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Abstract. Coseismic landslides can destroy buildings, dislocate roads, sever pipelines, and cause heavy 15 

casualties. It is thus important but challenging to accurately map the hazards posed by coseismic 16 

landslides. Newmark’s method is widely applied to assess the permanent displacement along a potential 17 

slide surface and model the coseismic response of slopes. This paper proposes an improved Newmark 18 

analysis for mapping the hazards of coseismic landslides by considering the roughness and effect of size 19 

of the potential slide surfaces. This method is verified by data from a case study on the 2014 𝑀𝑤 6.1 (the 20 

United States Geological Survey) Ludian earthquake in Yunnan Province of China. Permanent 21 

displacements due to the earthquake ranged from 0 to 122 cm. The predicted displacements were 22 

compared with a comprehensive inventory of landslides triggered by the Ludian earthquake to map the 23 

spatial variation in the hazards of coseismic landslides using the certainty factor model. The confidence 24 

levels of coseismic landslides indicated by the certainty factors ranged from -1 to 0.95. A hazard map of 25 

the coseismic landslide was generated based on the spatial distribution of values of the certainty factor. A 26 

regression curve relating the predicted displacement and the certainty factor was drawn, and can be 27 

applied to predict the hazards of coseismic landslides for any seismic scenario of interest. The area under 28 

the curve was used to compare the improved and the conventional Newmark analyses, and revealed the 29 

improved performance of the former. This mapping procedure can be used to predict the hazards posed 30 

by coseismic landslides, and provide guidelines for decisions regarding the development of infrastructure 31 

and post-earthquake reconstruction. 32 

Keywords: Coseismic landslide; Newmark’s method; Barton model; Certainty factor; Hazard mapping 33 

  34 
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1 Introduction 35 

Earthquakes are recognized as one of the major causes of landslides (Keefer, 1984). Hazards caused by 36 

coseismic landslides have drawn increasing attention in recent years (e.g., Jibson et al., 1998, 2000; 37 

Khazai and Sitar, 2004; Qi et al., 2010, 2011, 2012; Chen et al., 2012; Xu et al., 2013; Yuan et al., 2014). 38 

The damage caused by seismically triggered landslides is sometimes more severe than the direct damage 39 

caused by the earthquake (Keefer, 1984). Estimating where a specific shaking is likely to induce a slope 40 

failure plays an important role in the regional assessment of coseismic landslides.  41 

Pseudostatic analysis formalized by Terzaghi (1950), and finite-element modeling applied by Clough and 42 

Chopra (1966) have been employed to assess the seismic stability of slopes in early efforts (Jibson, 2011). 43 

Newmark (1965) first introduced a relatively simple and practical method, which is still commonly used 44 

nowadays, to estimate the coseismic permanent displacements of slopes (Jibson, 2011). Studies have 45 

shown that Newmark’s method yields reasonable and practical results when modeling the dynamic 46 

performance of natural slopes (Wilson and Keefer, 1983; Wieczorek et al., 1985; Jibson et al., 1998, 2000; 47 

Pradel et al., 2005). Rathje and Antonakos (2011) recently presented a unified framework for predicting 48 

coseismic permanent sliding displacement based on Newmark’s method. Chen et al. (2018) used 49 

Newmark’s method to calculate the minimum accelerations required for coseismic landslides in the region 50 

affected by the 2014 Ludian earthquake. Chen et al. (2019) subsequently developed an easy-operation 51 

mapping method to assess hazards posed by coseismic landslides in the zone struck by the 2014 Ludian 52 

earthquake using Newmark’s method.  53 

Such applications generally start from an analysis of the dynamic stability of slopes, which is quantified 54 

as the critical acceleration. Barton model (Barton, 1973) has been widely used in rock mechanics and 55 
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engineering to predict the shear strength of rock joints, which plays a crucial role in the calculation of 56 

critical acceleration. However, researchers have not adequately attended to the shear strength of rock 57 

joints during the assessment of coseismic landslides. To better estimate the dynamic stability of slopes, in 58 

this paper, we introduce the Barton model (Barton, 1973) to Newmark analysis to develop an improved 59 

modeling method for mapping the hazards posed by coseismic landslides using data from the 2014 Ludian 60 

earthquake in Yunnan Province in southwestern China. As predictions of coseismic landslides are not 61 

based on exact results, i.e., the computed permanent displacements, but are also mingled with 62 

unformalized expertise, i.e., the interpreted landslides, we present a model of inexact reasoning, i.e., the 63 

certainty factor model (CFM), that defies analysis, as an application of sets of inference rules that are 64 

expressed in predicate logic (Shortliffe and Buchanan, 1975), to produce a map of the hazards posed by 65 

coseismic landslides. 66 

This paper briefly introduces the characteristics and spatial distribution of landslides triggered at the 67 

chosen site, describes the method of modeling used for the analysis of the stability of seismic slopes, 68 

presents the mapping procedure of the confidence level of seismic slope failure, and finally discusses the 69 

results of the assessment of seismic hazard as well as a comparison with the conventional Newmark 70 

analysis. 71 

 72 

2 Study area 73 

The epicenter of the 2014 𝑀𝑤 6.1 (the United States Geological Survey) Ludian earthquake was located 74 

in the southeastern margin of the Tibetan Plateau. A rectangular area lying immediately around the 75 

epicenter containing dense concentrations of the induced landslides was chosen for study (Fig. 1). The 76 
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elevation of the area ranged from 785 m to 3,085 m above sea level. Three rivers—the Niulanjiang River, 77 

