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Abstract. An evaluation of social vulnerability to storm surges is important for any coastal city to provide marine disaster

preparedness and mitigation procedures and to formulate post-disaster emergency plans for coastal communities. This study

establishes an integrated evaluation system of social vulnerability by blending a variety of single evaluation methods, which

are subsequently combined by weighting in order to calculate a common social vulnerability index. Shenzhen has a current

reputation of having the most considerable economic development potential and a representative city in China. The city is

chosen for  evaluation of its  social  vulnerability  to  storm surges  via a  historical  social  and economic statistical  dataset

spanning the period 1986–2016. Exposure and sensitivity increased slowly with some fluctuation, leading to some alterations

of the social  vulnerability trend. Social  vulnerability keeps almost constant during 1986–1991 and 1993–2004, while it

decreased sharply afterwards  to  form a  ‘stair-type’ declining curve over the past  31 years.  Resilience  is  progressively

increasing by virtue  of  a  continuous increase  of  medical  services  supply,  fixed  asset  investments and  salary  levels  of

employees. These determinants contribute to the overall downward trend of social vulnerability for Shenzhen.
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1 Introduction

Storm  surge  refers  to  an  abnormal  volumetric  rise  of  sea  water  layered  above  the  astronomical  tide  due  to  severe

meteorological conditions  experienced  during  transition  of  low-pressure  weather  systems.  Tropical  and  extratropical

cyclones rank near the pinnacle among marine natural hazards in terms of human casualties and expensive infrastructure

losses.  As a naturally  occurring phenomena,  storm surge is a  major  contributor  to  coastal  disasters  and has  significant
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potential  to  disrupt  communities,  impair  transportation  systems,  impact  prosperous  economic  zones  and  reach  record-

achieving damage levels. Most of the world's major coastal disasters caused by tropical cyclone activity are produced by

resulting storm surge, such as Hurricane Sandy (2012) (Forbes et al., 2014; Rosenzweig and Solecki, 2014), Typhoon Haiyan

(2013) (Lagmay et al., 2015; Needham et al., 2015; Yi et al., 2015), Cyclone Nargis (1972) (Fritz et al., 2009), Hurricane

Irma (2017) (Xian et al., 2018), the Bhola Cyclone (1970) (Frank and Husain, 1971), and Hurricane Katrina (2005) (Fritz et

al., 2007; Irish et al., 2008). To curb the escalating losses and casualties resulting from storm surge incidents and achieve

sustainable development, it is urgent for governments and local authorities managing coastal areas to carry out disaster risk

prevention and reduction activities.

     Storm surges typically range from tens of kilometers to thousands of kilometers, with time scales or cycles of about 1 to

100 hours. Storm surges can be divided into (i) typhoon storm surges and (ii) temperate storm surges. Both types of storm

surges have an impact on China's coastal areas. In spring and autumn, the coastal area of the Bohai Sea is very susceptible to

the development of temperate storm surges. In summer, the southeast coast of China is frequently hit by typhoons and

typhoon induced storm surges often occur. Therefore, storm surge disasters is a very serious matter to China, which is the

country with the most frequent occurrences and suffers the most severe losses, among the coastal countries in the northwest

Pacific Ocean (Zhao et al., 2007). Based on China’s Marine Disaster Bulletin (1989–2008), Xie and Zhang (2010) pointed

out that China's storm surge disasters are mainly concentrated in June to October each year, accounting for 88.19% of the

total economic losses from storm surge disasters. The spatial distribution of storm surge disasters shows that Guangdong,

Zhejiang, Fujian and Hainan are the most affected provinces. From 1989 to 2008, the direct economic loss caused by storm

surge disasters for these four provinces is 71.472 billion yuan, 58.584 billion yuan, 44.867 billion yuan and 33.09 billion

yuan,  respectively,  accounting for  29.2%,  24%, 18.4% and 13.5% of  the  total  economic loss  caused  by storm surges.

Moreover, the annual maximum value of storm surge intensity tends to increase, and the direct economic loss caused by

storm surge disasters tends to fluctuate.

     The occurrence of marine natural hazards depends not only on the hazards intensities but also on urban exposure and

vulnerability (Dwyer et al., 2004; Peduzzi et al., 2009; Ellis, 2012; IPCC, 2012). Therefore, it is necessary to build detailed

research  involving human  impacts  and  the  positive  effects  when  facing marine  natural  hazards  (Cutter,  2003a).  Risk

assessment of tropical cyclone-induced storm surge provides the basis for risk mitigation and related decision making (Lin et

al., 2010). An effective coping with disaster risk requires a more rational distribution of efforts in areas such as disaster risk

reduction and disaster management. Disaster reduction should be regarded as a new dimension of development rather than

simply focused  on  post-disaster  responses  (Zheng et  al.,  2012).  Whether  a  disaster  is  initiated  by weather,  climate  or

hydrological events, it  can result in a tangible problem and depends largely on specific physical, geographical and social

conditions (Sun et  al.,  2009;  Yin  et  al.,  2012).  In  this  sense,  vulnerability  has  become one of  the  central  elements  of

sustainability research (Turner et al., 2003a). Understanding, measuring, and reducing vulnerability has been one of the most

important priorities in the transition to a more sustainable world (Birkmann, 2006). In comparison to other coastal disasters,

there are few studies on the vulnerability to storm surge. Therefore, the ability to effectively evaluate the vulnerability to
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storm surges is of great significance for reducing the consequences of this type of marine natural hazard.

     At present, there is still no universal concept of vulnerability, though it is generally defined as the possibility, degree, or

state of the system being damaged (Huang et al., 2012). It is widely understood that vulnerability is an inherent attribute of

the system, and the state of the exposure factors in the risk of damage is the core characteristic of vulnerability (Cardona,

2004).

     However, views about the components of vulnerability vary among disciplines and research areas (Dow and Downing,

1995; Cutter, 1996; Janssen et al., 2006). Based on the theory of sustainable development and from a disaster economics

perspective, vulnerability of a system is identified by its ability to prevent and resist a disaster (Turner et al., 2003b) . In the

field of climate change, vulnerability refers to the degree to which a system is susceptible to, or unable to cope with, adverse

effects of climate change, including climate variability and extremes (IPCC, 2012). Vulnerability is defined to be a function

of the character,  magnitude and rate of climate variation to which a system is exposed, its sensitivity,  and its adaptive

capacity (McCarthy et al., 2001; Adger, 2006).

