
Authors response to Referee #1 

We thank Referee #1 for the feedback provided. All the comments and the suggestions were useful to 

improve the quality and the readability of the paper. Detailed responses to each comment are given below 

together with the changes that will be done in the revised version of the manuscript. RC indicates the referee 

comments, AC the authors comments. To help referees to visualize the changes that will be done in the 

revised version of the manuscript we reported both the original manuscript’s text and the authors changes 

to the manuscript.  

 

RC1: Line 31: the two question marks should be deleted 

AC: it’s a mistake due to a missing reference. 

Original manuscript: Meteorological drought is related to precipitation shortages; hydrological drought 

refers to periods of precipitation shortfall on surface or subsurface water supply ??, while agricultural 

drought is conventionally linked to soil moisture deficit. 

Author’s changes to the manuscript (Lines 31-32): Meteorological drought is related to precipitation 

shortages; hydrological drought refers to periods of precipitation shortfall on surface or subsurface water 

supply (Sheffield & Wood, 2011) while agricultural drought is conventionally linked to soil moisture deficit. 

 

RC1: Line 248-251: The authors should explain why they used the Spearman correlation instead of the most 

common Pearson correlation coefficient. Of course, there is a reference concerning this subject (Wedgbrow 

et al., 2002) but this obliges the reader to find the reference in order to be informed.  

AC: We have reconsidered the use of the Pearson correlation coefficient instead of Spearman. In fact, the 

use of the Pearson correlation coefficient could be preferable when dealing with normal variables. Therefore, 

the Spearman correlation coefficient has been substituted with the Pearson correlation coefficient. The 

manuscript will be changed accordingly. 

Original manuscript: While in the majority of the papers the Pearson correlation coefficient was employed, 

in the present study the Spearman correlation coefficient was preferred as a measure of the statistical 

relationship between the indices, as suggested in (Wedgbrow et al., 2002). The number of significant 

correlations at 5% and 1% was evaluated for four SPI aggregation timescales (Table 8). The highest number 

of significant correlations was found in the cases of SPI2 and SPI3, which exhibit very similar performances 

at 1% significant level. This finding is in agreement with previous studies such as (Hongshuo et al., 2014) that 

found that VHI and SPI3 have the highest correlation for croplands, whereas VHI and 6-month SPI have the 

highest correlation for forest in the Southwest of China; and (Ma’rufah, 2017) that found that significant 

correlation coefficient values on SPI3 and VHI are common in the southern part of Indonesia. Since SPI3 has 

been used in literature and the percentage of significant correlation at 1% level is relevant, it has been 

decided to aggregate SPI over a 3 months period and use SPI3 in the following discussion. 

Table 8: Number of significant correlations between VHI and various SPI aggregation timescales. Value is expressed as percentage 

evaluated with respect to the total number of grid cells (987). 

 
% significant correlations 5% % significant correlations 1% 

SPI1 94.53 90.78 

SPI2 97.26 95.44 

SPI3 96.66 95.34 

SPI6 89.77 85.61 



 

Author’s changes to the manuscript (Lines 248-259): The Pearson correlation coefficient was employed in 

the present study as a measure of the statistical relationship between the indices. The number of significant 

correlations at 5% and 1% was evaluated for four SPI aggregation timescales (Table 8). The highest number 

of significant correlations was found in the cases of SPI2 and SPI3, which exhibit very similar performances 

at 1% significant level. This finding is in agreement with previous studies such as (Hongshuo et al., 2014) that 

found that VHI and SPI3 have the highest correlation for croplands, whereas VHI and 6-month SPI have the 

highest correlation for forest in the Southwest of China; and (Ma’rufah, 2017) that found that significant 

correlation coefficient values on SPI3 and VHI are common in the southern part of Indonesia. Since SPI3 has 

been used in literature and the percentage of significant correlation at 1% level is relevant, it has been 

decided to aggregate SPI over a 3 months period and use SPI3 in the following discussion. 

Table 8: Number of significant correlations (Pearson correlation coefficient) between VHI and various SPI aggregation timescales. 

Value is expressed as percentage evaluated with respect to the total number of grid cells (987). 

 
% significant correlations 5% % significant correlations 1% 

SPI1 93.52 91.29 

SPI2 96.76 95.34 

SPI3 96.15 94.83 

SPI6 90.07 85.82 

 

 

RC1: Line 300-301: “It’s clear from Fig.6 that PPVI identified the reported drought events better than SPI3 

and VHI. AUC was 0.828 for PPVI, 0.740 for SPI3 and 0.784 for VHI.” We cannot observe the values 0.828 for 

PPVI, 0.740 for SPI3 and 0.784 for VHI referred in the figures.  

AC: The sentence can be rephrased, and the Figure 6 can be adjusted as follows.  

Original manuscript: It’s clear from Fig.6 that PPVI identified the reported drought events better than SPI3 

and VHI. AUC was 0.828 for PPVI, 0.740 for SPI3 and 0.784 for VHI. 

Author’s changes to the manuscript (Lines 300-304): It’s clear from Fig. 6 that the red curve, representing 

PPVI, is the furthest from the diagonal line in all the panels of the figure. The Area Under the Curve (AUC) 

was used as criteria to establish which index gave the best performances. AUC values are shown in Fig. 6 for 

each index and various configurations of the model.  



 

Figure 6: Comparison among the performances of SPI3, VHI and PPVI in identifying reported drought events; thresholds Z, 𝑍𝑆 and 𝑍𝑉 

are varying, 𝑧 = −1.1, 𝑧𝑠 = 0 and 𝑧𝑉 = 40; n = 80 and four cases for N are shown: (a): N = 10%; (b): N = 20%; (c):N = 30% and (d): 

N=50%. 

 

 

RC1:  Lines 326-328: ‘Short-term droughts are often not reported in text-based documents, and information 

on drought start and end date were retrieved from documents that mainly described the impacts related to 

drought. PPVI showed a good agreement with reported information in identifying the areas of the country 

hit by the drought.’ In Fig. 7, in the ‘Observation’ sub-figure, no department is highlighted in red. Does this 

mean that no drought was observed, or is this a mistake? In the former case, the authors should comment 

on this situation. In Figures 7 to 9 there is a comparison of indices and ‘Observation’ concerning the various 

departments of Haiti. Please define the criteria according to which a department is highlighted in red 

(drought conditions). Table 11. ‘Reported as drought’: Define the criteria of this classification. 

AC: In Fig.7 no department was highlighted in red since no drought was observed during that week according 

to text-based documents regarding droughts in Haiti. Departments are highlighted in red if, according to the 

documents cited in Table 7, drought was observed during that week in the department. The same criteria 

were adopted in Table 11 to establish if, according to observations, a department was in drought.  

Figure 7, 8 and 9 will be modified to include a legend to clearly distinguish between departments in drought 

and departments not in drought. A description of the criteria used to define drought according to observation 



will be given. The text of the manuscript will be modified to clarify the criteria adopted to identify drought in 

the various departments. 

Author’s changes to the manuscript: (Lines 310 – 319): At first, week 45 of 1995 was considered. No drought 

events were reported in that period according to the information available in the analysed documents (see 

Table7). Figure 7 shows that, while SPI3 identified all the southern part of the country as dry areas and VHI 

showed vegetation suffering in two departments (Centre and West), PPVI did not show signs of drought, 

except for a minor number of grid cells. Figure 8 shows that in 2015, when the whole country was reported 

to be in severe drought conditions (see Table 7 and (NOAA, 2017; OXFAM & Action conte la Faim, 2015)), 

PPVI captured well the pattern, only a few grid cells were not in drought conditions. The SPI3 was also able 

to catch the situation, while for the VHI only 58% of the county was in drought. During week 8 of 2012, only 

the Northern part of the country was in drought (Fig. 9), as highlighted by (USAID & FEWSNET, 2012) (see 

Table 7). Five departments were reported to be stressed (North, North West, North East, Artibonite, Centre, 

see Table 7). All the three indices showed the North West as the department most affected by drought when 

considering the percentage of the department area hit by the drought. PPVI then classified Artibonite, North, 

Centre and North East, while SPI3 as second and third most affected departments identified South and Grand 

Anse and VHI Centre and Nippes (Table 11). 

 

Figure 7: Comparison of the performance of SPI3, VHI, and PPVI in identifying the areas hit by drought. Week 45 of 1995. Departments 

highlighted in red are the ones in drought according to observations (Table 7), red cells are the ones in drought condition according 

to the various indices. 

 

Figure 8: Same as Fig. 7 but for week 33 of 2015. Departments highlighted in red are the ones in drought according to observations, 

red cells are the ones in drought condition according to the various indices. 

 

Figure 9: Same as Fig. 7 but for week 8 of 2012. Departments highlighted in red are the ones in drought according to observations, 

red cells are the ones in drought condition according to the various indices. 

 



 

Table 11. Performance of PPVI, SPI3, and VHI in identifying departments hit by drought during week 8 of 2012 and comparison with 

observations. Observations are retrieved from the text-based documents reported in Table 7.  