Shaba River, and Longquan River—pass through the study area (Fig. 1). The topography ranges from flat 78 

in the river valleys to nearly vertical in the slopes on the banks of the rivers. According to Chen et al. 79 

(2015), Niulanjiang River flows from the southeast (SE) to the northwest (NW), and incises to a depth 80 

between 1,200 m and 3,300 m, resulting in about 80% of the slopes having angles greater than 40° 81 

distributed along the banks. The predominant geological units of the study area have an age that varies 82 

from the Proterozoic to the Mesozoic, including dolomite, limestone, shale, sandstone, basalt, and slate 83 

(Fig. 2). 84 

An inventory of 1,416 landslides triggered by the 2014 Ludian earthquake (Fig. 1) was compiled by visual 85 

inspection through comparisons between pre-earthquake satellite images obtained from Google Earth 86 

(January 30, 2014) and 0.2-m high-resolution post-earthquake aerial images (August 7, 2014; data 87 

provided by the Digital Mountain and Remote Sensing Applications Center, Institute of Mountain 88 

Hazards and Environment, Chinese Academy of Sciences, and Beijing Anxiang Power Technology Co., 89 

LTD.). A majority of landslides triggered by the earthquake were shallow, flow-like landslides (shallower 90 

than 3 m), developing in particularly dense concentrations along steeply incised river valleys. The total 91 

area of these interpreted landslides was 7.01 km2 within a study area of 705 km2. A detailed study showed 92 

that 846 of the mapped landslides were greater than 1,000 m2 in area, occupying 6.74 km2 and accounting 93 

for 96.1% of the total area of landslides, of which 279 were greater in area than 5,000 m2, occupying 5.37 94 

km2 and accounting for 76.6% of the total landslide area. 95 

 96 

3 Methodology 97 



10 

 

3.1 Modeling method 98 

In the context of the analysis of the dynamic stability of a slope, Newmark (1965) proposed a permanent 99 

displacement analysis that bridges the gap between simplistic pseudostatic analysis and sophisticated, but 100 

generally impractical, finite element modeling (Jibson, 1993). Newmark’s method simulates a landslide 101 

as a rigid plastic friction block with a known critical acceleration on an inclined plane (Fig. 3), and 102 

calculates the cumulative permanent displacement of the block as it is subjected to an acceleration-time 103 

history of an earthquake. Newmark (1965) showed that the dynamic stability of a slope is related to the 104 

critical acceleration of a potential landslide block, and can be expressed as a simple function of the static 105 

factor of safety and the geometry of the landslide (Jibson et al., 1998, 2000): 106 

 𝑎𝑐 = (𝐹𝑆 − 1)𝑔𝑠𝑖𝑛𝛼 (1) 

where 𝑎𝑐 is the critical acceleration in terms of 𝑔, the acceleration due to the Earth’s gravity, 𝐹𝑆 is the 107 

static factor of safety, and 𝛼 is the angle from the horizontal at which the center of the slide block moves 108 

when displacement first occurs (Jibson et al., 1998, 2000). For a planar slip surface parallel to the slope, 109 

this angle generally approximates to the angle of the slope. 110 

Natural slopes often develop a group of shallow unloading joints (Fig. 4) parallel to the surface due to 111 

valley incisions (Gu, 1979; Hoek and Bray, 1981). Studies have shown that rock slopes behave as 112 

collapsing and sliding failures of shallow unloading joints under strong earthquakes, and 90% of 113 

coseismic landslides are shallow falls and slides (Harp and Jibson, 1996; Khazai and Sitar, 2003; Dai et 114 

al., 2011; Tang et al., 2015). According to Qi et al. (2012), two typical kinds of landslides are triggered 115 

by earthquakes, i.e., (a) shallow, flow-like landslides with depth less than 3 m in general, and (b) rock 116 

falls thrown by the shaking caused by the earthquake, usually occurring at the crest of the slope. For both 117 
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types, unstable blocks of rock are often cut and activated along the rock joints. Therefore, the static factor 118 

of safety in terms of the critical acceleration in these conditions is related to the peak shear strength of the 119 

rock joints. For the purpose of regional analysis, we use a limit-equilibrium model of an infinite slope 120 

(Fig. 3) by referring to the simplification of Newmark’s method by of Jibson et al. (1998, 2000). The 121 

value of the static factor of safety against sliding given by the ratio of resistance to the driving forces is 122 

determined by conventional analysis without considering accelerations, expressed as: 123 

 𝐹𝑆 =
𝑅𝑒𝑠𝑖𝑠𝑡𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒

𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒
=

𝜏𝐿

𝑚𝑔𝑠𝑖𝑛𝛼
=

𝜏𝐿

𝛾𝐿𝑡𝑠𝑖𝑛𝛼
=

𝜏

𝛾𝑡𝑠𝑖𝑛𝛼
 (2) 

where 𝜏 is the peak shear strength of the rock joint, 𝐿 is the length of the rock joint, 𝑚 is the mass of 124 

the failure rock block, 𝛾 is the unit weight of the rock mass, and 𝑡 is the thickness of the failure rock 125 

block. 126 

For a Newmark analysis, it is customary to describe the shear strength of rocks instead of rock joints in 127 

terms of Coulomb’s constants—friction angle (φ) and cohesion (𝑐). However, both are not only stress 128 

dependent, but also scale dependent (Barton and Choubey, 1977). According to Barton (1973), a more 129 

satisfactory empirical relationship for predicting the peak shear strength of a joint can be written as 130 

follows: 131 

 𝜏 = 𝜎𝑛tan [𝐽𝑅𝐶 𝑙𝑜𝑔10 (
𝐽𝐶𝑆

𝜎𝑛
) + 𝜙𝑏] (3) 

where 𝜎𝑛 is the effective normal stress, 𝐽𝑅𝐶 is the joint roughness coefficient, 𝐽𝐶𝑆 is the joint wall 132 

compressive strength, and 𝜙𝑏  is the basic friction angle—the angle of frictional sliding resistance 133 

between rock joints—which can be obtained from residual shear tests on natural joints (Barton, 1973). 134 
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The effective normal stress (𝜎𝑛) generated by gravity acting on the rock block is as follows: 135 