     Existing studies divide vulnerability into biophysical vulnerability, social vulnerability and an integrated vulnerability

(Cutter, 2003a; Schmidtlein et al., 2008; Clare and Weninger, 2010). Biophysical vulnerability refers to a certain amount of

(potential) loss of a system caused by a particular climatic event or hazard, which can be measured quantitatively by a series

of  indicators  such  as  human  death,  production  cost  loss  and  ecosystem  loss  (Jones  and  Boer,  2005).  While  social

vulnerability  places  more  emphasis  on  its  social  connotation,  focusing  on  the  analysis  from  the  perspective  of  the

characteristics of a person or group in terms of their capacity to anticipate, cope with, resist, and recover from the impacts of

a natural hazard is important (Dwyer et al., 2004; Wisner et al., 2004; Zhang and You, 2014). Social vulnerability is partially

the product of social inequalities and is a function of the demographics of the population as well as more complex constructs,

such  as  healthcare,  social  capital,  and  access  to  lifelines  (Cutter  and  Emrich,  2006).  The  social  and  biophysical

vulnerabilities  interact  to  produce  the  overall  place  vulnerability  (Cutter,  1996;  Fuchs  and  Thaler,  2018).  However,

vulnerability is also strongly influenced by a society's dependence on critical infrastructure such as roads, utilities, airports,

railways, and emergency response facilities (Aerts et al., 2014; Bevacqua et al., 2018). It is important to note that while

reducing exposure and vulnerability may considerably reduce flood damage and entail lower investment costs, they do not

prevent flood waters from entering any coastal city (Cutter et al., 2000).

     Before the 1990s, considerable research attention was paid to components related to biophysical  vulnerability,  but

relatively few studies were carried out on social vulnerability due to the fact that quantifying social vulnerability has higher

complexity than biophysical  vulnerability  (Mileti,  1999).  However,  large losses  of  life  and property resulting from the

occurrence of more devastating disasters have brought up the attention on the role of social vulnerability in disaster impact

(Zhou et al., 2014). People began to realize that simply understanding the characteristics of biophysical vulnerability is not

enough to analyze the losses caused by disasters and the ability to quickly recover from the disasters (Schmidtlein et al.,

2008). The evaluation of social vulnerability is thought to be an important step in disaster risk assessment (Wisner et al.,

2004; Cutter and Finch, 2008). Hence, governments should analyze the social vulnerability of coastal cities in order to build
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policies such as distributing relief funds and assist the region to improve its adaptation capacity against coastal disasters (Wei

et al., 2004). Thus a considerable amount of research on social vulnerability has emerged as a component of studies on

disaster reduction in the same period (Cutter, 2003a; Cutter and Emrich, 2006; Schmidtlein et al., 2008).

     Analysis of social vulnerability to storm surges in Shenzhen, China during 1986–2016 is important due to four main

reasons.  First, there has been few assessments of social vulnerability to storm surges in which Shenzhen is considered.

Therefore,  by  furnishing  a  comprehensive  screening  of  social  vulnerability  to  storm surges  in  Shenzhen,  the  research

provides a buffer against disaster risk and allows the city’s  government to plan for a more sustainable future. Also, the

statistical methods and concepts used in this research can be adapted to other coastal cities, which are exposed to similar or

other types of marine natural hazards. Secondly, since 1979, political reform and openness has led to rapid urbanization and

socioeconomic development in Shenzhen. By choosing Shenzhen, we study a typical scenario of social vulnerability change

as a result of the extensive progress of a highly developed city. Thirdly, so far, research involving vulnerability to disasters

are mainly focused on discussing the spatial  distribution of vulnerability,  as well as comparing the differences between

various geographic areas and development levels. Instead, herewith, a composite social vulnerability index (SVI) for Chinese

coastal cities was developed by integrating 17 indices from three aspects (i.e. exposure, sensitivity and adaptive capability)

that shaped the social vulnerability of urban society to hazards and analyzed the differences of vulnerability of different areas

(Su et al., 2015). Data envelopment analysis (DEA) was used for regional vulnerability evaluation in China to discover a

significant negative correlation between the level of vulnerability and the economic level of the region (Huang et al., 2011).

Five methods for combined evaluation were used by Liu and Liu (2017). Their results determined that among seven coastal

cities in Shandong province selected for evaluation, Yantai city and Binzhou city had the highest and lowest vulnerability,

respectively.  The socioeconomic vulnerability  to  typhoon-induced  storm surges  was  assessed  for  municipal  districts  of

Guangdong province using a fuzzy comprehensive evaluation method. It was determined that vulnerability presented a large

spatial heterogeneity (Zhang et al., 2010). Research focused on the risk assessment of typhoon disasters in China’s coastal

areas by Niu et al. (2011) and research on the regional vulnerability of storm surge disasters by Yuan et al. (2016) led to

similar conclusions. However, the social vulnerability to storm surges contains both spatial and temporal dimensions. It is of

significant value to observe the changes of social vulnerability over years for one disaster prone coastal city by identifying

factors contributing to large impacts on social vulnerability,  which in return, becomes beneficial  for generating disaster

prevention and mitigation policy.

     Thus, the purpose of our study is to quantitatively explore the trends of social vulnerability to storm surges in Shenzhen

from a macroscopic perspective. Based on the postulation put forward by Turner et al. (2003a), social vulnerability in our

study is  divided into three aspects:  (i)  exposure,  (ii)  sensitivity and (iii)  resilience,  so we can inspect  the results  from

different perspectives.
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2 Materials and methods

2.1 Study area and data sources

Shenzhen (22° 32' 34.3788'' N, 114° 3' 46.7856'' E) is a metropolitan city attributed to one of the highest gross domestic

product (GDP) per capita in mainland China and its economic aggregate is equivalent to a medium-sized Chinese province

(Zünd and Bettencourt, 2019). Since its establishment in 1979, in just 40 years, Shenzhen has gone through a tremendous

advancement by virtue of political reform and a more open environment (Fig. 1c). Through the growth of GDP, it is found

that Shenzhen's economic level is progressively advancing during the study period (Fig. 2).

