system for drought is still lacking.
Weather stations on the ground are few and data records are often very short, therefore not useful for drought monitoring
purposes on the entire country. Satellite images can be an effective and not expensive way to improve drought management

and preparedness in the country.

3 Results and Discussion
3.1 Correlation analysis

Haiti has been divided into 987 grid cells, accounting for 90% of the country area. 1941 weeks were considered, starting from
week 35 of 1981 and ending with week 52 of 2018. The release date of a new VHI image was considered as the starting date
for a week. In the present study, four precipitation aggregation periods were considered (1 months, 2 months, 3 months and 6
months) and the corresponding values of SPI (SPI1, SPI2, SPI3 and SPI6) were computed in order to select the SPI aggregation
timescale to be used to create the PPVI.

To evaluate the strength of the statistical relationship between the SPI at various timescales and the VHI a correlation analysis
was then performed. Various studies have already evaluated the correlation among drought indices or between drought indices

and exogenous variables; for example (Bonaccorso et al., 2015) investigated the correlation between SPI and NAO;—~while

{Hongshuo-et-al520644)-North Atlantic Oscillation (NAO), while Hongshuo et al. (2014) investigated the correlation between
SPI (various aggregation periods) and the VHI. While-in-the-majority-of-the-papers-the-The Pearson correlation coefficient was
employed ;-in the present study the-Spearman-correlation-coefficient-waspreferred-as a measure of the statistical relationship
between the indices;-as—suggested-in—{Wedgbrew-et-al52002)-. The number of significant correlations at 5% and 1% was

evaluated for four SPI aggregation timescales (Table 8).

The highest number of significant correlations was found in the cases of SPI2 and SPI3, which exhibit very similar perfor-
mances at 1% significant level. This finding is in agreement with previous studies such as (Hongshuo-et-al;2044)+
Hongshuo et al. (2014) that found that VHI and SPI3 have the highest correlation for croplands, whereas VHI and 6-month SPI
have the highest correlation for forest in the Southwest of China; and (Ma’rufah-et-al5-2647)-Ma’rufah et al. (2017) that found



270

275

280

285

290

295

300

that significant correlation coefficient values on SPI3 and VHI are common in the southern part of Indonesia. Since SPI3 has
been used in literature and the percentage of significant correlation at 1% level is relevant, it has been decided to aggregate SPI

over a 3 months period and use SPI3 in the following discussion.
3.2 Normality of SPI and VHI distributions

Before computing PPVI as described in the previous sections, a test on the normality of the SPI3 and V H I, distributions was
performed. The goodness of fit of the SPI3 and the V H I, distributions was verified through the histograms in Fig. 4 (panel
(a) and (b) respectively), where the boxplots represent the relative frequencies of the SPI3 and V H I,; values. Both the SPI3

and the V H I, data can therefore be considered normally distributed.
3.3 Selection of threshold values

PPVI was computed as described in Sect. 2.2 and its performance in identifying past drought events in Haiti when used in
combination with the set of rules described in Sect. 2.2.4 was evaluated. To this end, the ROC curve classification methodology
was applied. The set of rules implied that at first, cells in drought conditions were identified: drought started in a specific grid
cell at week W when PPVI was lower than the threshold Z and ended when PPVI was up to the threshold z in the same grid cell
at a week w (with w coming after W). Then a regional drought event was identified: the drought event started when more than
N cells at a specific week W7 were in drought conditions and ended at a week W5 when few than n grid cells were in drought
conditions. The comparison was performed on a weekly basis, with observations derived from the reported events described in
Table 7.

The ROC curves were computed according to the following methodology: at first a combination of the thresholds Z, z, N and
n was selected. On the basis of the set of rules established in Sect. 2.2.4, the ability of the selected combination of thresholds
in reproducing the observations was assessed by computing 7P, TN, FP and FN as defined in Table 6, together with POD and
POFD. A couple (POFD, POD) represents a point in a ROC graph. Then one threshold among Z, z, N and n was selected.
The selected threshold was variable during the analysis, while the other three were kept constant. The step of variation was
identified according to the threshold maximum and minimum values. For each combination of the four thresholds (the varying
one and the three fixed) TP, TN, FP, FN and POD and POFD were computed. The resulting set of couples (POFD, POD)
represented the ROC curve for the considered set of thresholds.