 𝜎𝑛 =
𝑚𝑔𝑐𝑜𝑠𝛼

𝐿
=
𝛾𝐿𝑡𝑐𝑜𝑠𝛼

𝐿
= 𝛾𝑡𝑐𝑜𝑠𝛼 (4) 

Considering the impact of size on 𝐽𝑅𝐶 and 𝐽𝐶𝑆, the formulations developed by Barton and Bandis (1982) 136 

are shown as below: 137 

 𝐽𝑅𝐶𝑛 = 𝐽𝑅𝐶0 (
𝐿𝑛
𝐿0
)
−0.02𝐽𝑅𝐶0

 (5) 

 𝐽𝐶𝑆𝑛 = 𝐽𝐶𝑆0 (
𝐿𝑛
𝐿0
)
−0.03𝐽𝑅𝐶0

 (6) 

where the nomenclature adopted incorporates (0) and (n) for values of the laboratory scale and the in-situ 138 

scale, respectively. 139 

Hence, the static factor of safety (𝐹𝑆) of a slope can be written as: 140 

 

𝐹𝑆 =
𝜏

𝛾𝑡𝑠𝑖𝑛𝛼
=
𝜎𝑛tan [𝐽𝑅𝐶𝑛 𝑙𝑜𝑔10 (

𝐽𝐶𝑆𝑛
𝜎𝑛

) + 𝜙𝑏]

𝛾𝑡𝑠𝑖𝑛𝛼
 

=
𝛾𝑡𝑐𝑜𝑠𝛼tan [𝐽𝑅𝐶𝑛 𝑙𝑜𝑔10 (

𝐽𝐶𝑆𝑛
𝛾𝑡𝑐𝑜𝑠𝛼) + 𝜙𝑏]

𝛾𝑡𝑠𝑖𝑛𝛼
 

=
tan [𝐽𝑅𝐶𝑛 𝑙𝑜𝑔10 (

𝐽𝐶𝑆𝑛
𝛾𝑡𝑐𝑜𝑠𝛼) + 𝜙𝑏]

𝑡𝑎𝑛𝛼
 

(7) 

After calculating the angle of the slope and static factor of safety, the critical acceleration of the slope can 141 

be determined. Once the time history of the earthquake’ acceleration has been selected, portions of the 142 

record lying above the critical acceleration 𝑎𝑐 (Fig. 5a) are integrated once to derive a velocity profile 143 
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(Fig. 5b); the time history of velocity is then integrated a second time to obtain the profile of cumulative 144 

displacement of the block (Fig. 5c). Users finally determine the dynamic performance of the slope based 145 

on the magnitude of the Newmark displacement (Jibson et al., 1998, 2000; Jibson, 2011). The detailed 146 

procedure of conducting a Newmark analysis with the Barton model is discussed in the following sections. 147 

3.2 Static factor-of-safety map 148 

Considering that the mapped landslides greater in area than 1,000 m2 occupied 96.1% of the total landslide 149 

area, we selected a 30 m × 30 m digital elevation model (DEM) from the ASTER Global Digital Elevation 150 

Model (https://doi.org/10.5067/ASTER/ASTGTM.002, last accessed July 16, 2018), which facilitated the 151 

subsequent hazard analysis. A basic slope algorithm was applied to the DEM to produce a slope map (Fig. 152 

6), where the slope was identified as the steepest downhill descent from a cell to its neighbors (Burrough 153 

and McDonell, 1998). The slopes ranged from greater than 60° along the banks of the Niulanjiang River, 154 

Shaba River, and Longquan River, to less than 20° in low mountains and hills in the north and east.  155 

According to Jibson et al. (1998, 2000), slopes steeper than 60° remain unstable even at high strengths. 156 

We assume that Newmark’s rigid plastic block is unsuitable for such a steep sliding surface. In this case, 157 

sliding occurs along a plane at an angle (𝛼) of 45°+
𝜙𝑏

2
 with the horizon (Fig. 7). Therefore, we assigned 158 

an angle (𝛼) of 45°+
𝜙𝑏

2
 to slopes steeper than 60° to avoid too small a value of 𝐹𝑆 in the Newmark 159 

analysis. 160 

The digital geological map from the China Geological Survey (CGS) was rasterized at a 30-m grid spacing 161 

to assign material properties throughout the study area. According to the literature, 𝐽𝑅𝐶0  and 𝐽𝐶𝑆0 162 

depend strongly on lithology (Coulson, 1972; Barton and Choubey, 1977; Bandis et al., 1983; Bilgin and 163 

https://doi.org/10.5067/ASTER/ASTGTM.002
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Pasamehmetoglu, 1990; Priest, 1993; Singh et al., 2012; Alejano et al., 2012, 2014; Giusepone, 2014; 164 