  
% of the area Ranking of affected departments 

        

Department Reported as in 
drought 

PPVI SPI3 VHI PPVI SPI3 VHI 

North West Yes 93.1 91.7 47.2 1 1 1 

Artibonite Yes 75.1 72.8 34.1 2 7 5 

North Yes 74.6 82.1 10.4 3 4 9 

Centre Yes 67.2 54.3 45.7 4 10 2 

North East Yes 62.1 72.4 34.5 5 8 4 

West No  61.8 72.1 32.7 6 9 6 

Nippes No  51.2 75.6 36.6 7 5 3 

Grand Anse No  47.8 82.1 10.4 8 3 8 

South No  32.6 75.3 9 9 6 10 

South East No  30.8 84.6 20 10 2 7 

 

 

 

RC1:  A comparison of PPVI performances to the ones of other composite indices, would be a considerable 

improvement. 

AC: As already discussed in the manuscript (lines 365-368), a comparison with other composite indices is 

hard, due to the unavailability of composite indices with the same characteristics of PPVI. In fact, previous 

composite indices do not include both the meteorological and the agricultural aspect of drought or are not 

available globally or cannot be computed with only remote sensing datasets. In addition, VHI is already a 

composite drought index since it is derived from the linear combination of TCI and VCI. Therefore, in the 

manuscript, a comparison of PPVI performance with respect to the ones of a composite drought index was 

already performed.  
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Authors response to Referee #2 

We would like to thank Referee #2 for the insightful comments on the paper. Detailed responses to each 

comment are given below together with the changes that will be done in the revised version of the 

manuscript. RC indicates the referee comments, AC the authors comments. To help referees to visualize the 

changes that will be done in the revised version of the manuscript we reported both the original manuscript’s 

text and the authors changes to the manuscript.  

 

RC2: Use of CHIRP dataset instead of the CHIRPS dataset. Please justify why the CHIRP dataset is used for the 

study area. Based on the study of Funk el al., 2015 it is proved that constraining the CHIRP by the CHPclim 

reduces systematic errors and the CHIRPS dataset produces low MAE and bias statistic than the CHIRP 

dataset.  

AC: The authors are aware of the biases in the CHIRP dataset, but they aim at proposing an index for drought 

monitoring in near-real time; therefore, they selected the product with the shortest latency time. The main 

reason for using CHIRP instead of CHIRPS is the reduced latency time of the first dataset. In fact, as reported 

by (Funk et al., 2015), CHIRPS latency time is about three weeks; a preliminary version of CHIRPS with a 2-

day latency time is available for GTS and Mexico only. In the case of CHIRP, latency time is about 2 days, and 

the product is available all over the world. CHIRP latency time can be checked at (Climate Hazard Group, 

2015) by looking at the availability of the images.  

Original manuscript: The use of CHIRP instead of CHIRPS (the Climate Hazard Group Infrared Precipitation 

with Stations) is related to the data latency time, which is shorter in the case of CHIRP since it doesn’t include 

data from weather stations.  

Author’s changes to the manuscript (lines 107-111): The use of CHIRP instead of CHIRPS (the Climate Hazard 

Group Infrared Precipitation with Stations) is related to the data latency time. Since the aim of the work is 

the development of an index for near-real time drought monitoring, the product with the shortest latency 

time was selected. CHIRPS data have a latency time of about three weeks (Funk et al., 2015), while CHIRP’s 

latency is about 2 days, as can be checked on the dataset website (Climate Hazard Group, 2015) 

RC2: It would be interesting to see a comparison of the observed precipitation pattern with the used rainfall 

dataset. How close is the used dataset with the observed rainfall in Haiti? Please, provide scientific evidence 

in the revised manuscript which demonstrates the superiority of the used dataset when compared with the 

CHIRPS dataset for spatial and temporal (monthly) rainfall modelling at the study area.  

AC: Unfortunately, as highlighted by (Mari et al., 2015) “Systematic collection of rainfall through rain gauges 

has been relatively rare in post-earthquake Haiti, with on-the-ground rainfall measurements available only 

for Ouest (by USGS) and Sud (by Haiti Regeneration Initiative) departments”. A map of existing rain gauges 

in Haiti reported in Eisenberg et al. (2013) shows the presence of only 5 gauges all over the country recording 

for a short period of time. Thus, a comparison between observed precipitation and rainfall retrieved from 

satellite images is not very feasible. The authors tried to overcome the issue providing a comparison with 

observed drought events, retrieved from text-based documents and international disasters databases, in 

Section 3.4 of the manuscript. 

RC2: Vegetation Health Index: It should be mentioned that all remote sensing indices could be expressed as 

deviations from the mean using the standardization procedure (i.e. Mckee at al., 1993) as used by Peters et 

al. [2002]. Hence the adopted classification of VHI using Eq. 1 is a transformation procedure of the typical 

VHI (from 0 to 1) to a normal distribution using the standardization procedure as proposed by Peters et 

al.,[2002]. I recommend to the authors to clarify this issue on the revised manuscript and to mention that 

equal weighting is used for VCI and TCI.  



AC: All these comments will be addressed in the revised manuscript as follows. 

Original manuscript: The VHI is a remote-sensing index developed to include the effects of temperature on 

vegetation; in fact, it combines the VCI with the Temperature Condition Index (TCI), which is another remote-

sensing index used to determine vegetation stress caused by temperature and excessive wetness. One 

drawback of the VHI is the impossibility to identify the cause of the vegetation stress; in fact, vegetation can 

suffer because of various events: excessive wetness, pests, fires, droughts or others. It is a biophysical 

indicator of a lack of precipitation but can also be seen as representing drought impacts on the ground 

(Bachmair et al., 2016). It goes from 0, which stands for vegetation in very bad conditions to 100, meaning 

perfectly healthy vegetation. The classification scheme of VHI, as proposed in (Dalezios et al., 2017) is 

presented in Table 4. 

The VHI is standardized according to the following equation: 

𝑉𝐻𝐼𝑠𝑡 =
𝑉𝐻𝐼 − 𝑉𝐻𝐼̅̅ ̅̅ ̅

𝜎
 

where 𝑉𝐻𝐼̅̅ ̅̅ ̅  is the mean of the distribution and σ its standard deviation. The standardized variable, 𝑉𝐻𝐼𝑠𝑡, 

has a distribution with 0 mean and 1 as standard deviation. 

Author’s changes to the manuscript (lines 134-144): The VHI is a remote-sensing index developed to include 

the effects of temperature on vegetation; in fact, it combines the VCI with the Temperature Condition Index 

(TCI) which is another remote-sensing index used to determine vegetation stress caused by temperature and 

excessive wetness. The VHI is based on a linear combination of VCI and TCI, 𝑉𝐻𝐼 = 𝛼𝑉𝐶𝐼 + (1 − 𝛼)𝑇𝐶𝐼. As 

suggested by Kogan et al. (2016), when VCI and TCI contributions are not known 𝛼 = 0.5. One drawback of 

the VHI is the impossibility to identify the cause of the vegetation stress; in fact, vegetation can suffer because 

of various events: excessive wetness, pests, fires, droughts or others. It is a biophysical indicator of a lack of 

precipitation but can also be seen as representing drought impacts on the ground (Bachmair et al., 2016). It 

goes from 0, which stands for vegetation in very bad conditions to 100, meaning perfectly healthy vegetation. 

The classification scheme of VHI, as proposed in Dalezios et al. (2017), is presented in Table 4. 

The VHI is standardized to make comparisons with the SPI easier. As mentioned by Peters et al. (2002), all 

remote-sensing indices can be expressed as deviations from the mean; therefore, the standardized variable, 

𝑉𝐻𝐼𝑠𝑡, is computed according to the following equation:  

𝑉𝐻𝐼𝑠𝑡 =
𝑉𝐻𝐼 − 𝑉𝐻𝐼̅̅ ̅̅ ̅

𝜎
 

Thus, the same procedure proposed in Peters et al. (2002) in the case of the NDVI has been applied to the 

VHI.  

 

RC2: Furthermore, please discuss why VHI is used using the approach of Kogan and why VHI and TCI are not 

first standardized and then combined with equal [see also Bento et al., 2018a,b] weighting in a probabilistic 

form to give the VHI (similar approach to PPVI or the approach of multivariate distributions using parametric 

[Hao and AgaKouchack, 2013] or a non-parametric approaches [Hao and AgaKouchack, 2014] 

AC: The VHI as proposed by Kogan was used since it is a consolidated product, already applied to monitor 

vegetation health in various studies concerning different topics such as food security (Kogan, 2019), 

insurance (Bokusheva et al., 2016) and drought identification (Pei et al., 2018; Sholihah et al., 2016). As above 

mentioned, the VHI was standardized to facilitate the interpretation of the index inside the bivariate context. 

