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Abstract:  

The region of southern Africa (SA) has a fragile food economy and is vulnerable to frequent 1 

droughts. Interventions to mitigate food insecurity impacts require early warning of droughts —2 

preferably as early as possible before the harvest season (typically, starting in April) and lean 3 

season (typically, starting in November). Hydrologic monitoring and forecasting systems provide 4 

a unique opportunity to support early warning efforts, since they can provide regular updates on 5 

available rootzone soil moisture (RZSM), a critical variable for crop yield, and provide forecasts 6 

of RZSM by combining the estimates of antecedent soil moisture conditions with climate 7 

forecasts. For SA, this study documents the predictive capabilities of RZSM products from a 8 

recently developed NASA Hydrological Forecasting and Analysis System (NHyFAS). Results 9 

show that the NHyFAS products would have identified the regional severe drought event—10 

which peaked during December-February of 2015/2016—at least as early as November 1, 2015. 11 

Next, it is shown that during 1982-2016, February RZSM forecasts [monitoring product] 12 

available in early November [early March] have a correlation of 0.49 [0.79] with the detrended 13 

regional crop yield. It is also found that when the February RZSM forecast [monitoring product] 14 

available in early November [early March] is indicated to be in the lowest tercile, the detrended 15 

regional crop yield is below normal about two-thirds of the time [always], at least over the 16 

sample years considered. Additionally, it is shown that February RZSM forecast [monitoring 17 

product] can provide “out-of-sample” crop yield forecasts with comparable [substantially better 18 

with 40% reduction in mean error] skill to December-February ENSO. These results indicate that 19 

the NHyFAS products can effectively support food insecurity early warning in the SA region. 20 

Finally, since a framework similar to NHyFAS can be used to provide RZSM monitoring and 21 
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forecasting products over other regions of the globe, this case study also demonstrates potential 22 

for supporting food insecurity early warning globally.   23 
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1 Introduction 24 

Southern Africa (SA) is vulnerable to food insecurity. Droughts driven by climate stressors (e.g. 25 

precipitation and temperature) are among the important drivers of food insecurity (Misselhorn 26 

2005; Conway et al. 2015). Moreover, anthropogenic climate change is shown to increase the 27 

likelihood of climate-driven flash droughts (Yuan et al., 2018). The primary rainy season in SA 28 

spans from October to March, which overlaps the main planting season from October to 29 

February (Fig. 1 [a]). This period also covers the lean season, when food supplies from the prior 30 

year’s harvest become limited. April-July is typically the main harvest season, when the food 31 

reserve is expected to begin replenishing.  In several SA countries, with the Republic of South 32 

Africa (RSA) being the main exception, typical monthly variability in food prices closely follows 33 

this crop cycle, as shown in Fig. 1(b). The prices typically start to rise after the harvest season 34 

and reach their peak just before or near the start of the harvest season. This correspondence 35 

between the prices and crop cycles highlights the region’s climate-related sensitivity to food 36 

insecurity. In the case of below-normal crop yield, the food prices rise even more than normal, 37 

reducing access to food for the poorest of the population.  38 

The percentage income shared by the poorest 10% and 20% of the population in several 39 

SA countries has not improved significantly over time (not shown here). These portions of the 40 

population are likely to be more food insecure in drought years; they already use a relatively 41 

higher share of their income on food, and in the case of price rises related to low crop yield, their 42 

access to food becomes even more limited. 43 

The 2015-16 drought event (attributed to a strong El Niño) in SA further highlighted its 44 

vulnerability to climate-related regional food insecurity (Archer et al., 2017; Funk et al., 2018; 45 

Pomposi et al., 2018). This event led to a substantial reduction in regional agricultural production 46 

https://paperpile.com/c/OgwJfj/Q48s
https://paperpile.com/c/OgwJfj/kY8GL+kkIxK+eT7XH
https://paperpile.com/c/OgwJfj/kY8GL+kkIxK+eT7XH
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—including in the RSA, which is the main crop-producing country in the region—a reduction 47 

and rationing of water supplies, a loss of livestock, and an increase in unemployment in the 48 

region, and it pushed 29 million people into severe food insecurity (SADC, 2016). Throughout 49 

the Southern African Development Community (SADC) region in 2015-16, cereal production 50 

was down by -10.2% (varying from +61% to -94% in individual member countries) relative to 51 

the previous 5-year average (SADC, 2016). Figure 1 (c)-(f) shows a comparison of national retail 52 

maize prices (in USD) in several of the SA countries during 2015-16, with the previous 5-year 53 

mean prices in those countries. The prices in 2015-16 were substantially higher than the previous 54 