Yong et al., 2018). Representative values of 𝛾, 𝐽𝑅𝐶0, 𝐽𝐶𝑆0, and 𝜙𝑏 assigned to each rock type exposed 165 

in the study area were estimated using the test data listed in Table 1. The selected values were near the 166 

middle of the ranges represented in the references. These 𝐽𝑅𝐶0 and 𝐽𝐶𝑆0 values were considered in a 167 

laboratory scale for a length of 100 mm as 𝐿0. For each grid cell in the regional analysis, the length of 168 

the engineering dimension, 𝐿𝑛, can generally be set as a 10-fold range of 𝐿0. This is because the value 169 

of 𝐽𝑅𝐶𝑛/𝐽𝑅𝐶0 (𝐽𝐶𝑆𝑛/𝐽𝐶𝑆0) is nearly constant when the value of 𝐿𝑛/𝐿0 is greater than 10 (Bandis et al., 170 

1981). The values of 𝐽𝑅𝐶𝑛 and 𝐽𝐶𝑆𝑛, then, were calculated by inserting the values of 𝐽𝑅𝐶0 and 𝐽𝐶𝑆0, 171 

and 𝐿0, and 𝐿𝑛 into Eqs. (5) and (6), respectively. Figures 8 and 9 show the spatial distributions of 𝐽𝑅𝐶𝑛 172 

and 𝐽𝐶𝑆𝑛, respectively. The basic-friction-angle (𝜙𝑏) map and unit-weight (𝛾) map are shown in Figs. 10 173 

and 11, respectively. 174 

For the sake of simplicity, the thickness of the modeled block 𝑡 was taken to be 3 m, which reflected the 175 

typical slope failures of the Ludian earthquake. The static factor-of-safety map was produced by 176 

combining these data layers (𝛼 , 𝐽𝑅𝐶𝑛 , 𝐽𝐶𝑆𝑛 , 𝜙𝑏 , and 𝛾 ) in Eq. (7). In the initial iteration of the 177 

calculation, grid cells in steep areas with static factors of safety smaller than one indicated that the slopes 178 

were statically unstable, but did not necessarily mean that they were moving under shaking induced by 179 

the earthquake. In this condition, to avoid conservative results, we neither increased the strengths of the 180 

rock types with statically unstable cells nor adjusted the strengths of other rock types to preserve the 181 

differences in relavtive strength between them (as in Jibson et al., 1998, 2000). Instead, we assigned a 182 

minimal static factor of safety of 1.01, merely above limit equilibrium (Jibson et al., 1998, 2000), to these 183 

slopes to avoid a negative value of the critical acceleration 𝑎𝑐 . According to Keefer (1984), most 184 
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landslides triggered by earthquakes occur with a slope of at least 5°. The static factors of safety resulting 185 

from slopes of angles smaller than 5° were very high. These slopes were unlikely to fail under the Ludian 186 

earthquake, and did not produce a statistically significant sample in the analysis. Therefore, slopes less 187 

steep than 5° were not analyzed in the second iteration. After the adjustment, the static factors of safety 188 

ranged from 1 to 17.4, as shown in Fig. 12. 189 

3.3 Critical acceleration map 190 

According to Newmark (1965), a pseudostatic analysis in terms of the static factor of safety and the slope 191 

angle was employed to calculate the critical acceleration of a potential landslide. The map of critical 192 

acceleration (Fig. 13) was generated by combining the static factor of safety and the slope angle in Eq. 193 

(1). The critical accelerations were derived from the intrinsic properties of the slope (topography and 194 

lithology), regardless of the given shaking. Therefore, the map of critical acceleration indicated the 195 

susceptibility of coseismic landslides (Jibson et al., 1998, 2000). The calculated critical accelerations 196 

ranged from nearly zero in areas that were more susceptible to coseismic landslides to greater than 1 𝑔 197 

in areas that were less susceptibility. 198 

3.4 Shake map 199 

There were 23 strong-motion stations within 100 km of the epicenter of the Ludian earthquake (Fig. 14). 200 

Each station’s record contained the three components of the peak ground acceleration (𝑃𝐺𝐴), south–north 201 

direction, east–west direction, and up–down direction, as listed in Table 2 (the dataset was provided by 202 

the China Earthquake Data Center, http://data.earthquake.cn, last accessed June 16, 2016). We calculated 203 

the average 𝑃𝐺𝐴  of the two horizontal components of each strong-motion recording and plotted a 204 

contour map (Fig. 15) using an inverse distance-weighted (IDW) interpolation algorithm. It determined 205 

http://data.earthquake.cn/
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the cell values using a linearly weighted combination of a set of sample stations with weights inversely 206 

proportional to distance (Watson and Philip, 1985). In addition, given that input stations far from the 207 

epicenter, where the prediction was made, might have had poor or no spatial correlation, we eliminated 208 

the input stations beyond 100 km from the epicenter from the calculation. 209 

3.5 Newmark displacement map 210 

In case of a landslide in practice, it is impossible to conduct a rigorous Newmark analysis when 211 

accelerometer records are unavailable. It is also impractical and time consuming to produce a 212 

displacement in each cell during the regional analysis. Therefore, empirical regressions (Ambraseys and 213 

Menu, 1988; Bray and Travasarou, 2007; Jibson, 2007; Saygili and Rathje, 2008; Rathje and Saygili, 214 

2009; Hsieh and Lee, 2011) have been proposed to estimate Newmark displacement as a function of the 215 

critical acceleration and peak ground acceleration, or the Arias intensity. Rathje and Saygili (2009) 216 

developed a vector model for displacement in terms of the critical acceleration (𝑎𝑐 ), peak ground 217 

acceleration (𝑃𝐺𝐴 ), and moment magnitude (𝑀𝑤 ) based on an analysis of over 2,000 strong motion 218 

recordings: 219 

 
𝑙𝑛𝐷 = 4.89 − 4.85 (

𝑎𝑐
𝑃𝐺𝐴

) − 19.64 (
𝑎𝑐
𝑃𝐺𝐴

)
2

+ 42.49 (
𝑎𝑐
𝑃𝐺𝐴

)
3

− 29.06 (
𝑎𝑐
𝑃𝐺𝐴

)
4

 