The analysis was repeated by varying another threshold among Z, z, N and n. As an example, Fig. 5 shows four ROC curves
for the thresholds in Table 9. Thresholds N and n in Table 9 are expressed as the percentage of the country’s area instead as the
number of grid cells. For each of the curves the best performing set of (Z, z, N and n) was selected by identifying the point farther
from the 45°line, as done by (Zhu-et-al52046)-Zhu et al. (2016) . The Area Under the Curve (AUC) was used as criteria to es-
tablish which of the ROC curves should be preferred (as was done by
Dutra et al. (2014); Mason and Graham (2002); Zhu et al. (2012) ). An AUC near to 1 indicates good performance while AUC
of 0.5 indicates the model has no predictive skills. From Fig. 5 it is clear that the curve corresponding to the parameters defined

as ’Set 2” in Table 9 should be preferred, since the AUC is the closest to 1.

10




3.4 Indiees-eemparisonComparison of drought indices with observed drought events

The aim of this paragraph is not to validate in absolute terms the proposed methodology since the data record is too short to
serve both for calibration and for validation. In the present section, instead, we provide a validation by comparing PPVI-with
305 the performance of PPVI in identifying observed drought events with the one of widely recognized and used indices such as
SPI and VHI.
The performance of PPVI was then compared to the one of SPI3 and VHI considered separately. Thresholds analogous to Z
and z were defined for SPI3 and VHI. Thresholds Zs and zg mark respectively the beginning and the end of drought conditions
in a grid cell according to SPI3 and thresholds Zy- and 2y do the same in the case of VHI. Again the four thresholds Z, z, N,
310 and n were varied in order to identify the optimal values. As an example Fig. 6 shows a comparison among the ROC curves
for the three indices. In each panel of Fig. 6, n and z, zg and zy (for PPVI, SPI3 and VHI) remained constant, while Z, Zg and
Zy were varying; N was fixed in each panel but varied among the panels. Z varied from -4 to -1.1 with a step equals to 0.1; Zg
varied from -3 to 0 with a step equals to 0.1 and Zy, varied from 10 to 40 with a step equal to 5.
It is clear from Fig. 6 that PPV1identified-the-reported-drought-events-better-than-SPI3-and-VHI-AUC-was-0;828-for PPV
315  0:740-for SPI3-and-0;784-for VHithe red curve, representing PPVL, is the furthest from the diagonal line in all the panels of
the figure. The Area Under the Curve (AUC) was used as criteria to establish which index gave the best performances. AUC
values are shown in Fig. 6 for each index and various configurations of the model. The AUC value of PPVI was in line with

similar results reported in literature (Mwangi et al., 2014). As can be seen from Fig. 6, the new index provided better results
with respect to the ones obtained with SPI3 or VHI considered separately. In all the four configurations shown in Fig. 6, the
320 AUC for the curve constructed with PPVI was higher than the ones for SPI3 and VHI. The AUC values are in line with the
ones considered good in the literature (see (Khadr264+6)-Khadr (2016) ) for drought predictive skills. The optimal thresholds
to configure the model when applied with each of the three considered indices were then determined by selecting the point
farther from the 45°line, as done by (Zhu-et-al520+6)-Zhu et al. (2016) . The best configurations parameters are shown in Table
10and-comesfrom-the PPVI-curve-showninpanel(e)-of Hig—6-. The drought events were therefore identified using the optimal
325 parameters (Table 10). A graphical representation of the performance of the model in reproducing observed drought events is

iven in Fig. 7. Only the period from 2000 to 2018 is shown.
The ability of the model in identifying the country area hit by the drought was also assessed. A visual comparison among

the area under drought identified by the three indices was performed, as was done by (Putta-et-al526145)-Dutta et al. (2015) .
Here some significant weeks are shown. At first, week 45 of 1995 was considered. No drought events were reported in that
330  period —Figure-7-according to the information available in the analysed documents (see Table 7). Figure 8 shows that, while
SPI3 identified all the southern part of the country as dry areas and VHI showed vegetation suffering in two departments (Centre
and West), PPVI did not show signs of drought, except for a minor number of grid cells. Figure 8-9 shows thatin 2015, when the
whole country was reported to be in severe drought conditions (see Table 7 and NOAA (2017); OXFAM and Action contre la Faim (2015) )
PPVI captured well the pattern, only a few grid cells were not in drought conditions. The SPI3 was also able to catch the situ-