5-year mean. Of particular importance is the price increase in RSA, where, typically, the food 55 

prices do not vary much throughout the year due to its general self-sufficiency in food 56 

production, as well as its international trade. Consumer Price Index (CPI) for food for the RSA 57 

also experienced a drastic upward shift during the 2015-16 drought year (not shown here). In 58 

fact, based on the CPI data (available from the FAO), the CPI was substantially higher than that 59 

of the past 5-year mean during the beginning of the following growing season of 2016-17, 60 

including in the RSA where typically the CPI remains fairly stable during a year. These price 61 

shocks can dramatically impact poor households, which typically spend 60% or more of their 62 

income on food. According to the recent World Development Indicator (World Bank 2016), 63 

incomes for the poorest 10% and 20% of households in these countries have remained generally 64 

constant, underscoring the depth of poverty (Figure 2). On average, in Malawi, Mozambique, 65 

Zimbabwe, and South Africa, these individuals subsist on USD 70, 126, 288, and 716 a year, 66 

respectively. 67 

Figure 1(c)-(f) and the income-related facts (based on World Bank Development 68 

Indicator) presented above highlight the severity of food insecurity in a regional drought event 69 

https://paperpile.com/c/OgwJfj/QqjqW
https://paperpile.com/c/OgwJfj/QqjqW
https://paperpile.com/c/OgwJfj/wiws
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like 2015-16. In the 2015-2016 event, food imports from the RSA—which is the main producer 70 

and exporter of food in the region to the other SA countries—were not enough, and international 71 

assistance became crucial. This is why in June 2016, the SADC launched a Regional 72 

Humanitarian Appeal stating that approximately 40 million people in the region required 73 

humanitarian assistance, at a cost of approximately USD 2.4 billion (Magadzire et al. 2017).  74 

Mitigation of the most adverse impacts of food insecurity, like the event of 2015-16, 75 

requires timely and effective early warning. An effective early warning system has two key 76 

attributes (Funk et al., 2019): (1) the ability to provide routine, frequent early warning of drought 77 

status and (2) the ability to incorporate both monitoring and forecasting to best account for the 78 

conditions up to the date of early warning, in combination with the climate outlook for the 79 

upcoming season.  80 

A seasonal-scale hydrologic forecasting system can potentially support an early warning 81 

system, as it can provide updated hydrologic forecasts on a monthly basis by accounting for the 82 

drought conditions as of the forecast release date and climate outlook over the forecast period 83 

(Sheffield et al., 2014; Shukla et al., 2014; Yuan et al., 2013). However, thus far, the application 84 

of seasonal-scale hydrologic forecasts in food insecurity early warning has been limited at best, 85 

with the only other main example being the African Flood and Drought Monitor (Sheffield et al., 86 

2014).   87 

On the other hand, operational, publicly available, state-of-the-art dynamical climate 88 

forecasts have found regular usage in guiding climate outlooks, as well as assessments of 89 

expected food insecurity. For example, USAID’s Famine Early Warning Systems Network 90 

(http://fews.net/), G20-Group on Earth Observations Global Agricultural Monitoring 91 

(GEOGLAM) Crop Monitor for Early Warning, and SADC’s Climate Service Center (CSC) all 92 

https://paperpile.com/c/OgwJfj/2iRvT
https://paperpile.com/c/OgwJfj/ViS3+q3YG+95zb
https://paperpile.com/c/OgwJfj/ViS3
https://paperpile.com/c/OgwJfj/ViS3
http://fews.net/
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utilize the dynamical climate forecasts as one of their early warning tools. Furthermore, 93 

numerous past studies have investigated the predictability of SA climate (Meque and Abiodun, 94 