     However, due to its location at the coast of the Pearl River Delta (Fig. 1a,b) and its proximity to the northern part of the

South China Sea (Fig. 1b,c),  Shenzhen is facing many coastal  disasters threatening its sustainable development,  among

which storm surge induced disasters  are the most severe.  According to the Shenzhen Marine Disaster  Emergency Plan

(2017), there have been 260 typhoons affecting the coastal areas of Shenzhen since 1949, with an average of 4.06 typhoons

per year. Among them, 116 typhoons have seriously affected the Shenzhen coastal area with an average of 1.81 typhoons per

year, especially typhoons landing in the coastal areas, causing the greatest impact within the city limits (Fig. 1c, crimson

color coding).  13 typhoons have made landfall  directly on Shenzhen’s coastline and the strongest  system was Typhoon

“7908”. Typhoon “7908” made landfall in the end of July 1979, which caused the storm surge level at Red Harbor to reach

1.12 m. On a broader perspective, the highest storm surge level ever recorded in China occurred with Typhoon “8007”.

Typhoon “8007” made landfall in July 1980 and generated a 5.94 m surge at Nandu Tide Gauge in Leizhou, China, a tide

gauge notable for recording four out of the six highest water levels from coastal flooding situations (Liu and Wang, 1989;

Ma, 2003; Zhang, 2009; Needham et al., 2015). The increased frequency of storm surges has caused ever growing economic

and social losses in Shenzhen each year. Therefore, it is valuable to commence a risk assessment and develop an early

warning system for Shenzhen in order to protect a particularly susceptible area from future storm surge impacts.

     The data used to evaluate the social vulnerability of storm surges in Shenzhen is entirely available in Shenzhen Bureau of

Statistics, Shenzhen Investigation Team of National Bureau of Statistics (2017), which is compiled and published on annual

basis by the Shenzhen Statistical Bureau. Therefore, the instantaneity and reliability of this data are acceptable for research

purposes. This yearbook comprehensively and systematically introduces the national economy and social development of

Shenzhen, and the indicators reflect the achievements made by Shenzhen in all aspects of economy and society in 2016, as

well as the statistical data of the city since its establishment. The statistical data consists of 19 parameters, listed as: (i)

synthesis,  (ii)  national  economic accounting, (iii)  population and labor force,  (iv)  industry and energy, (v) construction

industry, (vi) transport and post and telecommunications, (vii) agriculture, (viii) investment in fixed assets, (ix) real estate

development, (x) commerce and prices, (xi) financial revenues and expenditures, (xii) financial insurance industry, (xiii)

foreign economic trade and tourism, (xiv) labor wages,  (xv) science and technology, (xvi) culture and education, (xvii)

health,  social  security  and  social  welfare,  (xviii)  urban  construction  and  environmental  protection,  and  (xix)  people's

livelihood. Due to the absence of long-term statistical data on some important indicators, this study is limited to a partial
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statistical dataset spanning the period 1986–2016 in order to sustain the data integrity. Although including all factors to the

indicator system for analysis would reach better agreement with the marine disaster community, this study can only provide

certain factors  due to  data  availability  limits.  For  example,  elderly people  and people  with disabilities  are  included  in

vulnerable groups (Yuan et al., 2016) which should be reflected in sensitivity, but there is no specific data captured about the

elderly population in Shenzhen’s statistical yearbooks. In terms of study areas, the research limits coastal city choices based

on several  assumptions.  Candidate  cities  should  have  (i)  datasets  with  relatively  complete,  detailed  statistics,  (ii)  well

developed coastal  industries  such as agriculture,  fishing, etc.,  (iii)  a  sharp,  increasing population growth and matching

economic development pattern, and (iv) suffer from frequent and severe storm surges.  Additionally, non-candidate coastal

cities are mature, populous cities with a long economic history and had slower development stages or primitive cities with a

slower economic growth rate and possess fewer established coastal industries. As a limit to the study, a fit method should be

developed to determine which cities match specific criteria suitable for becoming appropriate candidates for this research.

2.2 Research methods

At present, the evaluation of social vulnerability is still  in an exploratory stage and the theoretical frameworks used in

various fields are dissimilar, such as the hazards of place (HOP) model (Cutter, 1996) and the vulnerability framework for

sustainability  science  (VFSS)  model  (Turner  et  al.,  2003a),  etc.  Currently,  the  unified  evaluation  model  has  not  been

completely established (Zhou et al., 2014). Based on these frameworks, the existing social vulnerability assessment methods

can be divided into three kinds: (i) based on an indicator system (Su et al., 2015), (ii) based on historical disaster loss (Sun et

al., 2009), and (iii) based on a vulnerability curve. This paper adopts the first assessment method and is based on the SVI

evaluation framework proposed by Cutter (1996), which is comprised of calculating the SVI to measure the vulnerability

level of a region by selecting the indicators related to the social vulnerability of that region (Cutter, 1996).  The evaluation

indicator system of disaster vulnerability is composed of two parts: (i) the indicator system and (ii) the indicator weight. The

indicators reflect the characteristics of the evaluation objects and their internal relations while the indicator weight reflects

the importance of the indicator to the final score and is an essential part of the construction of the evaluation system (Yang

and Li,  2013).  At present,  the methods used to determine the weight of  evaluation indicators  can be divided into two

categories: (i) subjective weighting method and (ii) objective weighting method. The former is dominated by the expert

grading method (Liu et al., 2002; Wang et al., 2003), while the latter encompasses several research methods, including the

analytic hierarchy process (AHP) (Lu, 2008; Shi et al., 2008), principal component analysis (PCA) (Zhang and You, 2014),

data  fusion  algorithms and  the  comprehensive  analysis  method (Liu  and  Liu,  2017).  Among them,  the  comprehensive

analysis method refers to the combination of two or more single evaluation methods to determine the indicator weight, which

enhances the objectivity and rationality of the evaluation results.