335 ation, while for the VHI only 58% of the county was in drought. During week 8 of 2012, only the Northern part of the country
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was in drought (Fig. 9):+ive-10), as highlighted by USAID and FEWSNET (2012b) (see Table 7). Five departments were re-

ported to be stressed (North, North West, North East, Artibonite, Centre, see Table 7). All the three indices showed the North
West as the department most affected by drought when considering the percentage of the department area hit by the drought.
PPVI then classified Artibonite, North, Centre and North East, while SPI3 as second and third most affected departments
identified South and Grand Anse and VHI Centre and Nippes (Table 11).

Severity, duration and mean areal extent of the drought events identified by PPVI were computed. Severity was computed
as the sum of all the values identified by the condition that a grid cell is in a drought condition when PPVI is lower than -1.8
and exits from drought when PPVI is up to -1.1. Duration is expressed in months and the mean areal extent is the average
percentage of area in drought during a specific event. Results are presented in Table 12.

PPVI showed overall a better capacity in identifying drought events with respect to SPI3 and VHI considered separately.
However, some false alarms still remain. This can be linked to the uncertainty in information on past drought events for the
analysed area. Short-term droughts are often not reported in text-based documents, and information on drought start and end
date were retrieved from documents that mainly described the impacts related to drought. PPVI showed a good agreement with

reported information in identifying the areas of the country hit by the drought.

4 Conclusions

The timely identification of drought events is of great importance in agricultural areas, especially when rainfed agriculture
is practiced. At the same time, the evaluation of the damages caused by drought is a key point to select appropriate risk
management strategies, such as weather index insurance programs, agricultural index insurance, disaster financing and early
action planning. The new composite index proposed in this paper, the Probabilistic Precipitation Vegetation Index, PPVI, is a
powerful tool since it can identify events of vegetation stress, and at the same time, select among those the ones actually due to
drought, thanks to the contemporary use of both VHI and SPI. As such it can be helpful in agricultural drought monitoring and
can be used to identify drought events affecting a region, their severity and their duration as was shown in the case of Haiti. In
particular, PPVI can be precious in those areas where rainfed agriculture is of vital importance since people rely on it for food
production for personal consumption.

Among the interesting aspects of PPVI, there is the fact that few data are required for its computation: only precipitation and
the VHI. This aspect is crucial, since many composite indicators able to identify agricultural droughts already exist, but large
amounts of data are required to compute them. For example, the United States Drought Monitor combines more than 40-50
inputs, while other indices specific for agricultural drought monitoring, such as the VegDRI and the VegOut, require the use
of temperature and oceanic indices. The number of parameters required to compute PPVI is lower even with respect to OBDI,
SWS, CDI or CDSI.

A second most important advantage is that, since the SPI was computed starting from satellite precipitation (CHIRP dataset)
and that the VHI is a remote-sensing drought index, PPVI is also a remote-sensing product. The use of datasets with global

coverage means that PPVI is easily transferable and scalable over the entire globe. In addition, PPVI can be a very useful tool
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in areas with scarce gauge coverage as the Caribbean Islands. Both precipitation and the VHI have a very high spatial and
temporal resolution, thus allowing drought monitoring from satellite even in small areas. PPVI can be computed even in those
regions with short data records, since the VHI has more than 30 years of records (data collection began in August 1981); and
CHIRP precipitation are available from January 1981.