2014) and examined the skill of diverse approaches in forecasting, particularly of rainfall, as well 95 

as streamflow and agricultural production in different parts of this region (Archer et al., 2017; 96 

Cane et al., 1994; Diro, 2015; Landman et al., 2001; Landman and Beraki, 2010; Landman and 97 

Goddard, 2002; Manatsa et al., 2015; Martin et al., 2000; Sunday et al., 2014; Trambauer et al., 98 

2015; Winsemius et al., 2014). Historically, El Niño-Southern Oscillation (ENSO) has proven to 99 

be among the main predictors of this region’s climate, with another important predictor being the 100 

Southern Indian Ocean Dipole (Hoell et al., 2016, 2017; Hoell and Cheng, 2017).  101 

In August 2018, a new NASA Hydrological Forecasting and Analysis System 102 

(NHyFAS), an operational seasonal hydrologic forecasting system (Arsenault et al., 2020),  was 103 

implemented to support the early warning efforts of FEWS NET, building upon existing 104 

hydrologic monitoring (McNally et al., 2017). This study evaluates this system’s ability to 105 

support early warning of regional food insecurity in the SA region. The evaluation is conducted 106 

by examining the performance of this system (i) for the 2015-16 drought event, which led to 107 

regional food insecurity, (ii) in explaining regional crop yield variability in the region, and (iii) in 108 

identifying below-normal crop yield events, which are characteristically associated with overall 109 

lower food availability in the region and, hence, food insecurity. Regional crop yield is used as a 110 

target variable here, as it is among the main contributors to regional food insecurity. It is 111 

hypothesized that if this system can skillfully forecast regional crop yield and identify below-112 

normal regional crop yields, it can successfully support the early warning of food insecurity in 113 

the region. 114 

https://paperpile.com/c/OgwJfj/NO04b
https://paperpile.com/c/OgwJfj/NO04b
https://paperpile.com/c/OgwJfj/kY8GL+weyEA+Dt3U6+W8psf+acLEs+PPc5Y+kNuXz+yTtmE+5IFll+UfhSV+eKbrL
https://paperpile.com/c/OgwJfj/kY8GL+weyEA+Dt3U6+W8psf+acLEs+PPc5Y+kNuXz+yTtmE+5IFll+UfhSV+eKbrL
https://paperpile.com/c/OgwJfj/kY8GL+weyEA+Dt3U6+W8psf+acLEs+PPc5Y+kNuXz+yTtmE+5IFll+UfhSV+eKbrL
https://paperpile.com/c/OgwJfj/kY8GL+weyEA+Dt3U6+W8psf+acLEs+PPc5Y+kNuXz+yTtmE+5IFll+UfhSV+eKbrL
https://paperpile.com/c/OgwJfj/1RERm+RlIuS+mvx29
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As noted above and shown in Fig. 1(a), April-July is typically the main harvest season, 115 

when the food reserve is expected to begin replenishing and last through the lean season, which 116 

starts in November. Below-normal food availability during this period can lead to food 117 

insecurity. Therefore, early warning systems aim to provide outlooks for food insecurity as far in 118 

advance of the harvest and lean season as possible. Consequently, this study focuses on using 119 

forecasting and monitoring products that are available in November (4-5 months before the start 120 

of the harvest, and about a year before the start of the next lean season) through March (1-2 121 

months before the start of the harvest, and about 8-9 months before the start of the next lean 122 

season) to examine their value in supporting early warning of food insecurity in the region.  123 

2 Data and Methodology 124 

The hydrologic monitoring and forecasting products used in this study come from the 125 

NHyFAS (Fig. 3) (Arsenault et al., 2020). Figure 3 shows an overview of the implementation of 126 

the NHyFAS for the purpose of this study. Because Arsenault et al. (2020) already describes the 127 

system in detail, we simply provide here a brief description of the hydrologic models (section 128 

2.1), the model parameters (section 2.2), the input observed forcings and climate forecasts 129 

(section 2.3), and the RZSM monitoring and forecasting products (section 2.4) used in the 130 

present study. The reported crop yield data used in this study are described in section 2.5. 131 

2.1 Hydrologic Modeling Framework  132 

To generate hydrological forecasts, we use NASA’s Catchment land surface model 133 