     Based on the above mentioned research, this study constructed a set of basic procedures for calculating the SVI of storm

surges in Shenzhen (Fig. 3). Firstly, the construction of an optimized social vulnerability evaluation indicator system, based

on the idea of rough set theory (Das et al., 2018), is completed. Second, the entropy method (Zhou and Yang, 2019), the
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technique  for  order  preference by similarity  to  an  ideal  solution (TOPSIS) method (Kuo,  2017) and  the  coefficient  of

variation method (Zhou et al., 2004) are used to weigh the indicators and aggregate SVI separately. Then, the consistency of

different evaluation results is tested by using the compatibility test method, i.e., Kendall consistency test (Wen and Hu,

2002).  When all  the above evaluation methods pass  the consistency test,  the combination weighting method is used to

determine  the  weight  of  each  evaluation  method.  Finally,  the  combined  evaluation  results  are  achieved,  which  have

significant advantages compared to those of all single methods due to weighted value of each evaluation method.

     The analysis of the connotation and extension in the concept of vulnerability evaluation for a storm surge-bearing body is

based on vulnerability theory. Next, the evaluation indicators are preliminarily selected based on the perspective of exposure,

sensitivity and resilience and the indicator designing principles of science, system, dominance, comparability, quantifiability,

operability  and  dynamics.  Finally,  the  evaluation  indicators  are  screened  and  the  optimal  evaluation  index  system  is

constructed by using the information extraction ability of rough set.

     Rough set theory is a soft computing technique proposed by Z. Pawlak for handling vague, inconsistent and uncertain

data (Das et al., 2018). The main idea is to remove redundant or unimportant attributes according to specific rules on the

premise of keeping the classification ability of knowledge base unchanged (Wu and Tang, 2019). This method can undertake

in-depth  analysis  and  reasoning  of  data,  simplify  the  data,  and  obtain  knowledge  on  the  premise  of  preserving  key

information, identify and evaluate the dependencies between the data, and finally, reveal the potential regularity from the

data (Pawlak,  1998;  Pawlak  and  Skowron,  2007). Rough  set  is  defined  in  terms  of  a  pair  of  sets,  namely  lower

approximation  and  upper  approximation  of  the  original  set.  Indiscernibility  relations  and  set approximations  are  the

fundamental concepts of the rough set theory (Pawlak, 1982; Swiniarski, 2001).

     In order to enhance the reliability of the  social  vulnerability evaluation results, it  is inadvisable to apply only one

evaluation method. Therefore, this paper will use the entropy, TOPSIS and coefficient of variation methods to weigh the

social vulnerability indicators and aggregate SVI, respectively. When the calculation results of all evaluation methods in use

pass  the  Kendall  consistency  test,  their  combined  evaluation  results  based  on  the  combination  weighting  method  are

achieved. The  results  under  a  single  evaluation  framework  (i.e.,  the  combination  weighting  method) will  be  further

investigated.

2.2.1 Entropy method

In information theory, entropy is a measure of uncertainty. The greater the amount of information, the smaller the uncertainty

and the entropy. According to the characteristics of entropy, we can determine the randomness and disorder degree of an

event by calculating the entropy value, or the entropy value can be applied to judge the dispersion degree of an indicator. The

greater the dispersion degree of an indicator, the greater the influence of this indicator on the comprehensive evaluation

(Skotarczak et al., 2018). Therefore, the weight of each indicator can be calculated according to their variation degree, using
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information entropy as a tool to provide the basis for a comprehensive evaluation of multiple indicators (Zhou and Yang,

2019).

Procedure I

 Step 1: Select n years and m indicators.

 Step 2: Calculate the proportion of the indicator j in year i (rij):

r ij=
r ij

∑
i=1

n

r ij

  ,                                                                                                                                                                    (1)

 Step 3: Calculate the information entropy (e) of the indicator j:

  ,                (2)

where, 0≤ e j≤ 1  and j= {1,2,3, .. . ,m } .

 Step 4: Calculate the utility value of the indicator j:

d j=1− e j    ,                                (3)

 Step 5: Calculate the weight of the indicator j:

u j=
d j

∑
j=1

n

d j

  ,                                         (4)

 Step 6: Obtain the final evaluation value by weighted summation of each indicator.

2.2.2 TOPSIS method

The TOPSIS method, namely the solution distance method, was first proposed by C.L. Hwang and K. Yoon in 1981  (Kuo,

2017). TOPSIS is a common multi-indicator and multi-objective decision analysis method, which has been widely applied to

the evaluation of multivariate analysis (Wu and Chen, 2019). Its core idea involves sorting the proximity of a limited number

of evaluation objects to idealized targets by measuring the distance of the positive ideal solution and negative ideal solution,

and then realize the evaluation of each object relative merits (Lu et al., 2011).
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     The TOPSIS method is performed in six steps, which are: (i) construct the original data matrix, (ii) data standardization

processing, (iii) determine the indicator weight using the entropy method, (iv) calculate the positive and negative ideal

values, (v) calculate the distance from each evaluation indicator to the positive and negative ideal value, and (vi) calculate

the relative proximity between the evaluation object and the optimal value (Zhang and You, 2014).

2.2.3 Coefficient of variation method

A comprehensive evaluation is carried out through multiple indicators. When the value of an indicator can clearly distinguish

each  sample, the  indicator  possesses  resolved  information  about  this  evaluation.  Therefore,  in  order  to  improve  the

discrimination validity of a comprehensive evaluation, the idea of the coefficient of variation method is to assign weights to

all the evaluated objects according to the variation degree of the observed values of each indicator (Zhou et al.,  2004).

Indicators with large variation of the observed values indicate that the schemes or indicators can be effectively divided, and a

larger weight should be given, otherwise a smaller weight would be justified (Zhao et al., 2013). The variation information of

indicators is measured by its variance, but the variance of indicators is not comparable due to the influence of the dimensions

and order of magnitude of each indicator. Therefore, the comparable indicator variation coefficient should be selected and

the weight of each indicator can be obtained by normalizing its coefficient of variation (Gupta and Gupta, 2016).

Procedure II

 Step 1: Suppose there are n participating samples, each of which is described by p indicators. Calculate the mean value

X avg  and variance S i
2  of each indicator.

X avg=
1

n∑ X ij

 ,                                           (5)

S i
2= 1

n −1∑ ( x ij − X avg )2
 ,                                                                     (6)

 Step 2: Calculate the coefficient of variation of each indicator.
V i=Si / X avg  ,                                                                     (7)

where, i= {1,2,3, .. . ,p } .

 Step 3: Obtain the weight of each indicator by normalizing the coefficient of variation.

W i=
V i

∑V j

 ,                                                          (8)

where, j= {1,2,3, .. . ,p } .