Both the SPI and the VHI are updated at weekly time-step since every week a new VHI image is released and the CHIRP
precipitation dataset has a daily temporal resolution, therefore PPVI can be updated more frequently than other composite
indices, such as CDI, which is updated every 10 days. In addition, due to the relatively short latency time (less than one week) of
both the datasets employed to create PPVI, the index is available in near-real time, therefore allows the timely implementation
of drought mitigation strategies. This last feature is of particular interest when PPVI is used to implement measure to reduce
drought risk in agriculture, where a timely identification of drought is crucial to prevent damages to the sector.

Many advantages are also related to the adoption of the set of rules here proposed to identify drought events. First of all, these
rules enable an objective and standardized identification of drought events from the mathematical point of view. Additionally,
they can be adjusted according to the needs and the objectives of various possible end users of the model, such as farmers,
governments or insurance companies.

The performances of PPVI in identifying drought events were tested in a specific case study (Haiti) and compared to the ones
of SPI and VHI considered separately. PPVI performed better than the single indices considered separately in reproducing past
drought events. PPVI identified drought areas in Haiti better than SPI and VHI even from the spatial point of view, thus it is
more reliable than a single index. A comparison of PPVI performances with respect to the ones of other composite indices was
not performed in the present study due to the unavailability of composite indices with the same characteristics of PPVI. In fact
previous composite indices do not include both the meteorological and the agricultural aspect of drought or are not available

globally, or cannot be computed with only remote sensing datasets.
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Figure 1. PPVI validation: empirical copula versus bivariate joint probability function. The red line corresponds to the 45°line. Joint proba-

bility values have been computed from Eq. 2, while empirical copula values according to Eq. 5.
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Figure 2. Map of Haiti departments.
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N =50%.
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Figure 7. Comparison between observed drought events and drought events identified by PPVI, SPI3 and VHI when calibrated with the best
erforming parameters shown in Table 10. The comparison is shown for the period from 2000 to 2018
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Figure 8. Comparison of the performance of SPI3, VHI, and PPVI in identifying the areas hit by drought. Week 45 of 1995. Departments
highlighted in red are the ones in drought according to observations (Table 7), blackred cells are the ones in drought condition according to

the various indices.
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Figure 9. Same as Fig. 7-8 but for week 33 of 2015. Departments highlighted in red are the ones in drought according to observations, black

red cells are the ones in drought condition according to the various indices.
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Figure 10. Same as Fig. 8 but for week 8 of 2012. Departments highlighted in red are the ones in drought according to observations, red cells

are the ones in drought condition according to the various indices.
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Table 3. Drought classification based on SPI according to (Mckee et al., 1993).

Category SPI Probability (%)
Extremely wet 2.00 and above 23
Severely wet 1.50 to 1.99 4.4
Moderately wet  1.00 to 1.49 9.2
Near normal -0.99 to 0.99 68.2
Moderately dry  -1.49 to -1.00 9.2
Severely dry -1.50 to -1.99 44
Extremely dry -2 and below 23
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Table 4. Drought classification based on VHI according to (Dalezios et al., 2017).

Category VHI
Extremely dry <10
Severely dry <20
Moderately dry < 30
Mild dry <40
Normal > 40
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Table 5. Drought classification according to PPVIL.

Category PPVI Probability (%)
Extremely wet 1.04 and above 23
Severely wet 0.58 to 1.03 4.4
Moderately wet  0.13 to 0.57 9.2
Near normal -1.68 t0 0.12 68.2
Moderately dry  -2.14 to -1.69 9.2
Severely dry -2.15t0 -2.59 44
Extremely dry -2.6 and below 23
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Table 6. Contingency table for the deterministic estimates of a series of binary events (Joliffe and Stephenson, 2012).

) Events Observed
Events estimated

Yes No Total
Yes T P (True Positive or Hits) F'P (False Positive or False Alarms) TP+ FP
No F'N (False Negative or Missing) T'N (True Negative or Corret rejections) FN +TN
Total TP+ FN FP+TN TP+ FP+FN+TN=T
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Table 8. Number of significant correlations (Pearson correlation coefficient) between VHI and various SPI aggregation timescales. Value is

expressed as percentage evaluated with respect to the total number of grid cells (987).