(CLSM; (Ducharne et al., 2000; Koster et al., 2000) and the Noah Multi-Parameterization (Noah-134 

MP; (Niu et al., 2011; Yang et al., 2011) land surface model (LSM), which compute changes in 135 

soil moisture (e.g., root zone) and groundwater storage in response to computed  surface energy 136 

and water fluxes. These two LSMs are part of the model suite in the Land Information System 137 

https://paperpile.com/c/OgwJfj/Haurq+B4lwA
https://paperpile.com/c/OgwJfj/0ddOK+cnqh5
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(LIS) framework (Kumar et al., 2006)—the primary software system used to produce this study’s 138 

forecast experiments. Both LSMs were spun-up using two cycles of forcing for the period from 1 139 

January, 1981 to 31 December, 2015; then, historical open-loop (OL) runs were generated for 140 

January 1981 through 2018. Rootzone SM (RZSM), which is the main hydrologic variable used 141 

in this analysis, represents the soil moisture in the top one meter of the soil profile. The entire 142 

depth of the soil profile is different for the two models used in this analysis (typically about 2 m 143 

for Noah-MP, and about 4 m for CLSM).  144 

2.2 Model Parameters 145 

In the version of CLSM used here, hydrologic and catchment parameters (Ducharne et 146 

al., 2000) are based on a high-resolution, global topographic data set (Verdin and Verdin, 1999), 147 

and soil texture (Reynolds et al., 2000) and profile parameters are derived from the Second 148 

Global Soil Wetness Project (GSWP-2; Guo and Dirmeyer, 2006) data set and mapped to the 149 

catchment tiles. Land cover classes are mapped from the University of Maryland AVHRR data 150 

set, and vegetation parameters include, for example, leaf area index (LAI), which is also derived 151 

from GSWP-2. Albedo scaling factors are based on Moderate Resolution Imaging 152 

Spectroradiometer (MODIS) direct and diffuse visible or near infra-red radiation inputs (Moody 153 

et al., 2008).  154 

Noah-MP vegetation parameters include the modified IGBP MODIS-based land cover 155 

data set (Friedl et al., 2002), leaf area index, and monthly greenness fraction (Gutman and 156 

Ignatov, 1998). The soil texture data set is based on Reynolds et al. (2000), and soil parameters 157 

are mapped to the varying textures. Monthly global (snow-free) albedo (Csiszar and Gutman, 158 

1999) and a maximum snow albedo parameter field are also employed. Additional details are 159 

found in (Niu et al., 2011). 160 

https://paperpile.com/c/OgwJfj/yrqA7
https://paperpile.com/c/OgwJfj/B4lwA
https://paperpile.com/c/OgwJfj/B4lwA
https://paperpile.com/c/OgwJfj/bbY2h
https://paperpile.com/c/OgwJfj/aWyrE
https://paperpile.com/c/OgwJfj/yMbc3
https://paperpile.com/c/OgwJfj/c5UuE
https://paperpile.com/c/OgwJfj/c5UuE
https://paperpile.com/c/OgwJfj/pIpj9
https://paperpile.com/c/OgwJfj/YKEGS
https://paperpile.com/c/OgwJfj/YKEGS
https://paperpile.com/c/OgwJfj/RMndJ
https://paperpile.com/c/OgwJfj/RMndJ
https://paperpile.com/c/OgwJfj/0ddOK
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2.3 Input observed forcings and climate forecasts  161 

The spin-up and OL runs used to generate the long-term “observed” climatology of 162 

RZSM are driven with NASA’s Modern-Era Retrospective analysis for Research and 163 

Applications, version 2 (MERRA-2; [Gelaro et al., 2017]) atmospheric fields (e.g., 2m air 164 

temperature, humidity).  Precipitation forcing comes from the U.S. Geological Survey 165 

(USGS)/University of California, Santa Barbara (UCSB) Climate Hazards Center InfraRed 166 

Precipitation with Station data set, version 2.0 (CHIRPSv2; [Funk et al., 2015]).  167 

Hindcasts of RZSM are generated by forcing the hydrologic models with NASA’s 168 

Goddard Earth Observing System (GEOS) Atmosphere-Ocean General Circulation Model, 169 

version 5 (GEOS; [Borovikov et al., 2017]) Seasonal-to-Interannual Forecast System. The eleven 170 

ensemble members of version 1 of this forecast system that were used in the North American 171 