PPVI values do not change if PPVI is computed by combining SPI3 and non-standardized VHI through the 

bivariate normal distribution function (see panel (a) of Fig. 1). In addition, the authors computed 𝑉𝐻𝐼𝑠𝑡 by a 



linear combination of standardized TCI (𝑇𝐶𝐼𝑠𝑡) and standardized VCI (𝑉𝐶𝐼𝑠𝑡), applying equal weighting of the 

two indices, with 𝑇𝐶𝐼𝑠𝑡 and 𝑉𝐶𝐼𝑠𝑡 computed according to Peters et al. (2002). PPVI values do not change, as 

shown in panel (b) of Figure 1.  

 

 

Figure 1: (a): relationship between PPVI computed from 𝑉𝐻𝐼𝑠𝑡 and PPVI computed from VHI; (b): relationship between PPVI computed 

from 𝑉𝐻𝐼𝑠𝑡  and PPVI computed from 𝑉𝐻𝐼𝑠𝑡 retrieved from linear combination of 𝑉𝐶𝐼𝑠𝑡 and 𝑇𝐶𝐼𝑠𝑡. 

RC2: Comparison with identified drought events. Is it possible to include a section with a comparison of PPVI 

with historical identified drought events? This comparison could exemplify the proposed index and 

strengthen the scientific quality of the manuscript.  

AC: The comparison with identified drought events, reported in Table 7 of the original manuscript and 

identified from text-based documents such as governmental reports and international disaster databases, is 

already reported in the manuscript in Section 3.4, “Indices comparison”, where PPVI performance in 

reproducing observed drought events is compared with SPI3 and VHI performance. To make the manuscript 

clearer on this aspect, Section 3.4 “Indices comparison” will be renamed in “Comparison of drought indices 

with observed drought events”.  In addition, Figure 2 will be added in Section 3.4 (as Figure 7 in the revised 

manuscript) to allow an easy comparison between drought indices performance in identifying observed 

drought events. 

 

Figure 2: comparison between observed drought events and drought events identified by PPVI, SPI3 and VHI when calibrated with the 

best performing parameters shown in Table 10. The comparison is shown for the period from 2000 to 2018.  

Table 10 will be modified to show the best performing parameters not only for PPVI but for all the three 

indices. 

Table 10: Best configuration parameters for the model when applied with PPVI, SPI3 and VHI. 

 
Z z N n TN FP FN TP POFD POD 



PPVI -1.8 -1.1 30% 8% 957 379 99 506 0.284 0.836 

SPI3 -1.3 0 20% 8% 943 393 157 448 0.294 0.740 

VHI 22 40 10% 8% 935 401 150 455 0.300 0.752 
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List of changes made in the manuscript 

Line 18: Organizations changed with Organization. 

Line 31: “subsurface” has been deleted. 

Line 31: question marks have been deleted, a reference has been included. 

Line 41: (Gu et al.,2008) changed in Gu et al. (2008). 

Line 52: VegDri has been defined.  

Line 60: (Serinaldi et al.,2009) and (Bonaccorso et al., 2012) changed in Serinaldi et al. (200) and Bonaccorso 

et al. (2012). 

Line 61: (Shiau et al., 2006) changed in Shiau et al. (2006). 

Line 64: (Songbai and Singh, 2010) changed in Songbai and Sing (2010). 

Line 70: AMDI-SA has been defined. 

Line 79: Temeprature has been corrected. 

Lines 108-110: the sentence has been changed according to the answer given to Referee #2. 

Line 111: (Funk et al.2015) changed in Funk et al. (2015). 

Line 131: (Mckee et al.,1993) changed in Mckee et al. (1993). 

Line 137: a sentence has been added to answer Referee #2 comments. 

Line 141: (Dalezios et al.2017) changed in Dalezios et al. (2017). 

Line 142: a sentence has been added to answer Referee #2 comments. 

Line 153: (USDA Risk Management Agency et al., 2006) changed in USDA Risk Management Agency et al. 

(2006). 

Line 157: (Kotz et al., 2000) changed in Kotz et al. (2000). 

Line 165: Eq. 3 and Eq. 4 changed in Eqs 3 and 4. 

Line 170: (Nelsen, 2006) changed in Nelsen (2006). 

Line 189: (Joliffe and Stephenson, 2012) changed in Joliffe and Stephenson (2012). 

Line 248: NAO has been defined. 

Line 249: (Hongshuo et al., 2014) changed in Hongshuo et al. (2014). 

Lines 249-260: The Spearman correlation coefficient has been substituted with the Pearson correlation 

coefficient. Results have been changed accordingly. 

Line 290: Section “Indices comparison” has been renamed into “Comparison of drought indices with observed 

drought events”. 

Line 294: a sentence has been changed to address referees’ comments. 

Lines 301-304: a sentence has been added to address referees’ comments. 

Line 320: a sentence has been added to describe the newly introduced Figure 7. 



Figure 6: AUC values have been corrected. 

Figure 7: introduced to answer to the comments of Referee #2. 

Figure 8-9-10: Figures have been changed to make them clearer. 

Table 8: adjusted to report the number of significant correlations according to the Pearson correlation 

coefficient instead of the Spearman ones. 

Table 10: best performing values for SPI3 and VHI have been added. 

Table 11: the caption has been changed to specify the criteria for identifying departments in drought 

according to historical documents. 
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Abstract. Since drought is a multifaceted phenomenon, more than one variable should be considered for a proper understand-

ing of such extreme event in order to implement adequate risk mitigation strategies such as weather or agricultural indices

insurance programs, or disaster risk financing tools. This paper proposes a new composite drought index that accounts for

both meteorological and agricultural drought conditions, by combining in a probabilistic framework two consolidated drought

indices: the Standardized Precipitation Index (SPI) and the Vegetation Health Index (VHI). The new index, called Probabilistic5

Precipitation Vegetation Index (PPVI), is scalable, transferable all over the globe and can be updated in near-real time. Fur-

thermore, it is a remote-sensing product, since precipitation are retrieved from satellite and the VHI is a remote-sensing index.

In addition, a set of rules to objectively identify drought events is developed and implemented. Both the index and the set of

rules have been applied to Haiti. The performance of PPVI has been evaluated by means of the Receiver Operating Character-

istics curve and compared to the ones of SPI and VHI considered separately. The new index outperformed SPI and VHI both10

in drought identification and characterization, thus revealing potential for an effective implementation within drought early

warning systems.

Copyright statement. TEXT

1 Introduction

Droughts affect every year an increasing number of people. In the years from 2014 to 2018 more than 70 drought events have15

been reported all over the world and about 450 million people suffered because of drought-related impacts (CRED, 2017).

Due to its complexity, various definitions of the phenomenon have been proposed by different institutions, such as the World

Meteorological Organizations
::::::::::
Organization

:
(WMO), the Food and Agriculture Organization (FAO) and the United Nations

Convention to Combat Desertification (UNCCD). All the institutions focus their attention on a specific aspect of drought: the

WMO on the lack of precipitation, the FAO on the decline in crop productivity and the UNCCD on the loss of arable land.20
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In addition, the quantification of drought effects is a complicated task, since drought impacts are non-structural, widespread

over large areas, and of different type and magnitude within the drought-affected area, also depending on economic, social and

environmental system vulnerabilities (Wilhite, 2000).

Drought identification through an objective and automatic determination of drought onset, termination and severity allows

the timely adoption of appropriate risk management strategies, such as weather index insurance programs (Barnett and Mahul,25

2007), agricultural index insurance programs (Jensen and Barrett, 2017), disaster financing (Guimarães Nobre et al., 2019;

Linnerooth-Bayer and Hochrainer-Stigler, 2015) and early action planning (Drechsler and Soe, 2016).

Drought features are usually determined through the use of two instruments: indicators, which are variables and parameters

used to assess drought conditions (such as precipitation, temperature, and others), and indices, which are numerically computed

values from meteorological or hydrological inputs (World Meteorological Organization and Global Water Partnership, 2016).30

More than 100 indices have been developed by the scientific community (Zargar et al., 2011), each one focusing on a specific

aspect of drought (meteorological, hydrological, agricultural and so on). Meteorological drought is related to precipitation

shortages; hydrological drought refers to periods of precipitation shortfall on surface or subsurface water supply ??
:::::
water

:::::
supply

::::::::::::::::::::::::
(Sheffield and Wood, 2011) , while agricultural drought is conventionally linked to soil moisture deficit. Insufficient

soil moisture leads to crop failure and consequent yield reduction; therefore the first economic sector suffering because of35

drought is agriculture, particularly in those areas where it relies on rainfall. A deeper understanding of agricultural drought

dynamics can promote the adoption of risk reduction strategies, such as crop insurance programs.

In recent years various remote-sensing indices have been developed and can be employed in agricultural drought monitoring.

The most widespread is the Normalized Difference Vegetation Index (NDVI), which uses NOAA AVHRR satellite data to

monitor vegetation greenness (Kogan, 1995a). The main advantages of the NDVI are the very high spatial resolution and the40

global coverage. The NDVI has already been applied in drought monitoring, such as in (Gu et al., 2008)
:::::::::::::
Gu et al. (2008) .