% significant correlations 5% % significant correlations 1%

SPI1 9453-93.52 90789129
SPI2 97.26-96.76 95.4495 34
SPI3 96:66-96.15 95.3494.83
SPI6 89:77-90.07 85:6185.82
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Table 9. Example of set of thresholds used to draw ROC curves for model calibration. Thresholds N and n are expressed as the percentage

of the country’s area instead as the number of grid cells.

Z z N n  Step of variation
Set 1 -2 varying from-1.9to 0 25% 10% 0.1
Set2  varying from -3.5 to -1 -1 25% 10% 0.1
Set 3 -2 -1 25%  varying from 1% to 24% 1%
Set 4 -2 -1 varying from 11% to 25% 10% 1%
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Table 10. Best configuration parameters for the model when applied with PPVI, SPI3 and VHI.

Z z N n TN FP FN TP POFD POD
PPV -1.8 -1.1 30030% 808% 957 379 99 506 0284 0.836
SP3_ <13 0. 20% 8% 943 393 ST 448 0294 0749

40



Table 11. performanee Performance of PPVI, SPI3, and VHI in identifying departments hit by drought during week 8 of 2012 and comparison
with observations. Observations are retrieved from the text-based documents reported in Table 7.

% of the area Ranking of affected departments
Department  Reported as drought PPVI  SPI3 VHI PPVI SPI3 VHI
North West  Yes 93.1 917 472 1 1 1
Artibonite Yes 75.1 728 341 2 5
North Yes 746 821 104 3 4 9
Centre Yes 672 543 457 4 10 2
North East Yes 62.1 724 345 5 8 4
West No 61.8 721 327 6 9 6
Nippes No 512 756 366 7 5 3
Grand Anse  No 478 821 104 8 3 8
South No 326 753 9 9 6 10
South East ~ No 30.8 84.6 20 10 2 7
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Table 12. Drought events in Haiti according to PPVI, duration, severity and mean areal extent.

Event number  Start date End date Duration (months)  Mean intensity PPVI ~ Minimum PPVI  Mean areal extent (%)
1 22/04/1982  21/07/1983 15 -8.46 -4.73 32.13
2 27/12/1984  07/11/1985 11 -7.87 -3.91 49.60
3 18/09/1986  16/04/1987 7 -7.90 -3.62 41.65
4 16/11/1989  18/10/1990 11 -8.60 -4.59 35.48
5 07/02/1991  11/02/1993 25 -8.70 -4.69 44.92
6 16/09/1993  27/01/1994 4 -8.95 -4.48 36.98
7 11/08/1994  10/11/1994 3 -8.53 -3.50 50.11
8 20/03/1997  20/11/1997 8 -8.43 -4.32 46.00
9 30/03/2000  21/09/2000 6 -8.31 -3.79 74.07
10 30/11/2000  19/04/2001 5 -7.98 -4.75 24.58
11 09/08/2001  06/12/2001 4 -7.85 -3.52 30.23
12 04/04/2002  08/08/2002 4 -8.25 -3.47 26.20
13 19/12/2002  30/10/2003 11 -1.72 -3.44 29.31
14 15/04/2004  22/07/2004 3 -7.69 -3.37 17.89
15 02/12/2004  26/05/2005 6 -9.00 -4.40 79.00
16 23/03/2006  13/07/2006 4 -7.46 -343 22.97
17 21/02/2008  31/07/2008 5 -7.95 -3.78 30.07
18 17/09/2009  18/02/2010 5 -8.58 -3.95 57.48
19 21/04/2011  16/06/2011 2 -9.32 -4.14 48.28
20 29/12/2011  05/04/2012 3 -8.12 -3.91 62.52
21 19/07/2012  25/10/2012 3 -8.33 -3.62 42.16
22 07/03/2013  05/05/2016 39 -8.18 -4.00 34.50
23 29/09/2016  20/04/2017 7 -8.20 -4.06 15.02
24 12/07/2018  31/12/2018 6 -9.50 -5.58 58.50
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