+0.72ln (𝑃𝐺𝐴) + 0.89(𝑀𝑤 − 6) (8) 

where 𝐷 is the predicted displacement in units of 𝑐𝑚, and 𝑎𝑐 and 𝑃𝐺𝐴 are in units of 𝑔. 220 

This model is a preferred displacement model at a site where acceleration-time recordings are not 221 

available. Incorporating multiple parameters of ground motion into the analysis typically results in less 222 

variation in the prediction of displacement (Rathje and Saygili, 2009). 223 
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The Newmark displacement of each cell was calculated by combining the corresponding values of the 224 

critical acceleration, peak ground acceleration, and moment magnitude in Eq. (8). The predicted 225 

displacements ranged from 0 cm to 122 cm, as shown in Fig. 16. 226 

3.6 Coseismic landslide hazard map 227 

According to Jibson et al. (1998, 2000), predicted displacements provide an index of the seismic 228 

performance of slopes, where larger predicted displacements relate to a greater incidence of slope failures. 229 

But the displacements do not correspond directly to measurable slope movements in the field. To produce 230 

a coseismic landslide hazard map, we chose a model of inexact reasoning, the certainty factor model 231 

(CFM), created by Shortliffe and Buchanan (1975) and improved by Hecherman (1986), to explore the 232 

relationship between the occurrences of landslides and their predicted displacements. The CFM was 233 

created as a numerical method, initially used in MYCIN, a backward-chaining expert system in medicine 234 

(Shortliffe and Buchanan, 1975), for managing uncertainty in a rule-based system. In this model, the 235 

certainty factor 𝐶𝐹  represents the net confidence in a hypothesis 𝐻  based on the evidence 𝐸 236 

(Hecherman, 1986). Certainty factors range between -1 and 1. A 𝐶𝐹 with a value of -1 means a total lack 237 

of confidence, whereas a 𝐶𝐹 with a value of 1 means total confidence. Values greater than zero favor 238 

the hypothesis while those less than zero favor its negation. According to Hecherman (1986), the 239 

probabilistic interpretation of 𝐶𝐹 is as follows: 240 

 𝐶𝐹 =

{
 
 

 
 
𝑝(𝐻|𝐸) − 𝑝(𝐻)

𝑝(𝐻|𝐸)[1 − 𝑝(𝐻)]
, 𝑝(𝐻|𝐸) > 𝑝(𝐻)

𝑝(𝐻|𝐸) − 𝑝(𝐻)

𝑝(𝐻)[1 − 𝑝(𝐻|𝐸)]
, 𝑝(𝐻|𝐸) < 𝑝(𝐻)

 (9) 
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where 𝐶𝐹 is the certainty factor, 𝑝(𝐻|𝐸) denotes the conditional probability for a posterior hypothesis 241 

that relies on evidence, the posterior probability, and 𝑝(𝐻) is the prior probability before any evidence 242 

is known. In the displacement analysis, 𝑝(𝐻|𝐸) was defined as the proportion of the area of the landslide 243 

within a specific displacement area, and 𝑝(𝐻) was defined as the proportion of the landslide area within 244 

the entire study area, excluding slopes less steep than 5°. In this way, the values of 𝐶𝐹 represented the 245 

confidence level for coseismic landslides. Positive values corresponded to an increase in the confidence 246 

level in slope failure while negative quantities corresponded to a decrease in this confidence. Higher 247 

positive values indicated higher confidence levels for coseismic landslides. 248 

Given the above definition, we produced a coseismic landslide hazard map in terms of the certainty factors. 249 

First, displacement cells every 1 cm were grouped into bins such that all cells with displacements between 250 

0 cm and 1 cm were grouped into the first bin, those with displacements between 1 cm and 2 cm were 251 

grouped into the second bin, and so on. The displacements were grouped into 123 bins, from 0 cm to 122 252 

cm. We then calculated the proportion of cells occupied by areas of landslides in each bin. This proportion 253 

was considered the posterior probability of each bin as defined. The prior probability calculated by 254 

dividing the entire landslide area by the entire study area was the same in each bin. Finally, the values of 255 

𝐶𝐹 were computed in each bin by using Eq. (9) to combine the corresponding values of the posterior and 256 

prior probabilities. The certainty factors ranged from -1 to 0.95. The values of 𝐶𝐹  indicated the 257 

confidence level of the occurrence of a landslide for each bin in the study area, and provided the basis for 258 

producing the coseismic landslide hazard map. 259 

As shown in the hazard map (Fig. 17), 73.2% of landslides triggered by the Ludian earthquake were in 260 

areas with higher confidence levels, with 𝐶𝐹 values greater than 0.6. The interpreted landslides were 261 
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covered on the map to demonstrate their goodness of fit for the predicted confidence levels for coseismic 262 

landslides (Fig. 17).  263 

 264 

4 Results and discussion 265 

The predicted displacements represent the cumulative sliding displacements for a given time history of 266 

acceleration. Based on the statistically significant sizes of the areas, displacements less than 60 cm, which 267 

was around the middle of the range of displacement, occupied about 80% of the study area while 268 

displacements greater than 80 cm occupied a very small area. Jibson et al. (1998, 2000) assumed that 269 

shallow falls and slides in brittle, weakly cemented materials fail at a relatively small displacement, 270 