Many products were derived from the NDVI, such as the Vegetation Condition Index (VCI), which compares the current NDVI

to the range of values observed in the same period in previous years (Liu and Kogan, 1996; Kogan, 1995b) and the Standardized

Vegetation Index (SVI), which describes the probability of vegetation condition deviation from normal (Peters et al., 2002). A

suite of agricultural drought indices is presented in Table 1.45

Since drought is a complex phenomenon, a single index or indicator can be insufficient to fully characterize drought severity

and extent. The combination of more than one indicator can be precious to evaluate all the variables involved in drought

monitoring, such as precipitation, soil moisture, and streamflow. Over the past 20 years many composite indicators, relying on

two or more drought indices or indicators, have been proposed to overcome the issues related to the use of a single variable.

Table 2 shows a list of selected composite indices that can be used in agricultural drought monitoring since, in their formulation50

soil moisture, vegetation condition or variables related to water availability for plants are included.

Multiple methods for taking into account the multivariate behaviour of drought have been explored (Hao and Singh, 2015,

2016). The VegDRI
:::::::::
Vegetation

:::::::
Drought

:::::::::
Response

:::::
Index

:::::::::
(VegDRI), for example, uses a data mining approach to combine

multiple inputs such as the SPI, the NDVI and the Palmer Drought Severity Index (PDSI). A weighted linear combination

of the inputs is quite common; it is applied to construct the Composite Drought Indicator (CDI) for Morocco, the Vegetation55
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Health Index (VHI) and the Objective Blend of Drought Indicators (OBDI). The United States Drought Monitor (USDM) also

applies a weighted linear combination of the inputs but adds an expert judgment to define the drought class.

In the last years multiple studies focused the attention on modelling the joint behaviour of two drought characteristics or in-

dices applying bivariate or multivariate statistical approaches. In various cases bivariate distributions are developed by means of

copulas as in (Serinaldi et al., 2009) and (Bonaccorso et al., 2012)
:::::::::::::::::::::
Serinaldi et al. (2009) and

:::::::::::::::::::::
Bonaccorso et al. (2012) , where60

the joint behaviour of various drought properties is investigated; or in (Shiau, 2006)
:::::::::::
Shiau (2006) , where two-dimensional cop-

ulas are employed to study the joint behaviour of drought duration and severity in Taiwan. (Shiau et al., 2007)
:::::::::::::::
Shiau et al. (2007)

investigates also the hydrological droughts of the Yellow River in China using a bivariate distribution to model drought dura-

tion and severity jointly. Trivariate Plackett copula is used in (Songbai and Singh, 2010)
::::::::::::::::::::::
Songbai and Singh (2010) to model

drought duration, severity and inter-arrival time jointly.65

The use of copulas to quantify the joint behaviour of drought indices is gaining popularity too. Many drought indices derived

by multivariate distributions have been proposed. For example the Multivariate Standardized Drought Index (MSDI) (Hao and

Aghakouchak, 2013), which combines the SPI and the Standardized Soil Moisture Index (SSI), uses copula to form joint prob-

abilities of precipitation and soil moisture content, while the Joint Drought Index (JDI) (Kao and Govindaraju, 2010) does the

same for obtaining the joint probabilities while considering precipitation and streamflow.
:::
The

:::::::::
composite

:::::::::::::::::
Agrometeorological70

:::::::
Drought

:::::
Index

:::::::::
accounting

:::
for

::::::::::
Seasonality

:::
and

:::::::::::::
Autocorrelation

::
(AMDI-SA

:
) combines two drought indices, the Modified SPI,

and the Modified SSI, employing both the copula concept and the Kendall function (Bateni et al., 2018). The use of copulas

seems promising and is highly effective when dealing with two or more variables. An advantage of copula functions is the fact

that the index derived from this approach has a probabilistic form.

Both single and composite indices for agricultural drought monitoring showed some limitations, highlighted in Table 1 and75

Table 2. Single indices often rely on multiple inputs or are available only for some locations or identify all types of vegetation

stresses. In any cases single indices do not account for the multivariate nature of drought. Composite indices often rely on

relatively new datasets; in many cases a short period of record is available (for example the VegDri records start in 2009) or

the index is not available in near-real time; some of them are specifically designed for a well identified region (the OBDI and

the USDM are available only for the USA, the Combined Drought Indicator (CDI) only for Europe); other indices do not80

consider the meteorological aspect of drought (Temperature Vegetation Index, TVX, and Vegetation Temeprature
::::::::::
Temperature

Condition Index, VTCI, are based on the NDVI and the land surface temperature); other ones do not have a sufficiently refined

spatial resolution (MSDI). Most of them, with the exception of AMDI-SA and MSDI are not expressed in probabilistic terms,

therefore uncertainty quantification and evaluation is not an easy task.

In this paper, we propose:85

1. A new drought index, the Probabilistic Precipitation Vegetation Index (PPVI), that takes the advantage of well consol-

idated indices, the Standardized Precipitation Index (SPI) (Mckee et al., 1993) and the Vegetation Health Index (VHI)

(Kogan, 1997) and tries to overcome their individual limitations by coupling them in a probabilistic framework through

the use of a bivariate normal distribution function.
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2. A framework to identify a drought event using the new index, i.e. a set of rules for the definition of a drought event.90

When the set of conditions is verified, a drought event is identified based on the new index. Otherwise, no drought event

is identified.

With respect to the indices already available in literature, we will show in this paper that the new index has some interesting

features:

• it is able to identify drought-driven events of vegetation stress;95

• it is parsimonious in terms of number of inputs required;

• it is a remote sensing product with high spatial and temporal resolution;

• it is based on quasi-near real time datasets, with a relatively short latency time (less than one week);

• more than 30 years of records are available at global scale for its calibration.

The paper is structured as follows: Sect.2 describes the datasets employed in the development of the new index and presents100

the methodology used to combine the SPI and the VHI; Sect. 3 illustrates the application to the case study, shows the vali-

dation process of the new index and compares the performance of the new index to those of the SPI and the VHI considered

separately; in addition the advantages related to the adoption of the index and the possible applications in agricultural drought

risk management are summarized.

2 Datasets and Methods105

2.1 Datasets

Two remote-sensing datasets were used: one for precipitation and the other for the VHI. Precipitation was retrieved from

the satellite-only Climate Hazard Group Infrared Precipitation (CHIRP) dataset. CHIRP has a quasi-global coverage (50°S -

50°N), high spatial resolution (0,05
:::
0.05°) and daily, pentadal and monthly temporal resolution. Records start from 1/1/1981.

CHIRP was chosen because it has been specifically developed to monitor agricultural drought. The use of CHIRP instead of110

CHIRPS (the Climate Hazard Group Infrared Precipitation with Stations) is related to the data latency time, which is shorter

in the case of CHIRP since it doesn’t include data from weather stations.
:::::
Since

:::
the

::::
aim

::
of

::::
the

::::
work

::
is
:::

the
:::::::::::

development
:::

of

::
an

:::::
index

:::
for

::::::::
near-real

::::
time

:::::::
drought

::::::::::
monitoring,

:::
the

:::::::
product

::::
with

:::
the

:::::::
shortest

::::::
latency

::::
time

::::
was

::::::::
selected.

:::::::
CHIRPS

::::
data

:::::
have

:
a
::::::
latency

:::::
time

::
of

:::::
about

:::::
three

:::::
weeks

:::::::::::::::::
(Funk et al., 2015) ,

:::::
while

::::::::
CHIRP’s

:::::::
latency

::
is

:::::
about

:
2
:::::

days,
:::
as

:::
can

:::
be

:::::::
checked

:::
on

:::
the

::::::
dataset

::::::
website

::::::::::::::::::::::::::
(Climate Hazard Group, 2015) . The development and the main characteristics of the dataset are described115

in (Funk et al., 2015)
::::::::::::::
Funk et al. (2015) . In the present study CHIRP with a daily temporal resolution was used to have the

possibility to compute weekly precipitation. Data are available on the project website (Climate Hazard Group, 1999).

The Vegetation Health Index was retrieved from the Global Vegetation Health Products (Global VHP) of the National

Oceanic and Atmospheric Administration Center of Satellite Applications and Research (Kogan, 1997). Data can be retrieved
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at the NOAA website (NOAA, 2011). The dataset contains Blended-VHP derived from VIIRS (2013-present) and AVHRR120

(1981-2012) GAC data. The dataset has 4km spatial resolution, weekly temporal resolution, and global coverage. Both the

selected datasets are freely available.

2.2 Methods

2.2.1 The Standardized Precipitation Index

As previously mentioned, two consolidate drought indices were combined: the SPI and the VHI. The SPI was selected because125

it is a commonly used index to detect meteorological drought, it is standardized, therefore SPI values can be compared even in

different climate regimes and it is recommended by the WMO (World Meteorological Organization, 2009).