Multi-Model Ensemble (NMME) project are used in the forecast portion of this study.  To make 172 

the GEOS forecasted meteorology consistent with the meteorology underlying the OL initial 173 

conditions, we Bias-Corrected and Spatially Downscaled (BCSD; [Wood et al., 2002]) the 174 

GEOS forecasts using the MERRA-2 and CHIRPS data sets. The BCSD-GEOS forecast files are 175 

then ingested into LIS to drive the LSMs and generate the dynamical hydrological forecasts. The 176 

BCSD-GEOS hindcasts are initialized on November 1st (near the start of the planting season) 177 

and January 1st (middle of the planting season) of each year in 1982-83 to 2017-18.  Each 178 

hindcast is run for 6 months.  179 

Hindcasts of RZSM are also generated using the Ensemble Streamflow Prediction (ESP) 180 

method (Day 1985; Shukla et al. 2013), where the models are forced with resampled observed 181 

forcings (forcings that are used to drive the OL simulation) taken from 1982-2010 period. The 182 

https://paperpile.com/c/OgwJfj/c5yCf+08mUY
https://paperpile.com/c/OgwJfj/PXynw
https://paperpile.com/c/OgwJfj/1AHe3
https://paperpile.com/c/OgwJfj/zvwIX
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hindcasts generated using the ESP method derive their skills from the initial hydrologic 183 

conditions only. 184 

2.4 RZSM Monitoring and forecasting products 185 

The performance of the NHyFAS system is evaluated mainly through its RZSM 186 

monitoring (generated from OL) and forecasting products. RZSM indicates the soil moisture in 187 

the top one meter of the soil profile. Typically, the length of the roots of crops such as maize 188 

(main crop in the region of SA) is close to one meter, hence the choice of RZSM as the key 189 

forecast variable. Moreover, the entire depth of the soil profile is different for the two models 190 

used in this analysis, typically about 2 m for Noah-MP and about 4 m for CLSM; hence RZSM 191 

also allows for a consistent way to merge soil moisture products from both models.  192 

Both products are generated at 0.25 X 0.25 degree spatial resolution and daily temporal 193 

resolution. Daily values are averaged over a month to get monthly values. The monthly values of 194 

the monitoring product are converted to percentiles relative to OL climatology over 1982-2010, 195 

and monthly values of the ensemble mean forecasting products (GEOS and ESP based) are 196 

converted into percentiles relative to the (ensemble mean) climatology over 1982-2010 of the 197 

respective hindcast runs. In both cases, empirical distribution is considered to convert values to 198 

percentiles. Once gridded percentile values are generated, they are spatially aggregated over the 199 

SA region (as shown in Fig. 2) to get RZSM monitoring and forecasting products over the SA 200 

region.  201 

2.5 Regional Crop Yield  202 

The regional crop yield is calculated using country-level crop production and area 203 

harvested reports. These reports come from the United States Department of Agriculture’s 204 

Foreign Agricultural Service's Production Supply and Distribution (PSD) database. To compile 205 
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this database, USDA relies on several sources, including official country statistics, reports from 206 

agricultural attaches at U.S. embassies, data from international organizations, publications from 207 

individual countries, and information from traders both inside and outside of the target countries. 208 

For this study, we focus only on maize, as it is the main crop in the region and the key crop for 209 

food security. To get regional crop yield from country-level crop yield, we first converted 210 

country-level yield into production using the harvested area (provided by the PSD), added the 211 

total production, and then divided it by the sum of the harvested area in all SA countries in our 212 

focus domain. The regional crop yield is detrended for the purposes of this study to reduce the 213 

effect of any long-term changes (e.g. technological changes) on the crop yield. 214 

 215 

2.6 Out-of-sample crop yield forecasting 216 

We also evaluate the NHyFAS RZSM monitoring and forecasting products’ performance 217 

in supporting food insecurity early warning in SA through a series of out-of-sample crop 218 

forecasting experiments. Specifically, we compare the accuracy of crop yield forecasts made 219 

with NHyFAS products against univariate yield forecasts (using only the past yields) and yield 220 

forecasts made with ENSO, a widely used predictor for crop yield in this region. This evaluation 221 

has a direct implication on the usage of NHyFAS products for operational purposes, as crop yield 222 

forecasts are a common tool in food security analysis and response (Davenport et al., 2019).  223 