 Step 4: Obtain the final evaluation value by weighted summation of each indicator.
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2.2.4 Kendall consistency test

Due to limitations of the methods in use, each single evaluation can lead to a different conclusion. Nevertheless, as long as

the evaluation criteria are consistent, the result of grade classification is reasonable. The Kendall consistency test is a method

to test whether the results of each single evaluation method are consistent (Wen and Hu, 2002).

W=
∑
i=1

n

(R i−
m (n+ 1 )

2 )
2

m2 n ( n2− 1 )/12

 ,                  (9)

where, W is the Kendall's coefficient of concordance, m is the number of evaluation methods used, n is the year participated

in the evaluation, and Ri  is the rank sum of year i. The numerator in Eq. (9) is the sum of deviation squared between the

total rank and the total rank of all samples, and n (n2 −1 )/12  in the denominator is the sum of total deviation squared

(total sum of squares) of all ranks.

     The closer W is to 1, the greater the difference between the rank groups, wherefore there is a significant difference in the

scores of the years involved in the evaluation and further indicates that the evaluation criteria of different methods are

consistent. On the contrary, the closer W is to 0, the more inconsistent these methods are in their evaluation criteria.

2.2.5 Combination weighting method

In a single evaluation system, the results may possess slight one-sidedness differences, which will affect the accuracy and

feasibility of the evaluation. By combining the evaluation results of multiple evaluation methods helps to safeguard the

objectiveness of the evaluation results.

     A weight combination strategy normalizes the weight of a single method vector by using dispersion maximization

combined  with the  weighting method in Eq.  (10)  and  provides  combination  weight  coefficients  of  singular  evaluation

methods.  The  combination  weight  of  each  indicator  is  obtained  by  using  the  combination  calculation  formula:

ωs=θ1
✶ ω1 s +θ2

✶ω2 s+. ..+θn
✶ωns , where  θn

✶  is the weight of a single evaluation method,  ωjs  is the weight

value of indicator s under method j ( j= {1,2, .. . ,n } ), and ωs  is the final weight. In the following formula (Eq. 10),

f ij , f tj  are evaluated values of objects i and t under each single evaluation method (j), and θ j
✶  is the weight of a

single evaluation method ( j= {1,2, .. . ,n } ):
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θ j
✶=

∑
i=1

m

∑
t=1

m

|f ij − f tj|

∑
j=1

n

∑
i=1

m

∑
t=1

m

|f ij −f tj|
 ,                 (10)

2.3 Indicator system of social vulnerability evaluation

By analyzing the factors contributing to social  vulnerability,  a set of more than 100 evaluation indicators was obtained

(Fischer et al., 2002; Wisner et al., 2004; Zhou et al., 2014; Yuan et al., 2016). The evaluation indicators were then simplified

using rough set theory. 

     The research screens an algorithm without considering the effects of man-made physical barriers and coastal defense

systems such as seawalls, revetments, floodgates and dams. The algorithm screens for classifying a disaster body of interest

(i.e., Shenzhen, China) that impact the social economy of the study area and screens for determining key attributes that can

affect the exposure of a disaster body. Then, the evaluation indicators are selected based on aspects of both population and

industrial structure to reflect the degree of sensitivity of a disaster body. Evaluation indicators are selected from aspects such

as fiscal expenditures, resident income, and infrastructure construction to reflect the resilience of a disaster body’s social and

economic system. Table 1 shows a total of 16 evaluation indicators selected after repeated screening in which the Grade I

indicators are identified with the three components of vulnerability and the Grade II indicators – with the branches of the

Grade I indicators.

     The indicators of exposure reflect the damage of an inundation area, including its population and social economy. Among

them, the permanent resident population at the end of the year reflects the population exposure. The higher the population,

the higher the number of people exposed to natural disasters, and the relative high level of vulnerability. Since the amount of

regional GDP measures economic exposure, a relative high level of economic development corresponds to a more vulnerable

area to storm surges due to the aggregation of public property (e.g., shopping centers, office buildings, etc.) built upon the

area compared to underdeveloped locations. In flooded areas, crops are damaged, fishery resources are affected and the port

cannot operate normally.  The total  area of crops,  fishery output value and port  cargo throughput are indicators directly

exposed to the impact of storm surges.

     Sensitivity indicators reflect  the degree of sensitive of a  disaster body of interest (i.e., Shenzhen, China). Primary

industries  include  agriculture,  forestry,  fishery,  animal  husbandry  and  collection.  The  operation  of  these  industries  is

sensitive to changes of the natural environment and the occurrence of storm surges will directly affect their output of these

industries. When storm surges occur, surface meteorological conditions are harsh and often accompanied by severe winds

and precipitations, which causes the city traffic to become busy and prone to accidents. Representing vulnerable societal

groups, students and women are more likely to be injured or even to suffer casualties outside (Yuan et al., 2016). Meanwhile,

social workers generally work outdoors with relatively high risk of being injured and their awareness of disaster prevention
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and reduction is relatively low due to limited knowledge of the general population, leading to increased sensitivity of storm

surges within the entire region.

     In contrast to exposure and sensitivity, resilience is a negative indicator meaning that relatively high resilience in a region

is equivalent to a relative low vulnerability. The resilience indicators selected for this research can be divided into three

groups, namely (i) fiscal expenditures, (ii) resident income and (iii) infrastructure construction. Fiscal expenditure levels

mainly reflect  the general  public  budget  expenditures  and urban fixed asset  investments.  The higher the public  budget

spending, the more resources are provided/spent for social management and infrastructure development. Urban fixed asset

investments include many infrastructure projects such as railways, water conservancy, roads, airports, pipelines and power

grids. The higher the urban fixed asset investment values, the more developed the regional infrastructure is for a particular

region. Therefore, with an increase of fiscal expenditures, the infrastructure construction is more complete and the ability to

prevent and resist disaster consequences, along with resilience after being damaged, is substantial. The level of residential

income can  be  divided  into  (i)  disposable  income of  urban  residents  per  capita  and  (ii)  the  average  annual  salary  of

employees. With a relatively high income level of residents and relatively higher living standard, the disaster resilience of the

area becomes stronger and the recovery capacity is faster after the disaster (Yuan et al., 2016). The level of public services

mainly refers to the level of medical and health care, including the number of medical and health institutions and their

equipment (e.g., beds, etc.) as well as the number of health employees. All of these values are positively correlated with the

medical treatment level of the potential victims.