whereas slumps and block slides in more compliant materials likely fail at a larger displacement. That is 271 

to say, the study area was more susceptible to rock falls and shallow, disrupted slides that fail at a relatively 272 

small displacement. By contrast, it was subjected with a lower probability to coherent, deep-seated slides 273 

that would fail at a larger displacement. Indeed, the majority of landslides triggered by the Ludian 274 

earthquake were shallow, disrupted slides and rock falls (Zhou et al., 2016). Although a few catastrophic 275 

rock avalanches, such as the Hongshiyan landslide (Chang et al., 2017), occurred in the field, they did not 276 

produce statistically significant samples that could meaningfully contribute to the model, which is 277 

consistent with the statistical results as discussed above. Therefore, the model should relate well to typical 278 

kinds of earthquake-induced landslides in the study area, thus demonstrating its usefulness in predicting 279 

the probability of other types of landslides. 280 

According to Jibson et al. (1998, 2000), a function of 𝐶𝐹 and Newmark displacement would make it 281 

possible to predict the spatial variation in coseismic landslides in any scenario of interest involving the 282 
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ground shaking. As mentioned above, 80% of the study area featured predicted displacements of less than 283 

60 cm. The numbers of the Newmark displacement cells were uneven. There were more cells in 1 cm bins 284 

for smaller displacements and fewer cells in 1 cm bins for larger ones. This might have affected the 285 

statistical significance of the function of 𝐶𝐹  and Newmark displacement. Therefore, the predicted 286 

displacement cells were grouped into bins based on quantile statistics. The breakpoints were 0, 10, 30, 39, 287 

46, 51, 55, 59, 63, and 122. In this way, the number of cells in each bin was equal. Figure 18 shows, in 288 

each bin, the 𝐶𝐹 value of the Newmark displacement as plotted as a dot. As 𝐶𝐹 values ranged from -1 289 

to 1, and not from 0 to 1, the Weibull (1939) curve developed by Jaeger and Cook (1969) is unsuitable 290 

here. Therefore, we modified the functional form as below: 291 

 𝐶𝐹 = 2𝑘[1 − 𝑒𝑥𝑝(−𝑎𝐷𝑏)] − 1 (10) 

where 𝐶𝐹 is the certainty factor, 𝑘 is the maximum 𝐶𝐹 value represented by the data, 𝐷 is predicted 292 

displacement, and 𝑎  and 𝑏  are regression constants. The regression curve based on data from the 293 

Ludian earthquake is 294 

 𝐶𝐹 = 1.837[1 − 𝑒𝑥𝑝(−0.073𝐷0.821)] − 1 (11) 

From the curve shown in Fig. 18, when the predicted displacement increased, the value of 𝐶𝐹 increased 295 

monotonically, meaning that the confidence level for slope failure grew and landslide would probably 296 

occur. Such a procedure is consistent with the interpretation of certainty factor theory. Therefore, we were 297 

able to obtain estimates of the hazard different from the one used in this study using the same procedure 298 

described here. 299 
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When fitting the results of shear tests using Coulomb’s linear relation, the shear strengths varied widely 300 

from high normal stress in the laboratory to low normal stress in the field (Barton, 1973). We introduced 301 

the Barton model to the Newmark analysis to reduce the variation in shear strength in terms of Coulomb’s 302 

constants. We also considered the impact of scale effects by using Eqs. (5) and (6) to prevent Newmark’s 303 

method from underestimating the shear strength of geological units in regional analysis. In addition, for 304 

the Barton model, the joint roughness coefficient (𝐽𝑅𝐶) was estimated from tilt tests, or by matching 305 

Barton’s joint standard roughness profiles regarded by the International Society for Rock Mechanics 306 

(ISRM, 1978). The joint wall compressive strength (𝐽𝐶𝑆) was estimated by Schmidt hammer index tests. 307 

These tests helped make a quick estimate of the shear strength in situ, which can facilitate the use of 308 

Newmark’s method in an emergency hazard and risk assessment after an earthquake. 309 

It is difficult for a statically stable slope to fail under an earthquake. Earthquakes usually cause slopes to 310 

fail in the state of limit equilibrium. For this reason, it is important to characterize the shear strength of 311 

the slope accurately. The shear strengths were assigned to the geological units using the results of 312 

hundreds of shear tests reported in the references provided in Table 1. We assigned the original shear 313 

strengths to the geological units, instead of increasing them to render the cells statically stable, as Jibson 314 

et al. (1998, 200) did. This would have changed the statically stable level of the entire study area, 315 

especially the slopes in the state of limit equilibrium. In addition, we considered the size effect of the 316 

potential slide surface, which could yield a lower 𝐹𝑆 and, in turn, a higher displacement. However, the 317 

inventory of landslides was used to calibrate the predicted displacements, and the confidence levels 318 

indicated by the certainty factors fitted well with the spatial distribution of coseismic landslides, as shown 319 

in the hazard map (Fig. 17). 320 
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We also ran a conventional Newmark analysis using the assigned strengths, such as friction angle (φ) and 321 

cohesion (𝑐), as shown in Table 2. The predicted displacements calculated by the conventional Newmark 322 

analysis ranged from 0 cm to 121 cm, compared with 0 cm to 122 cm as obtained by the proposed method. 323 

Figure 19 shows the hazard map produced using conventional Newmark analysis. The 𝐶𝐹s ranged from 324 