Our baseline model is a univariate (no exogenous predictors) Autoregressive Integrated 224 

Moving Average (ARIMA) model, 225 

 226 

Where 𝑦𝑡is the time series of observed yields (and the ` indicates potential differencing of the 227 

time series), p is the order of lags, ⲫ are the autoregressive parameters, q is the order of moving 228 

https://paperpile.com/c/OgwJfj/i6y3
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averages, 𝜃 are the moving average parameters, and 𝜖  are forecast errors from the prior periods.  229 

ARIMA(p,d,q) models are standard and frequently used methods for time series analysis and 230 

forecasting (Hyndman and Athanasopoulos, 2018; Hyndman and Khandakar, 2007).  As 231 

discussed above, we compare the forecast performance of univariate ARIMA models eq.[1], with 232 

ARIMA models that also include environmental exogenous predictors, which, in this case, are (i) 233 

DJF ENSO (ii) February RZSM monitoring product and (iii) February RZSM forecast initialized 234 

on Nov. 1, during the growing season preceding harvested yields in year t (e.g. 1982/83 DJF 235 

used for 1983 yield).  All models are fit using the auto.arima() function from the forecast 236 

package in the R software language. 237 

We use the period of 1983-2007 (25 years) as a training period and then provide “out-of-238 

sample” forecasts of crop yield starting in 2008. The training period always spans through the 239 

year before the target forecast year. For example, the model fit over 1983-2008 is used to 240 

forecast yields in 2009, and the model fit over 1983-2009 is used to forecast yield in 2010, and 241 

so on. We repeat this exercise through 2018 and record the one-step-ahead prediction error in 242 

each iteration. In this way, we emulate the forecasting process that food security analysts in the 243 

region go through during every year prior to harvest.  244 

 245 

3. Results 246 

3.1 Performance of NHyFAS during the 2015-16 drought event 247 

As highlighted in section 1, the 2015-16 drought event in SA is among the most severe in 248 

terms of drought severity and food insecurity impacts in the last few decades. Therefore, we 249 

begin the evaluation of the suitability of NHyFAS in supporting food insecurity early warning in 250 

the SA region by examining how this system would have performed during the 2015-16 event. 251 

https://paperpile.com/c/OgwJfj/ICQ3+JxH6
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Although the NHyFAS operationally provides the seasonal forecasts every month, for the 252 

purpose of this study, we focus on the forecast initialized on November 1 (near the start of the 253 

planting season) and January 1 (near the middle of the growing season) of 2015-16 event. Figure 254 

4 shows the RZSM forecasts for the growing season made on November 1, 2015. By this time in 255 

the season, both FEWS NET and SADC had provided early warning of poor rainfall 256 

performance in the region (Magadzire et al, 2017). The NHyFAS RZSM forecasts would have 257 

provided further evidence of a looming unprecedented drought in the region. These forecasts 258 

would have also indicated that RSA, which is the most important country for the region’s food 259 

production, was going to be within the epicenter of this drought event. These forecasts, in turn, 260 

could potentially have triggered earlier appropriate actions by the early warning agencies, as well 261 

as the decision-makers (e.g., national governments and international relief agencies).  262 

Later in the season, as the observed precipitation data became available, RZSM 263 

monitoring products would have provided refined estimates of the spatial extent and severity of 264 

drought in the region. Figure 4 (bottom panel) shows the RZSM monitoring product available 265 

after each of the months of November 2015 through February 2016. This monitoring product 266 

would have provided additional proof of the drought occurrence in the region, and shown that 267 

RSA was within the epicenter of this drought. It is important to state that even the monitoring 268 

product can be effectively used as a predictor of food insecurity events, as they are available 269 

before the typical start of the harvest season (in April) and the lean season (in November). 270 