SPI computation is based on a long-term precipitation record for a desired period. The precipitation record is then fitted

to a probability distribution (in this work a gamma distribution was used), which is then transformed into a normal distribu-

tion. Traditionally monthly precipitation records are employed, and SPI is computed aggregating precipitation at a predefined130

timestep (for example 1 month, 3 months, 6 months, 9 months and 12 months are the aggregation periods suggested by the

WMO (World Meteorological Organization, 2009)).

In the present work, weekly precipitation records were used. The SPI aggregation period was then selected and the index,

computed over one of the the traditional aggregation periods, was updated every week. SPI is normal distributed by definition.

Conventionally drought starts when SPI is lower than -1 and ends when SPI comes back to the value of 0 (Mckee et al., 1993).135

Drought classification according to SPI, as proposed in (Mckee et al., 1993)
::::::::::::::::
Mckee et al. (1993) , is reported in Table 3. The

percentages reported in the third column of Table 3 indicate the probability for SPI values to fall within the range reported in

the second column of the same table.

2.2.2 The Vegetation Health Index

The VHI is a remote-sensing index developed to include the effects of temperature on vegetation; in fact, it combines the140

VCI with the Temperature Condition Index (TCI) (Kogan, 1995a), which is another remote-sensing index used to determine

vegetation stress caused by temperature and excessive wetness.
:::
The

::::
VHI

::
is
:::::
based

:::
on

::
a

:::::
linear

::::::::::
combination

:::
of

::::
VCI

:::
and

:::::
TCI,

:::::::::::::::::::::::::
V HI = αV CI + (1−α)TCI .

:::
As

::::::::
suggested

:::
by

::::::::::::::::
Kogan et al. (2016) ,

:::::
when

::::
VCI

:::
and

::::
TCI

:::::::::::
contributions

:::
are

:::
not

::::::
known

:::::::
α= 0.5.

One drawback of the VHI is the impossibility to identify the cause of the vegetation stress; in fact, vegetation can suffer because

of various events: excessive wetness, pests, fires, droughts or others. It is a biophysical indicator of a lack of precipitation but145

can also be seen as representing drought impacts on the ground (Bachmair et al., 2016). It goes from 0, which stands for

vegetation in very bad conditions to 100, meaning perfectly healthy vegetation. The classification scheme of VHI, as proposed

in (Dalezios et al., 2017)
::::::::::::::::::
Dalezios et al. (2017) , is presented in Table 4.

The VHI is standardized
::
to

::::
make

:::::::::::
comparisons

::::
with

:::
the

:::
SPI

::::::
easier.

:::
As

::::::::
mentioned

:::
by

:::::::::::::::::
Peters et al. (2002) ,

::
all

:::::::::::::
remote-sensing

::::::
indices

:::
can

::
be

:::::::::
expressed

::
as

:::::::::
deviations

::::
from

:::
the

::::::
mean;

::::::::
therefore,

:::
the

:::::::::::
standardized

:::::::
variable,

:::::::
V HIst,::

is
::::::::
computed

:
according to150
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the following equation:

V HIst =
V HI −V HI

σ
(1)

where V HI is the mean of the distribution and σ its standard deviation.
:::::
Thus,

:::
the

::::
same

:::::::::
procedure

:::::::
proposed

::
in

::::::::::::::::::
Peters et al. (2002) in

::
the

::::
case

:::
of

:::
the

:::::
NDVI

:::
has

::::
been

:::::::
applied

::
to

:::
the

::::
VHI.

:
The standardized variable, V HIst, has a distribution with 0 mean and 1 as

standard deviation.155

2.2.3 The Probabilistic Precipitation Vegetation Index (PPVI)

The Probabilistic Precipitation Vegetation Index (PPVI) is a composite index that takes into account both meteorological

drought through the SPI, and agricultural drought conditions by including the VHI.

In order to combine the two consolidated indices the following preparatory steps are performed:

1. Extraction of the area under study from both the datasets;160

2. Regridding of both precipitation and the VHI to bring them to the same spatial resolution (0,05°);

3. Aggregation of precipitation at weekly timescale (CHIRP has daily temporal resolution);

4. Computation and weekly update of SPI according to the methodology proposed in (USDA Risk Management Agency et al., 2006)

::::::::::::::::::::::::::::::::::::::
USDA Risk Management Agency et al. (2006) , where precipitation are fitted to a gamma distribution. The goodness of

fit to the gamma distribution has been verified by means of probability plot.165

5. Standardization of the VHI, as previously described.

The combination of SPI and VHI is performed using a bivariate normal distribution function, as it is defined by (Kotz et al., 2000)

:::::::::::::::
Kotz et al. (2000) . The normality of the SPI and V HIst distributions has been verified as will be shown in Sect. 3.2. Therefore

it is acceptable to assume that the joint probability of the two considered distributions takes the form of the bivariate normal

for correlated variables:170

f(s,v) =
1

2πσsσv
√

1− ρ2
exp

(
− 1

2(1− ρ2)

[
(s−µs)

2

σs
+

(v−µv)2

σv
+

2ρ(s−µs)(v−µv)

σsσv

])
(2)

where the following notation is adopted: the SPI is identified as s and the V HIst is identified as v. The mean and the standard

deviation of the SPI distribution f(s) are respectively, by construction, µs = 0 and σs = 1 and the mean and standard deviation

of the V HIst distribution, f(v) are respectively µv = 0 and σv = 1. The covariance matrix Σ and the correlation coefficient ρ

are defined according to Eq
:::
Eqs. 3 and Eq.4 respectively, where σsv is the covariance between s and v.175

Σ =

 σ2
s ρσsσv

ρσsσv σ2
v

 (3)
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ρ=
σsv
σsσv

(4)

To check the assumption of normality for the joint distribution, the joint probability values, retrieved from Eq.2 are plotted

against the bivariate empirical cumulative distribution values (Fig.1), as done in (Kao and Govindaraju, 2010). The bivariate

empirical copula for the random variables s and v has been evaluated according to (Nelsen, 2006)
::::::::::::
Nelsen (2006) using the180

following equation:

C

(
i

m
,
j

m

)
=

#(s≤ s(i),v ≤ v(j))

m
=
m1

m
(5)

where s(i) and v(j), (1 ≤ i, j ≤m) are ordered statistics of the SPI sample of sizem,m1 is the number of samples (s(k),v(k))

satisfying (s(k) ≤ s(i) and v(k) ≤ v(j)) with 1 ≤ k ≤m. The resulting plot is shown in Fig.1.

Since the data lays on the 45°line it is fair to assume that the joint probability f(s,v) is normal. Therefore, a normalization185

of the index is performed through normal quantile transformation.

By keeping the same probability intervals of the SPI, we can compute the PPVI values for the drought classification as it is

shown in Table 5.

2.2.4 Identification of drought events

Once the index is defined the set of rules to establish when a grid cell is in drought should be identified. In particular, two190

parameters have to be identified:

1. A threshold Z of the index that marks the beginning of a drought in a grid cell.

2. A threshold z that marks the end of a drought in the same grid cell.

According to the model here proposed a drought in a grid cell starts when the index is lower than Z and ends when the index

is above to z. Then regional drought events are defined. Again, two parameters are identified: N and n. A drought events starts195

if more than N grid cells are in drought conditions and ends if less than n grid cells are in drought conditions.

2.2.5 Skill assessment

Observations of drought are compared with the model outputs for various combinations of thresholds Z, z, N and n. The Re-

ceiver Operating Characteristic (ROC) curve is used for this comparison. The ROC curve was at first used in signal detection; its

use in meteorological applications is documented and well described in (Joliffe and Stephenson, 2012)
:::::::::::::::::::::::::
Joliffe and Stephenson (2012) .200

The ROC curve is employed to classify instances, as in the present case. The ROC curve was already employed in various stud-

ies to compare the performance of a model versus observations with varying thresholds (Zhu et al., 2016; Khadr, 2016). The

contingency matrix (shown in Table 6) is a two by two matrix to visualize the disposition of a set of instances. True posi-

tive or hits are represented by the weeks that are reported to be in drought conditions in the observations and are correctly
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identified as drought weeks by the model. True negatives (correct rejections) are represented by those weeks that are not in205

drought according to both the observations and the model. Those weeks that are recorded as drought according to the ob-

servations but are not identified as drought weeks by the model, are considered as false negatives (missing events), while

false positives (false alarms) are represented by the weeks that are not in drought conditions according to the observations

but are identified as drought weeks by the model. In this paper for each combination of thresholds Z, z, N and n, Probability

of Detection (POD), or hit rate, and Probability of False Detection (POFD), or false alarm rate, are computed according to210

(Joliffe and Stephenson, 2012)
:::::::::::::::::::::::::
Joliffe and Stephenson (2012) with the following equations:

POD =
TP

TP +FN
(6)

POFD =
TN

TN +FP
(7)

where TP,TN,FP and FN are defined as in Table 6.215

The optimal threshold for a ROC curve is the one for which the distance from the 45°degree line is maximum (Zhu et al.,

2016). The performances of the model based on PPVI in identifying drought events have been evaluated on the case study

described in the next section.