3 Results and discussion

3.1 Variation pattern of social vulnerability

Based  on  the  constructed  evaluation  indicator  system  along  with  detailed  and  reliable  statistical  data  and  combined

weighting results, the annual  SVI of Shenzhen between 1986 and 2016 is  obtained and the changing characteristics and

influencing factors of social vulnerability will be discussed. According to the common idea of equal division in mathematical

statistics,  degrees  of social  vulnerability to storm surges discussed in this research are set  to (i)  high vulnerability,  (ii)

relatively high vulnerability, (iii) moderate vulnerability, (iv) relatively low vulnerability and (v) low vulnerability and the

corresponding critical thresholds of SVI are 0.5715, 0.5237, 0.4759 and 0.4281, respectively (Yuan et al., 2016).

     According to calculated results, three kinds of single evaluation methods share similar weight coefficients, and the weight

coefficients of the entropy method is the highest (Table 2). These results closely reflect a similar overall trend except for

slight differences in numerical values. The combination of all three weighted values can be considered as a valid reflection

of regional social vulnerability and used within the actual social vulnerability analysis.

     As shown in Fig. 4, the weighted  SVI exhibits a well pronounced overall downward trend (–0.006 per year) with

noticeable  fluctuations.  SVI shows a  slight  upward  trend  between 1986–1991 and 1996–2004 and  shows a significant

downward trend (–0.04 per year) for the remaining years as the rate of decline is greatest within 2014–2016. According to
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classification criteria, social vulnerability to storm surges in Shenzhen during the entire study period can be divided into five

stages: (i) high social vulnerability between 1986 to 1994 and 1999 to 2004, (ii) relatively high social vulnerability between

1995  to  1998  and  2005  to  2008,  (iii)  moderate  social  vulnerability  between  2009  to  2013,  (iv)  relatively  low social

vulnerability in 2014 and (v) low vulnerability in 2015 and 2016.  Thus, the high social vulnerability stretched over the

longest period of time opposed to the low vulnerability, which was only observed during the last two years of the study

period. It is apparent that, after 2008, social vulnerability has been completely removed from relatively high levels.

     The interdecadal changes of social vulnerability are also significant. Since 1986, each decade represents a cycle which

has a step–down trend, and the derivative of the third step is the largest. By evaluating and classifying social vulnerability

quantitatively, it  is discovered that  social  vulnerability has been decreasing consistently during the research period. The

discovered trend relates  to  Shenzhen’s  enhanced ability to withstand losses  and recover after  substantial  damage when

confronted with storm surges. The reasons for this trend has to be analyzed by the standpoints of exposure, sensitivity and

resilience.

3.2 Reasons for vulnerability changes

Fig.  5 depicts the corresponding indices of exposure, sensitivity and resilience. It is important to note that  exposure and

sensitivity belong to benefit indicators which means the larger the exposure index (EI) and sensitivity index (SI), the higher

the exposure  and  sensitivity.  While  resilience  possesses  opposite  attributes  as  a  cost  indicator,  meaning  the  larger  the

resilience index (RI), the lower the resilience.

     The results show that exposure, sensitivity and resilience are increasing over time, as the growth rate in turn is resilience

>  exposure  >  sensitivity,  which  reflects  that  Shenzhen’s  social  and  economic  exposure,  sensitivity  of  population,  and

industrial  structures  have increased inevitably,  but  simultaneously.  Shenzhen’s  fiscal  spending, residents’ income levels,

completion degree of medical conditions, and infrastructure exponentially improved.

     According to the evaluation results, the continuous increase of resilience is the most significant feature, which is mirrored

by the  continuous  decrease  of  RI (Fig.  5).  Resilience  is  closely  related  to  the  level  of  regional  social  and  economic

development. The remarkable pace of Shenzhen has greatly promoted the city’s development in just thirty years which leads

to a continuous growth of all resilience indicators. Therefore, the growth of resilience in Shenzhen is overt.

     EI remains almost constant during the period 1986–1991 and, after presenting a slight drop between 1992 and 1996,

continues growing since 1996. Shenzhen transformed from a small fishing village to grids of high-rise buildings after the

rapid urbanization that followed the reform and openness policy occurred in 1979. This has led to a continuous decreasing

trend of the exposure indicator (i.e., total sown area of crops; Fig. 6). In 1992, Deng Xiaoping delivered a famous speech

during his inspection tour of south China. Afterwards, Shenzhen entered the second stage of speeded economic growth,

during which better protected buildings and factories were built on what used to be farmland, causing the proportion of

agriculture to decrease sharply. Consequently, the total sown area of crops reduced by less than one half of the previous year.
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However, the weight of the ‘total sown area of crops’ indicator was relatively large (Table 3), which directly led to a decrease

of exposure of Shenzhen during the same period.

     Although the growth rate of SI is the lowest, SI maintains an upward trend except for a small decline between 2001 and

2006 because  the ‘proportion of females’ indicator did not always increase with time. Instead, the proportion of females

indicator showed a significant decreasing trend until 2006, which than sharply increased in a 10-year period (Fig. 6). In the

entire research period, SI is smaller than EI (Fig. 5) because the total weight of sensitivity indicators is the smallest (Table 3).

     In Table 3, the weight of the indicators by benefit and cost types is very similar, accounting for approximately 50% of the

total  weight.  Collectively, RI is  larger  than  the  sum of  EI  and  SI.  The statistical  data  corresponding  to  the  resilience

indicators are generally larger than that of exposure and sensitivity after standardization. The indicator weight is positively

correlated with the dispersion of data, while the correlation coefficient between the indicator value and SVI is a measure of

degree  of  influence  of  this  indicator  on  the  social  vulnerability. The  first  three  indicators  with  the  largest  correlation

coefficient  are determined to be the number of medical and health institutions, urban fixed asset investments and annual

average annual salary of employees, respectively. After data standardization, the three indicators are compared with the SVI

(Fig. 7), and it is discovered that their trend is highly consistent. Three indicators that contribute to the greatest impact on

SVI are all resilience indicators, indicating that social  vulnerability for a region is more affected by its resilience while its

exposure and sensitivity only act a secondary binding role under the same development level. Moreover, in terms of the

social  vulnerability  evaluation  indicator  system,  the  number  of  medical  and  health  institutions  are  the  most  important

resilience indicators that greatly influence the regional vulnerability, which reflects the ability for the region to treat injured

people  after  a  significant  storm surge.  The number  of  medical  and  health  institutions  reduced  sharply  in  1996 as  the

vulnerability index reached a minimum, concurrently.