-1 to 0.94, indicating a very similar result to that of the proposed method above. However, there were 325 

large differences along the Shaba River and upstream of the Niulanjiang River between the methods. By 326 

comparing Fig. 17 with Fig. 19, we see that the confidence levels of the proposed method fitted the data 327 

better than those of the conventional method, especially near upstream of the Niulanjiang River. The area 328 

under the curve (AUC) was employed to compare the performance of the methods. To create an AUC 329 

plot, the cumulative area of 𝐶𝐹s within each interval of the calculated values, from the maximum to the 330 

minimum, was determined as a proportion of the total study area (x-axis) and plotted against the 331 

proportion of cumulative landslides falling within those 𝐶𝐹s (y-axis) (Miles and Keefer, 2009). A value 332 

of 0.5 of the AUC indicates that performance is not better than a random guess and that of 1 indicates 333 

perfect performance (Miles and Keefer, 2009). Figure 20 shows the results of the AUC analysis of both 334 

methods. The calculated value for the proposed method was 0.58 while that for the conventional 335 

Newmark’s method was 0.53. That is to say, the method introduced here yielded better results, and is an 336 

improvement over the conventional Newmark analysis. 337 

 338 

5 Conclusion 339 

Newmark’s method is a useful physical model to estimate the seismic stability of natural slopes. The 340 

mapping procedure for data on the 2014 Ludian earthquake shows the feasibility of a Newmark analysis 341 
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combined with Barton’s shear strength criterion. Such a method has practical applications in the 342 

assessment of regional seismic hazard. We also considered here the size effect of parameters of shear 343 

strength, such as the joint roughness coefficient (𝐽𝑅𝐶) and the joint wall compressive strength (𝐽𝐶𝑆), in 344 

regional analysis. Moreover, linking the Newmark displacements to the certainty factor model improved 345 

the utility of Newmark’s method to predict the hazard posed by coseismic landslides. Finally, the results 346 

of an AUC analysis indicate that the proposed method is more reliable than the conventional Newmark’s 347 

method. 348 

 349 
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Figure Captions 525 

Fig. 1. Map of the study area showing the inventoried landslides. 526 

Fig. 2. Geological map of the study area showing lithology and faults. 527 

Fig. 3. Conceptual sliding-block model of Newmark analysis. 528 

Fig. 4. A schematic diagram showing shadow unloading joints in the slope. 529 

Fig. 5. Demonstration of the Newmark analysis algorithm (adapted from Wilson and Keefer, 1983; Jibson 530 

et al., 1998, 2000) 531 

Fig. 6. Slope map derived from the DEM of the study area. 532 

Fig. 7. Schematic map showing the angle (𝛼) for slopes steeper than 60°. 𝜎1𝑓 and 𝜎3 are the major 533 

and minor principal stress in the state of limit equilibrium, respectively. 𝜙𝑏 is the basic friction angle. 534 

Fig. 8. 𝐽𝑅𝐶𝑛 component of shear strength assigned to rock types in the study area.  535 

Fig. 9. 𝐽𝐶𝑆𝑛 component of shear strength assigned to rock types in the study area. 536 

Fig. 10. Basic-friction-angle (𝜙𝑏) component of shear strength assigned to rock types in the study area. 537 

Fig. 11. Unit weight (𝛾) assigned to rock types in the study area. 538 

Fig. 12. Static factor-of-safety map of the study area. 539 

Fig. 13. Map showing critical accelerations in the study area. 540 

Fig. 14. Locations of strong-motion stations. 541 

Fig. 15. Contour map of peak ground acceleration (𝑃𝐺𝐴) produced by the Ludian earthquake in the 542 

study area. 𝑃𝐺𝐴 values shown are in 𝑔. 543 

Fig. 16. Map showing predicted displacements in the study area. 544 
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Fig. 17. Map showing confidence levels of coseismic landslides in the Ludian earthquake using the 545 

proposed method. Confidence levels are portrayed in terms of values of CF. 546 

Fig. 18. Proportion of the area of landslides in each 𝐶𝐹  value area. A dot shows the 𝐶𝐹  value of 547 

Newmark displacement bin; the red line is the fitting curve of the data using a modified Weibull function. 548 

Fig. 19. Map showing confidence levels of coseismic landslides in the Ludian earthquake using a 549 

conventional Newmark analysis. Confidence levels are portrayed in terms of values of CF. 550 

Fig. 20. Plots of area under the curve comparing the proposed method with the conventional Newmark’s 551 

method. 552 

  553 
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 554 

Fig. 1. Map of the study area showing the inventoried landslides. 555 
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 557 

Fig. 2. Geological map of the study area showing lithology and faults. 558 

 559 

  560 



37 

 

 561 

Fig. 3. Conceptual sliding-block model of Newmark analysis. The potential landslide is modeled as a 562 

rigid plastic block resting on an inclined plane at an angle (𝛼) from the horizontal (Jibson et al., 1998, 563 

2000). The base of the block is subjected to an earthquake ground acceleration that is denoted by 𝐴𝑔. 564 
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 566 

Fig. 4. A schematic diagram showing shallow unloading joints in the slope. 567 
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 569 

Fig. 5. Demonstration of the Newmark analysis algorithm (adapted from Wilson and Keefer, 1983; Jibson 570 

et al., 1998, 2000): (a) Acceleration-time history with critical acceleration (horizontal dotted line) of 20%g 571 

superimposed. (b) Velocity of block versus time. (c) Displacement of block versus time. 572 
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 574 

Fig. 6. Slope map derived from the DEM of the study area. 575 
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 577 

Fig. 7. Schematic map showing the angle (𝛼) for slopes steeper than 60°. 𝜎1𝑓 and 𝜎3 are the major 578 

and minor principal stress in the state of limit equilibrium, respectively. 𝜙𝑏 is the basic friction angle. 579 
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 581 