2.2.6 Case study

The case study region is Haiti. The country, which has an extension of 27.750 km2 is located in the Caribbean’s Great Antilles220

and shares the island of Hispaniola with the Dominican Republic. The climate is predominantly tropical, with daily tempera-

tures ranging between 19°C and 28°C during winter and between 23°C and 33°C during summer. The island topography is

varied; the central region is mainly mountainous, while the northern and western regions are near the coastline. Annual precip-

itation in the central region averages 1.200 mm, while in the lowlands it is about 550 mm (GFDRR, 2011). Haiti is subject to

the variability associated with El Niño and La Niña phenomena, with El Niño bringing drier and hotter conditions and La Niña225

colder and wetter climate. Haiti experiences a first rainy season from April to July and a second, and most important, from

August to the end of November. The dry season starts in December and goes on until the end of March (FEWSNET, 2019).

Haiti is divided administratively into 10 departments (Fig. 2), with people living mainly in the West, where the capital Port-

au-Prince is located, and in the Artibonite. The total population in 2017 was about 11 million people (World Bank, 2017). Haiti

is the poorest country in the Western Hemisphere, the economy is mainly agricultural. 67% of the country’s area is devoted230

to agriculture, but only 4,35% of the agricultural area is irrigated (Trading Economics, 2013), posing a major threat to local

production.

Haiti produces over half of the world’s vetiver oil (used in cosmetics), and mangos and cocoa are the most important export

crops. Two-fifths of all Haitians depend on the agriculture sector, mainly small-scale subsistence farming. The country is prone

to all types of natural hazards. Earthquakes, storms, hurricanes, landslides, and droughts have caused huge damages and losses235
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in recent years. Haiti was ranked as the third most affected country by extreme weather events in terms of lives lost and

economic damages in the period from 1994 to 2013 (GFDRR, 2011). More than 96% of the population lives in areas at risk of

two or more hazards. The most frequent disasters are floods and storms but, when considering the number of affected people,

droughts are the disasters involving the highest number of persons (Fig. 3).

Droughts threat the livelihoods of Haitians in many different ways. The scarcity of crops production means a rise in food240

prices, that brings to widespread food insecurity since the major part of people can’t afford the increase. Unavailability of

drinking water leads to cholera outbreaks among the population. Water is an issue also for breeders, who lose livestock on

which they rely for milk production and meat consumption. In the period from 1980 to present more than 10 drought events

have been reported by the government or the humanitarian organizations working in Haiti (Table 7). The worst drought was

the one of 2014-2017, affecting more than 3 million inhabitants (about one-third of Haiti’s population).245

Effective drought management is crucial for Haiti, but at present, a reliable early warning system for drought is still lacking.

Weather stations on the ground are few and data records are often very short, therefore not useful for drought monitoring

purposes on the entire country. Satellite images can be an effective and not expensive way to improve drought management

and preparedness in the country.

3 Results and Discussion250

3.1 Correlation analysis

Haiti has been divided into 987 grid cells, accounting for 90% of the country area. 1941 weeks were considered, starting from

week 35 of 1981 and ending with week 52 of 2018. The release date of a new VHI image was considered as the starting date

for a week. In the present study, four precipitation aggregation periods were considered (1 months, 2 months, 3 months and 6

months) and the corresponding values of SPI (SPI1, SPI2, SPI3 and SPI6) were computed in order to select the SPI aggregation255

timescale to be used to create the PPVI.

To evaluate the strength of the statistical relationship between the SPI at various timescales and the VHI a correlation analysis

was then performed. Various studies have already evaluated the correlation among drought indices or between drought indices

and exogenous variables; for example (Bonaccorso et al., 2015) investigated the correlation between SPI and NAO, while

(Hongshuo et al., 2014)
:::::
North

:::::::
Atlantic

::::::::::
Oscillation

::::::
(NAO),

:::::
while

::::::::::::::::::::
Hongshuo et al. (2014) investigated the correlation between260

SPI (various aggregation periods) and the VHI. While in the majority of the papers the
:::
The

:
Pearson correlation coefficient was

employed , in the present study the Spearman correlation coefficient was preferred as a measure of the statistical relationship

between the indices, as suggested in (Wedgbrow et al., 2002) . The number of significant correlations at 5% and 1% was

evaluated for four SPI aggregation timescales (Table 8).

The highest number of significant correlations was found in the cases of SPI2 and SPI3, which exhibit very similar perfor-265

mances at 1% significant level. This finding is in agreement with previous studies such as (Hongshuo et al., 2014) ,

:::::::::::::::::::
Hongshuo et al. (2014) that found that VHI and SPI3 have the highest correlation for croplands, whereas VHI and 6-month SPI

have the highest correlation for forest in the Southwest of China; and (Ma’rufah et al., 2017)
:::::::::::::::::::
Ma’rufah et al. (2017) that found
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that significant correlation coefficient values on SPI3 and VHI are common in the southern part of Indonesia. Since SPI3 has

been used in literature and the percentage of significant correlation at 1% level is relevant, it has been decided to aggregate SPI270

over a 3 months period and use SPI3 in the following discussion.

3.2 Normality of SPI and VHI distributions

Before computing PPVI as described in the previous sections, a test on the normality of the SPI3 and V HIst distributions was

performed. The goodness of fit of the SPI3 and the V HIst distributions was verified through the histograms in Fig. 4 (panel

(a) and (b) respectively), where the boxplots represent the relative frequencies of the SPI3 and V HIst values. Both the SPI3275

and the V HIst data can therefore be considered normally distributed.

3.3 Selection of threshold values

PPVI was computed as described in Sect. 2.2 and its performance in identifying past drought events in Haiti when used in

combination with the set of rules described in Sect. 2.2.4 was evaluated. To this end, the ROC curve classification methodology

was applied. The set of rules implied that at first, cells in drought conditions were identified: drought started in a specific grid280

cell at week W when PPVI was lower than the threshold Z and ended when PPVI was up to the threshold z in the same grid cell

at a week w (with w coming after W). Then a regional drought event was identified: the drought event started when more than

N cells at a specific week W1 were in drought conditions and ended at a week W2 when few than n grid cells were in drought

conditions. The comparison was performed on a weekly basis, with observations derived from the reported events described in

Table 7.285

The ROC curves were computed according to the following methodology: at first a combination of the thresholds Z, z, N and

n was selected. On the basis of the set of rules established in Sect. 2.2.4, the ability of the selected combination of thresholds

in reproducing the observations was assessed by computing TP, TN, FP and FN as defined in Table 6, together with POD and

POFD. A couple (POFD, POD) represents a point in a ROC graph. Then one threshold among Z, z, N and n was selected.

The selected threshold was variable during the analysis, while the other three were kept constant. The step of variation was290

identified according to the threshold maximum and minimum values. For each combination of the four thresholds (the varying

one and the three fixed) TP, TN, FP, FN and POD and POFD were computed. The resulting set of couples (POFD, POD)

represented the ROC curve for the considered set of thresholds.

The analysis was repeated by varying another threshold among Z, z, N and n. As an example, Fig. 5 shows four ROC curves

for the thresholds in Table 9. Thresholds N and n in Table 9 are expressed as the percentage of the country’s area instead as the295

number of grid cells. For each of the curves the best performing set of (Z, z, N and n) was selected by identifying the point farther

from the 45°line, as done by (Zhu et al., 2016)
::::::::::::::
Zhu et al. (2016) . The Area Under the Curve (AUC) was used as criteria to es-

tablish which of the ROC curves should be preferred (as was done by (Dutra et al., 2014; Mason and Graham, 2002; Zhu et al., 2012)

::::::::::::::::::::::::::::::::::::::::::::::::::::
Dutra et al. (2014); Mason and Graham (2002); Zhu et al. (2012) ). An AUC near to 1 indicates good performance, while AUC

of 0.5 indicates the model has no predictive skills. From Fig. 5 it is clear that the curve corresponding to the parameters defined300

as ”Set 2” in Table 9 should be preferred, since the AUC is the closest to 1.
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3.4 Indices comparison
:::::::::::
Comparison

::
of

:::::::
drought

:::::::
indices

::::
with

::::::::
observed

:::::::
drought

::::::
events

The aim of this paragraph is not to validate in absolute terms the proposed methodology since the data record is too short to

serve both for calibration and for validation. In the present section, instead, we provide a validation by comparing PPVI with

::
the

:::::::::::
performance

::
of

:::::
PPVI

::
in
::::::::::

identifying
::::::::
observed

::::::
drought

::::::
events

::::
with

:::
the

::::
one

::
of widely recognized and used indices such as305

SPI and VHI.