3.3 Validation of SVI to storm surges

Economic loss data due to storm surges in Shenzhen is unavailable and a broader scale dataset was used in the validation of

SVI to storm surges. Storm surge economic loss data spanning from 1991–2015 for Guangdong province was obtained from

China’s National Marine Bulletin (Bulletin of China Marine Disaster, 2018). The sum of the average of the peak speed and

landfall  speed  of  typhoons combined with the extreme sea surface  heights  affecting Guangdong province  each year  is

designated as the intensity of the storm surge in Guangdong province each year. Intensity and loss was adjusted to a range of

0.4–0.7 through standardization in order to match the range of SVI (Fig. 8).

     Through data fitting, the relationship among storm surge intensity in Guangdong province and storm surge induced social

vulnerability in Shenzhen between 1991–2015 is obtained. The best fit equation reads:

loss=0.01282+0.7023∗intensity+0.1986∗SVI (11)

It is reasonable that storm surge loss is directly proportional to SVI and storm surge intensity.
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     The accuracy and reliability of Eq. (11) is verified in Fig. 9, where the theoretical loss (blue line) is calculated by the

fitting equation and the real loss (red line) are shown. The trends of the two lines are similar to the correlation coefficient

(CC; 0.7) and root mean square error (RMSE; 26 billion yuan) but the real loss fluctuates more than the theoretical loss (Fig.

9). In general, the fitted results are satisfactory from a macroscopic perspective and the reliability of Eq. (11) is considered

high. The fitted equation determines that loss is positively correlated with both SVI and intensity, which provides evidence

of an important connection between SVI and storm surges.

4 Conclusion

This research evaluates social vulnerability to storm surges in Shenzhen, China, from a macroscale perspective using 31

years of economic statistical data and 25 years of loss data.  In accordance to the characteristics of  storm surges and the

connotation of social vulnerability, the study establishes the indicator system for social vulnerability evaluation respectively

from three aspects: (i) exposure, (ii) sensitivity and (iii) resilience, based on the idea of rough set. The final weighted SVI is

validated  to  be  rational  and  reliable  by  combining results  from  multiple  evaluation  methods,  based  on  the  idea  of

combination weighting, in order for the results to objectively reflect the connotative information of social vulnerability in the

indicator system.

     The evaluation results show that the social vulnerability to storm surges in Shenzhen from 1986 to 2016 depicts a steady

downward trend, with relatively pronounced interannual and interdecadal variability.  The trend experiences four stages,

passing through high to low social vulnerability, among which the period of relative high social vulnerability is the longest in

duration. When analyzing the reasons for social vulnerability changes from exposure, sensitivity and resilience perspective,

it is revealed that the increase of the social economy exposure and demographic and industrial structures sensitivity are less

important than the disaster resilience. Therefore, with a large increase in resilience, the social vulnerability to storm surges in

Shenzhen continues to decrease while the capacity to withstand and response to disasters has significantly improved.

     The three most relevant indicators of social vulnerability belong to (i) resilience, which are the number of medical and

health institutions, (ii) urban fixed asset investments and the (iii) average annual salary of employees. The study concludes

that the increase of residents' income, infrastructure enhancement and medical and health conditions improvement are  of

great value to reduce social vulnerability.

     Reducing  social  vulnerability is as valuable as sustainable development, as society is  advancing and the economy

continues  to  grow.  The  situation  becomes  inevitable  as  assets  are  exposed  to  disasters  and  populations  vulnerable  to

substantial damage due to marine natural hazards are going to increase based on the theory of  social vulnerability. This

would lead to an increase in regional exposure and sensitivity. However, the general fiscal spending on public security of

high investments, the increase of the residents' income levels, the improvement of the infrastructure, and the improvement of

medical  and  health  conditions  are  positive  results  of  social  progress.  The  relatively  higher  these  indicators  reach,  the

relatively lower the possibility of damage to a region materializes, and the stronger the disaster flexibility.  This indicates that
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the establishment of disaster prevention and reduction mechanisms for  storm surges should mainly start from improving

resilience  through  reasonable  arrangements  of  financial  expenditures,  improving  the  living  standard  of  residents  and

improving the infrastructure for disaster prevention. It is relatively difficult to reduce exposure and sensitivity, but their

growth rate can be controlled by reducing crop acreage in areas vulnerable to storm surges, managing fishery breeding areas

and the number of harbors, and selecting rational sites for residential areas and schools. In addition, the government should

energetically develop more science and technology avenues, improve the mechanisms of marine forecasting to carry out real-

time monitoring of future storm surges, closely monitor the tidal level changes at coastal tide stations, and issue storm surge

early  warnings  through  radio,  TV  and  Internet  channels  in  a  timely  fashion.  All  departments  should  strengthen

communication and cooperation,  establish and  improve the response mechanisms to coastal  disasters,  and  improve the

emergency planning of storm surge incidents. After a coastal disaster occurs, governmental departments should assess all

aspects of the damage levels, and provide completeness in post-disaster repairs to infrastructure.

     Assessment of social vulnerability to storm surges is an important basis for disaster risk prevention, preparedness and

reduction, as well as to formulate marine policy for emergency planning operations. However, some indicators were not

included in the final  evaluation system due to  the  lack of  statistical  data,  such as  coastal  breakwaters,  flooding areas,

insurance depth and housing values. To further increase the reliability of the social vulnerability evaluation results, additional

methods (e.g., fuzzy cluster analysis, PCA, efficacy coefficient method, expert evaluation method, etc.) and a greater number

of methods deployed should be included in the research. Additionally, it is obvious that the scale of the social vulnerability

evaluation at the municipal level is not as detailed as smaller administrative units, such as districts, residential quarters and

streets. As  an  extension  to  this  research,  further  challenges  are  related  to  narrowing of  the  evaluation  scale  of  social

vulnerability and selection of more reasonable indicators according to the local conditions.