Fig. 8. 𝐽𝑅𝐶𝑛 component of shear strength assigned to rock types in the study area.  582 
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 583 

Fig. 9. 𝐽𝐶𝑆𝑛 component of shear strength assigned to rock types in the study area. 584 
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 586 

Fig. 10. Basic-friction-angle (𝜙𝑏) component of shear strength assigned to rock types in the study area. 587 
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 589 

Fig. 11. Unit weight (𝛾) assigned to rock types in the study area. 590 
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 592 

Fig. 12. Static factor-of-safety map of the study area. 593 
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 595 

Fig. 13. Map showing critical accelerations in the study area. 596 
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 598 

Fig. 14. Locations of strong-motion stations. 599 
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 601 

Fig. 15. Contour map of peak ground acceleration (𝑃𝐺𝐴) produced by the Ludian earthquake in the 602 

study area. 𝑃𝐺𝐴 values shown are in 𝑔. 603 
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 605 

Fig. 16. Map showing predicted displacements in the study area. 606 
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 608 

Fig. 17. Map showing confidence levels of coseismic landslides in the Ludian earthquake using the 609 

proposed method. Confidence levels are portrayed in terms of values of CF.  610 
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 611 

Fig. 18. Proportion of the area of landslides in each 𝐶𝐹  value area. A dot shows the 𝐶𝐹  value of 612 

Newmark displacement bin; the red line is the fitting curve of the data using a modified Weibull function. 613 
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 615 

Fig. 19. Map showing confidence levels of coseismic landslides in the Ludian earthquake using a 616 

conventional Newmark analysis. Confidence levels are portrayed in terms of values of CF. 617 
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 619 

Fig. 20. Plots of area under the curve comparing the proposed method with the conventional Newmark’s 620 

method. 621 
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Table Captions 623 

Table 1. Shear strengths assigned to rock types in the study area. 624 

Table 2. Station records of three components of peak ground acceleration. 625 

  626 



56 

 

Table 1 627 

Shear strengths assigned to rock types in the study area. 628 

Rock type 
𝛾 

(kN/m3) 
𝜙𝑏 

𝐽𝐶𝑆0 

(MPa) 
𝐽𝑅𝐶0 φ 𝑐 (kPa) References 

Dolomite 25.9 32° 140 9.5 43° 35 

Singh et al., 2012 

Giusepone, 2014 

Alejano et al., 2014 

Limestone 21.5 37° 160 9 45° 30 

Bandis et al., 1983 

Singh et al., 2012 

Yong et al., 2018 

Shale 24.9 27° 75 8 27° 16 

Barton and Choubey, 1977 

Bilgin and Pasamehmetoglu, 

1990 

Sandstone 23.5 35° 100 6 42° 24 

Coulson, 1972 

Bandis et al., 1983 

Priest, 1993 

Basalt 27.9 38° 205 8.5 50° 40 

Coulson, 1972 

Barton and Choubey, 1977 

Alejano et al., 2014 

Slate 26.5 30° 175 3 40° 11 

Coulson, 1972 

Barton and Choubey, 1977 

Bandis et al., 1983 

Alejano et al., 2012 

Yong et al., 2018 

Friction angle (φ ), cohesion (𝑐 ), and unit weight (𝛾 ) were derived from the Geological Engineering 629 

Handbook (Geological Engineering Handbook Editorial Committee, 2018) 630 

  631 
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Table 2 632 

Station records of three components of peak ground acceleration. 633 

No. Station 

Epicentral 

distance 

(km) 

EW (g） NS (g） UD (g） 
Average of 

horizontal 

components (g) 

1 Longtoushan 1 8.114 0.5141 0.9679 0.7193 0.7410 

2 Longtoushan 2 8.3 0.9685 0.7203 0.5147 0.8444 

3 Qianchang 18.6 0.1490 0.1432 0.0539 0.1461 

4 Ciyuan 32.6 0.0468 0.0457 0.0265 0.0463 

5 Mashu 38.5 0.1380 0.1361 0.0663 0.1370 

6 Qiaojia 43 0.0253 0.0210 0.0135 0.0232 

7 Zhaotong 1 47.4 0.0096 0.0152 0.0065 0.0124 

8 Zhaotong 2 47.671 0.0065 0.0096 0.0088 0.0081 

9 Huidongxijie 63.3 0.0123 0.0128 0.0037 0.0126 

10 Maolin 64.4 0.0251 0.0184 0.0111 0.0217 

11 Yongshanmaolin 65.647 0.0111 0.0252 0.0184 0.0182 

12 Jingan 66.2 0.0103 0.0122 0.0062 0.0113 

13 Butuotuojue 66.8 0.0118 0.0173 0.0079 0.0146 

14 Zhaotongjingan 67.392 0.0062 0.0103 0.0122 0.0083 

15 Huidongqianxin 67.4 0.0224 0.0223 0.0067 0.0224 

16 Ningnansongxin 69.2 0.0062 0.0081 0.0032 0.0071 

17 Pugebaishui 76 0.0152 0.0149 0.0066 0.0151 

18 Huize 76.5 0.0164 0.0182 0.0090 0.0173 

19 Pugediban 81.2 0.0186 0.0127 0.0046 0.0156 

20 Butuodiban 83.7 0.0024 0.0021 0.0024 0.0023 

21 Tuobuka 85.2 0.0168 0.0168 0.0136 0.0168 
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22 Pugeyangwo 91.4 0.0066 0.0069 0.0022 0.0068 

23 Daguan 91.8 0.0043 0.0035 0.0027 0.0039 

 634 

 635 

 636 