The performance of PPVI was then compared to the one of SPI3 and VHI considered separately. Thresholds analogous to Z

and z were defined for SPI3 and VHI. Thresholds ZS and zS mark respectively the beginning and the end of drought conditions

in a grid cell according to SPI3 and thresholds ZV and zV do the same in the case of VHI. Again the four thresholds Z, z, N,

and n were varied in order to identify the optimal values. As an example Fig. 6 shows a comparison among the ROC curves310

for the three indices. In each panel of Fig. 6, n and z, zS and zV (for PPVI, SPI3 and VHI) remained constant, while Z, ZS and

ZV were varying; N was fixed in each panel but varied among the panels. Z varied from -4 to -1.1 with a step equals to 0.1; ZS

varied from -3 to 0 with a step equals to 0.1 and ZV varied from 10 to 40 with a step equal to 5.

It is clear from Fig. 6 that PPVI identified the reported drought events better than SPI3 and VHI. AUC was 0,828 for PPVI,

0,740 for SPI3 and 0,784 for VHI
::
the

:::
red

::::::
curve,

::::::::::
representing

::::::
PPVI,

::
is

:::
the

::::::
furthest

:::::
from

:::
the

:::::::
diagonal

::::
line

::
in

:::
all

:::
the

:::::
panels

:::
of315

::
the

::::::
figure.

::::
The

::::
Area

::::::
Under

:::
the

:::::
Curve

::::::
(AUC)

::::
was

::::
used

:::
as

::::::
criteria

::
to

::::::::
establish

:::::
which

:::::
index

::::
gave

:::
the

::::
best

::::::::::::
performances.

:::::
AUC

:::::
values

:::
are

::::::
shown

::
in

::::
Fig.

:
6
:::
for

::::
each

:::::
index

::::
and

::::::
various

::::::::::::
configurations

:::
of

:::
the

:::::
model. The AUC value of PPVI was in line with

similar results reported in literature (Mwangi et al., 2014). As can be seen from Fig. 6, the new index provided better results

with respect to the ones obtained with SPI3 or VHI considered separately. In all the four configurations shown in Fig. 6, the

AUC for the curve constructed with PPVI was higher than the ones for SPI3 and VHI. The AUC values are in line with the320

ones considered good in the literature (see (Khadr, 2016)
::::::::::::
Khadr (2016) ) for drought predictive skills. The optimal thresholds

to configure the model
::::
when

:::::::
applied

::::
with

:::::
each

::
of

:::
the

:::::
three

:::::::::
considered

::::::
indices

:
were then determined by selecting the point

farther from the 45°line, as done by (Zhu et al., 2016)
::::::::::::::
Zhu et al. (2016) . The best configurations parameters are shown in Table

10and comes from the PPVI curve shown in panel (c) of Fig. 6.
:
. The drought events were therefore identified using the optimal

parameters (Table 10).
:
A

::::::::
graphical

::::::::::::
representation

::
of

:::
the

:::::::::::
performance

::
of

:::
the

:::::
model

:::
in

::::::::::
reproducing

::::::::
observed

::::::
drought

::::::
events

::
is325

::::
given

::
in
::::
Fig.

::
7.

:::::
Only

:::
the

:::::
period

:::::
from

::::
2000

::
to

:::::
2018

:
is
:::::::
shown.

The ability of the model in identifying the country area hit by the drought was also assessed. A visual comparison among

the area under drought identified by the three indices was performed, as was done by (Dutta et al., 2015)
:::::::::::::::
Dutta et al. (2015) .

Here some significant weeks are shown. At first, week 45 of 1995 was considered. No drought events were reported in that

period . Figure 7
::::::::
according

::
to

:::
the

::::::::::
information

::::::::
available

::
in

:::
the

::::::::
analysed

:::::::::
documents

::::
(see

:::::
Table

:::
7).

:::::
Figure

::
8
:
shows that, while330

SPI3 identified all the southern part of the country as dry areas and VHI showed vegetation suffering in two departments (Centre

and West), PPVI did not show signs of drought, except for a minor number of grid cells. Figure 8
:
9
:
shows that in 2015, when the

whole country was reported to be in severe drought conditions
:::
(see

:::::
Table

::
7

:::
and

::::::::::::::::::::::::::::::::::::::::::::::::
NOAA (2017); OXFAM and Action contre la Faim (2015) ),

PPVI captured well the pattern, only a few grid cells were not in drought conditions. The SPI3 was also able to catch the situ-

ation, while for the VHI only 58% of the county was in drought. During week 8 of 2012, only the Northern part of the country335
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was in drought (Fig. 9); five
:::
10),

:::
as

:::::::::
highlighted

:::
by

::::::::::::::::::::::::::::::
USAID and FEWSNET (2012b) (see

:::::
Table

:::
7).

::::
Five

:
departments were re-

ported to be stressed (North, North West, North East, Artibonite, Centre, see Table 7). All the three indices showed the North

West as the department most affected by drought when considering the percentage of the department area hit by the drought.

PPVI then classified Artibonite, North, Centre and North East, while SPI3 as second and third most affected departments

identified South and Grand Anse and VHI Centre and Nippes (Table 11).340

Severity, duration and mean areal extent of the drought events identified by PPVI were computed. Severity was computed

as the sum of all the values identified by the condition that a grid cell is in a drought condition when PPVI is lower than -1.8

and exits from drought when PPVI is up to -1.1. Duration is expressed in months and the mean areal extent is the average

percentage of area in drought during a specific event. Results are presented in Table 12.

PPVI showed overall a better capacity in identifying drought events with respect to SPI3 and VHI considered separately.345

However, some false alarms still remain. This can be linked to the uncertainty in information on past drought events for the

analysed area. Short-term droughts are often not reported in text-based documents, and information on drought start and end

date were retrieved from documents that mainly described the impacts related to drought. PPVI showed a good agreement with

reported information in identifying the areas of the country hit by the drought.

4 Conclusions350

The timely identification of drought events is of great importance in agricultural areas, especially when rainfed agriculture

is practiced. At the same time, the evaluation of the damages caused by drought is a key point to select appropriate risk

management strategies, such as weather index insurance programs, agricultural index insurance, disaster financing and early

action planning. The new composite index proposed in this paper, the Probabilistic Precipitation Vegetation Index, PPVI, is a

powerful tool since it can identify events of vegetation stress, and at the same time, select among those the ones actually due to355

drought, thanks to the contemporary use of both VHI and SPI. As such it can be helpful in agricultural drought monitoring and

can be used to identify drought events affecting a region, their severity and their duration as was shown in the case of Haiti. In

particular, PPVI can be precious in those areas where rainfed agriculture is of vital importance since people rely on it for food

production for personal consumption.

Among the interesting aspects of PPVI, there is the fact that few data are required for its computation: only precipitation and360

the VHI. This aspect is crucial, since many composite indicators able to identify agricultural droughts already exist, but large

amounts of data are required to compute them. For example, the United States Drought Monitor combines more than 40-50

inputs, while other indices specific for agricultural drought monitoring, such as the VegDRI and the VegOut, require the use

of temperature and oceanic indices. The number of parameters required to compute PPVI is lower even with respect to OBDI,

SWS, CDI or CDSI.365

A second most important advantage is that, since the SPI was computed starting from satellite precipitation (CHIRP dataset)

and that the VHI is a remote-sensing drought index, PPVI is also a remote-sensing product. The use of datasets with global

coverage means that PPVI is easily transferable and scalable over the entire globe. In addition, PPVI can be a very useful tool
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in areas with scarce gauge coverage as the Caribbean Islands. Both precipitation and the VHI have a very high spatial and

temporal resolution, thus allowing drought monitoring from satellite even in small areas. PPVI can be computed even in those370

regions with short data records, since the VHI has more than 30 years of records (data collection began in August 1981); and

CHIRP precipitation are available from January 1981.

Both the SPI and the VHI are updated at weekly time-step since every week a new VHI image is released and the CHIRP

precipitation dataset has a daily temporal resolution, therefore PPVI can be updated more frequently than other composite

indices, such as CDI, which is updated every 10 days. In addition, due to the relatively short latency time (less than one week) of375

both the datasets employed to create PPVI, the index is available in near-real time, therefore allows the timely implementation

of drought mitigation strategies. This last feature is of particular interest when PPVI is used to implement measure to reduce

drought risk in agriculture, where a timely identification of drought is crucial to prevent damages to the sector.

Many advantages are also related to the adoption of the set of rules here proposed to identify drought events. First of all, these

rules enable an objective and standardized identification of drought events from the mathematical point of view. Additionally,380

they can be adjusted according to the needs and the objectives of various possible end users of the model, such as farmers,

governments or insurance companies.