Data availability.

The authors thank the Shenzhen Statistical Bureau and the National Bureau of Statistics for use of the historical 31-year

dataset  hosted  in  their  Shenzhen  Statistical  Yearbooks.  Yearbooks  are  available  from  the  following  website:

http://www.sz.gov.cn/cn/xxgk/zfxxgj/tjsj/tjnj/ in  PDF  format  (e.g.,  2018  publication,

http://www.sz.gov.cn/cn/xxgk/zfxxgj/tjsj/tjnj/201812/P020181229639722485550.pdf).  The  authors  thank  the  Ministry  of

Natural Resources of the People’s Republic of China for use of the historical 25-year dataset hosted in the Bulletin of China

Marine Disaster. Bulletins are available from the following website: http://www.mnr.gov.cn/sj/sjfw/hy/gbgg/zghyzhgb/  (e.g.,

2017  bulletin,  http://gc.mnr.gov.cn/201806/t20180619_1798021.html;  2010  bulletin,

http://gc.mnr.gov.cn/201806/t20180619_1798014.html). Figure 1 was created with QGIS 3.4 LTR, Python scripting with

relevant mapping libraries, GIMP image editor for subplot modification, and LibreOffice Impress for figure organization.

Figures 2, 4, 5, 6 and 7 were generated strictly with Python scripts. Figure 8 and 9 were generated strictly with MATLAB

scripts.
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FIGURES

Figure 1: Mapped geographic features, shown at three scales: country wide (a), southeastern regional (b) and localized to the
economic center of Shenzhen, China (c), are presented as a source of reference. The study area (Shenzhen, China) is labeled
and outlined using crimson color in Fig. 1c. The maps apply the Lambert Conformal Conic (LCC) projection due to the
country’s middle latitude presence and predominantly east-west expanse. The LCC projection offers flexibility in adjustable
standard parallels for plotting at different scales, where conformality is held true, angular distortion at any parallel (except
for  the  poles)  is  essentially  zero  and  meridians  are  right  angles  (Snyder,  1987).  The  LCC projection  emphasizes  the
conceptual quality of secancy for conics and has been the conformal projection of choice for mid-latitudes (Pearson II,
1990).
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Figure 2: The rapid economic growth of Shenzhen, China from 1986–2016. The city’s regional GDP (black bar) and annual
GDP growth percentage (blue line), i.e., [(GDPi – GDPi – 1) / GDPi – 1] x 100% where i = year, are shown.
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Figure 3: Basic four-step procedure (colored boxes) in calculating SVI (black box). The second step (rose boxes) uses three
separate methods, while the third (orange box) and fourth (green box) steps are meant to integrate the three calculated results
of the second step. Note, the black dashed box surrounding SVI indicates a result of the four-step process.
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Figure 4: SVI aggregated by the Entropy method (yellow line), TOPSIS method (green line) and Coefficient of variation
method (blue line). The weighted value of SVI is depicted with thick red line.
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Figure 5: Variation of exposure index (EI), sensitivity index (SI) and resilience index (RI). SVI is illustrated in red.
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Figure 6: Normalized values of total area of crops (yellow line) and proportion of females (green line). Note, the min-max
normalization method carries out a linear transformation on the original dataset to standardize each row into an interval [ymin,
ymax] using the formula: y = (ymax – ymin)*(x – xmin) / (xmax – xmin) + ymin. These results fall in the interval [0, 1].
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Figure 7: Three most relevant indicators of social vulnerability during the research period. SVI is shown in red dots.  The
min-max normalization method used in Fig. 6 was used in this figure and the results fall in an interval [0, 0.25]. SVI values
were subtracted by a constant (0.38) to meet an identical interval.  Note, the y-axis is partially visible to expand the lower
portion of the plot.
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Figure 8: Standardized SVI (green line), intensity (blue line) and loss (red line) from 1991 to 2015. Note, (i) the use of min-
max normalization and (ii) the range for intensity and loss is unified to the interval [0.4, 0.7] for a convenient comparison
with SVI.
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Figure  9: Real  loss  (red  line)  and  theoretical  loss  (blue  line)  based  on  the  fitting  equation,  i.e.,  loss  =  0.01282  +
0.7023*intensity + 0.1986*SVI.
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TABLES

Table 1: Indicator system of vulnerability to storm surges in Shenzhen, China.
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Grade I 

indicators

Grade II indicators

Exposure

(+)

Permanent resident population at the end of the year   

(including household and non-household registration)
Regional GDP
Total area of crops 
Fishery output value 
Port cargo throughput 

Sensitivity 

(+)

Gross output value of primary industry
Female proportion 
Total enrollment of students
Total social workers at the end of the year

Resilience: Per 

capita

(–)

General public budget expenditure
Disposable income of urban residents per capita
Urban fixed asset investment
Average annual salary of employees
Number of medical and health institutions
Number of beds in medical and health institutions

Number of health workers

1015

1020

1025

1030

1035

35



Table 2: Combined weight coefficients of each single evaluation method.
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Entropy method TOPSIS method Coefficient of variation
method

Combined weight
coefficient (%)

42.75 25.10 32.15
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Table 3: Indicator weight and correlation coefficient of indicator values with SVI.

37

Grade I 
indicators

Grade II indicators Correlation
coefficient with

SVI (%)

Indicator weight
(%)

Exposure

(+)

Permanent resident 
population  (including 
household and non-
household registration)

–85.48 4.13 32.05

Regional GDP –95.11 9.49

Total area of crops 69.92 8.33

Fishery output value –40.88 3.26

Port cargo throughput –84.39 6.84

Sensitivity

(+)

Gross output value of 
primary industry

30.75 3.36 16.48

Female proportion 29.30 2.49

Total enrollment of students –89.55 6.17

Total social workers at the 
end of the year

–88.69 4.45

Resilience:

Per capita

(–)

General public budget 
expenditure

94.24 12.07 51.47

Disposable income of urban 
residents per capita

89.85 4.99

Urban fixed asset investment 96.31 8.00

Average annual salary of 
employees

95.24 6.59

Number of medical and 
health institutions

97.31 6.57

Number of beds in medical 
and health institutions

95.15 6.16

Number of health workers 95.07 7.09

1065

1070

1075

1080

1085
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