The performances of PPVI in identifying drought events were tested in a specific case study (Haiti) and compared to the ones

of SPI and VHI considered separately. PPVI performed better than the single indices considered separately in reproducing past

drought events. PPVI identified drought areas in Haiti better than SPI and VHI even from the spatial point of view, thus it is385

more reliable than a single index. A comparison of PPVI performances with respect to the ones of other composite indices was

not performed in the present study due to the unavailability of composite indices with the same characteristics of PPVI. In fact

previous composite indices do not include both the meteorological and the agricultural aspect of drought or are not available

globally, or cannot be computed with only remote sensing datasets.
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Figure 1. PPVI validation: empirical copula versus bivariate joint probability function. The red line corresponds to the 45°line. Joint proba-

bility values have been computed from Eq. 2, while empirical copula values according to Eq. 5.
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Figure 2. Map of Haiti departments.
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Figure 3. Number of people affected by natural disasters in Haiti (1900-2018). Source (CRED, 2017).
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Figure 4. 4(a): distribution of SPI values; 4(b):distribution of V HIst values. The red line represents the pdf of the standard normal

distribution; boxplots represent the percentage of values lying in the range; 12 ranges were considered; starting from -6 and ending with 6

with a step equal to 1.
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are varying, z =−1.1, zS = 0 and zV = 40; n= 80 and four cases for N are shown: (a): N = 10%, (b): N = 20%; (c):N = 30% and (d):
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Figure 7. Comparison
::::::

between
::::::
observed

::::::
drought

:::::
events

:::
and

::::::
drought

:::::
events

::::::::
identified

::
by

:::::
PPVI,

::::
SPI3

:::
and

:::
VHI

:::::
when

:::::::
calibrated

::::
with

::
the

::::
best

::::::::
performing

::::::::
parameters

::::::
shown

:
in
:::::
Table

:::
10.

:::
The

:::::::::
comparison

:
is
:::::
shown

:::
for

:::
the

:::::
period

::::
from

::::
2000

:
to
:::::

2018
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Observations SPI3 VHI PPVI

Figure 8.
:::::::::
Comparison

:
of the performance of SPI3, VHI, and PPVI in identifying the areas hit by drought. Week 45 of 1995. Departments

highlighted in red are the ones in drought according to observations
:::::
(Table

::
7), black

::
red

:
cells are the ones in drought condition according to

the various indices.
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Observations SPI3 VHI PPVI

Figure 9. Same as Fig. 7
:
8
:
but for week 33 of 2015. Departments highlighted in red are the ones in drought according to observations, black

::
red

:
cells are the ones in drought condition according to the various indices.
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Same as Fig. 7 but for week 8 of 2012. Departments highlighted in red are the ones in drought according to observations, black cells are the

ones in drought condition according to the various

indices.

Observations SPI3 VHI PPVI

Figure 10.
::::
Same

::
as

:::
Fig.

::
8

::
but

:::
for

::::
week

:
8
::
of

:::::
2012.

:::::::::
Departments

:::::::::
highlighted

::
in

::
red

:::
are

:::
the

:::
ones

::
in

::::::
drought

::::::::
according

:
to
::::::::::
observations,

:::
red

::::
cells

::
are

:::
the

::::
ones

:
in
::::::
drought

::::::::
condition

:::::::
according

::
to

:::
the

:::::
various

::::::
indices.
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Table 3. Drought classification based on SPI according to (Mckee et al., 1993).

Category SPI Probability (%)

Extremely wet 2.00 and above 2.3

Severely wet 1.50 to 1.99 4.4

Moderately wet 1.00 to 1.49 9.2

Near normal -0.99 to 0.99 68.2

Moderately dry -1.49 to -1.00 9.2

Severely dry -1.50 to -1.99 4.4

Extremely dry -2 and below 2.3
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Table 4. Drought classification based on VHI according to (Dalezios et al., 2017).

Category VHI

Extremely dry ≤ 10

Severely dry ≤ 20

Moderately dry ≤ 30

Mild dry ≤ 40

Normal > 40
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Table 5. Drought classification according to PPVI.

Category PPVI Probability (%)

Extremely wet 1.04 and above 2.3

Severely wet 0.58 to 1.03 4.4

Moderately wet 0.13 to 0.57 9.2

Near normal -1.68 to 0.12 68.2

Moderately dry -2.14 to -1.69 9.2

Severely dry -2.15 to -2.59 4.4

Extremely dry -2.6 and below 2.3
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Table 6. Contingency table for the deterministic estimates of a series of binary events (Joliffe and Stephenson, 2012).

Events estimated
Events Observed

Yes No Total

Yes TP (True Positive or Hits) FP (False Positive or False Alarms) TP +FP

No FN (False Negative or Missing) TN (True Negative or Corret rejections) FN +TN

Total TP +FN FP +TN TP +FP +FN +TN = T
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Table 8. Number of significant correlations
::::::
(Pearson

::::::::
correlation

:::::::::
coefficient)

:
between VHI and various SPI aggregation timescales. Value is

expressed as percentage evaluated with respect to the total number of grid cells (987).

% significant correlations 5% % significant correlations 1%

SPI1 94.53
::::
93.52 90.78

::::
91.29

SPI2 97.26
::::
96.76 95.44

::::
95.34

SPI3 96.66
::::
96.15 95.34

::::
94.83

SPI6 89.77
::::
90.07 85.61

::::
85.82
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Table 9. Example of set of thresholds used to draw ROC curves for model calibration. Thresholds N and n are expressed as the percentage

of the country’s area instead as the number of grid cells.

Z z N n Step of variation

Set 1 -2 varying from -1.9 to 0 25% 10% 0.1

Set 2 varying from -3.5 to -1 -1 25% 10% 0.1

Set 3 -2 -1 25% varying from 1% to 24% 1%

Set 4 -2 -1 varying from 11% to 25% 10% 1%
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Table 10. Best configuration parameters for the model when applied with PPVI
:
,
::::
SPI3

:::
and

:::
VHI.

Z z N n TN FP FN TP POFD POD

::::
PPVI

:
-1.8 -1.1 300

::::
30% 80

:::
8% 957 379 99 506 0.284 0.836

:::
SPI3

: :::
-1.3

:
0
: :::

20%
: :::

8%
:::
943

:::
393

:::
157

:::
448

::::
0.294

::::
0.749

:

:::
VHI

: ::
22

::
40

:::
10%

: :::
8%

:::
935

:::
401

:::
150

:::
455

::::
0.300

: ::::
0.752

:
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Table 11. performance
:::::::::
Performance of PPVI, SPI3, and VHI in identifying departments hit by drought during week 8 of 2012 and comparison

with observations.
:::::::::
Observations

:::
are

::::::
retrieved

::::
from

:::
the

::::::::
text-based

::::::::
documents

:::::::
reported

:
in
:::::
Table

::
7.

% of the area Ranking of affected departments

Department Reported as drought PPVI SPI3 VHI PPVI SPI3 VHI

North West Yes 93.1 91.7 47.2 1 1 1

Artibonite Yes 75.1 72.8 34.1 2 7 5

North Yes 74.6 82.1 10.4 3 4 9

Centre Yes 67.2 54.3 45.7 4 10 2

North East Yes 62.1 72.4 34.5 5 8 4

West No 61.8 72.1 32.7 6 9 6

Nippes No 51.2 75.6 36.6 7 5 3

Grand Anse No 47.8 82.1 10.4 8 3 8

South No 32.6 75.3 9 9 6 10

South East No 30.8 84.6 20 10 2 7
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Table 12. Drought events in Haiti according to PPVI, duration, severity and mean areal extent.

Event number Start date End date Duration (months) Mean intensity PPVI Minimum PPVI Mean areal extent (%)

1 22/04/1982 21/07/1983 15 -8.46 -4.73 32.13

2 27/12/1984 07/11/1985 11 -7.87 -3.91 49.60

3 18/09/1986 16/04/1987 7 -7.90 -3.62 41.65

4 16/11/1989 18/10/1990 11 -8.60 -4.59 35.48

5 07/02/1991 11/02/1993 25 -8.70 -4.69 44.92

6 16/09/1993 27/01/1994 4 -8.95 -4.48 36.98

7 11/08/1994 10/11/1994 3 -8.53 -3.50 50.11

8 20/03/1997 20/11/1997 8 -8.43 -4.32 46.00

9 30/03/2000 21/09/2000 6 -8.31 -3.79 74.07

10 30/11/2000 19/04/2001 5 -7.98 -4.75 24.58

11 09/08/2001 06/12/2001 4 -7.85 -3.52 30.23

12 04/04/2002 08/08/2002 4 -8.25 -3.47 26.20

13 19/12/2002 30/10/2003 11 -7.72 -3.44 29.31

14 15/04/2004 22/07/2004 3 -7.69 -3.37 17.89

15 02/12/2004 26/05/2005 6 -9.00 -4.40 79.00

16 23/03/2006 13/07/2006 4 -7.46 -3.43 22.97

17 21/02/2008 31/07/2008 5 -7.95 -3.78 30.07

18 17/09/2009 18/02/2010 5 -8.58 -3.95 57.48

19 21/04/2011 16/06/2011 2 -9.32 -4.14 48.28

20 29/12/2011 05/04/2012 3 -8.12 -3.91 62.52

21 19/07/2012 25/10/2012 3 -8.33 -3.62 42.16

22 07/03/2013 05/05/2016 39 -8.18 -4.00 34.50

23 29/09/2016 20/04/2017 7 -8.20 -4.06 15.02

24 12/07/2018 31/12/2018 6 -9.50 -5.58 58.50
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