 3.2 Performance of NHyFAS in supporting food insecurity early warning  271 

Next, we investigate the long-term performance of NHyFAS in supporting food 272 

insecurity early warning by examining how well forecasting and monitoring products available 273 

from this system can explain historical variability in regional crop yield of the SA region and in 274 

https://paperpile.com/c/OgwJfj/LFo5
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particular, help identify below-normal regional yield events. Regional crop yield is calculated by 275 

adding the yearly productions from the SA countries, then dividing it by the yearly total 276 

harvested area. The regional crop yield is then detrended to remove the effect of any long-term 277 

changes (such as technological changes) on the regional yield.  278 

First, we show in Figure 5 how detrended crop yield correlates (from early November to 279 

early March) with the monthly RZSM monitoring product relative to how it correlates with 3-280 

monthly seasonal precipitation and air temperature. The results indicate that the monthly RZSM 281 

monitoring product generally correlates better with detrended crop yield than with the seasonal 282 

precipitation or air temperature, with the correlation reaching its peak by early March, when the 283 

Feb-RZSM monitoring product and December-February precipitation and temperature are 284 

available. Feb-RZSM still shows higher correlation than seasonal precipitation and temperature; 285 

however, the difference in correlation is not statistically significant.  286 

Next, the correlation between detrended crop yield and February RZSM forecasts (based 287 

on ESP method and bias-corrected GEOS forecasts) initialized on November 1 (Fig. 6a) and 288 

January 1 (Fig. 6b) is analyzed. The correlation of the yield with GEOS-based February RZSM 289 

forecasts initialized on November 1 is 0.49, which is substantially higher than that of ESP-based 290 

RZSM forecasts (0.16), clearly demonstrating the added value of using GEOS-based climate 291 

forecasts. Similarly, the correlation of yield with the GEOS-based February RZSM forecasts 292 

initialized on January 1 is 0.45, higher than that of the ESP-based forecasts (0.30) at that time of 293 

the year. Moreover, the correlation of detrended crop yield with GEOS-based February RZSM 294 

forecasts initialized on November 1 (0.49) and January 1 (0.45) is higher than that with the 295 

RZSM monitoring product (Figure 5) at those times of the year (<0.1 in early November and 296 

<0.4 in early January). Again, this highlights the value of using forecasts of Feb-RZSM through 297 
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early January in supporting food insecurity early warning. Figure 6c shows that Feb-RZSM 298 

monitoring product, which is available in early March, has the highest correlation of 0.79 with 299 

the detrended crop yield. 300 

Next, we examine how well the forecasting and monitoring RZSM products do in 301 

providing early warning of below-normal crop yield events. This criterion for performance 302 

evaluation is of particular significance for food insecurity early warning in the region, as below-303 

normal crop yield events are the ones that generally lead to food insecurity. In this case, below-304 

normal regional crop yield events are the events that lie in the bottom 18 (i.e. bottom half) when 305 

detrended crop yields for the 36 years are ranked in ascending order.  306 

We calculate the probability of below-normal crop yield events when either the February 307 

RZSM forecast (initialized on November 1 and January 1) or the RZSM monitoring product for 308 

the month of November (available in early December) through the month of February (available 309 

in early March) is in the lowest tercile. RZSM products in this tercile are those lying in the 310 

bottom 12 of the RZSM products when ranked in ascending order. In the case of RZSM, the 311 

ranked climatology is different for each of the forecasting products and the monitoring products 312 

for each month. We use the lower tercile values of RZSM monitoring and forecasting products to 313 

focus on the drought years as indicated by those products. Because SA is a mostly rainfed region, 314 

the crop yield is generally below normal during drought years, as indicated in several recent 315 

events (2014-15, 2015-16, 2018-19).  316 

Figure 7 shows the fraction of years with below-normal crop yield when February RZSM 317 

forecasts (made on November 1 or January 1) were in the lower tercile (shown by blue color 318 

bars) or when monthly RZSM monitoring products (shown by green color bars) were in the 319 

lower tercile. These results indicate that as early as November 1, if the February RZSM is being 320 
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forecasted to be in the lower tercile, then there is about ~66% probability of the regional crop 321 

yield being below normal (statistically significant at 86% confidence level). This would be 4-5 322 

months before the start of the harvest season, and about one year before the start of the next lean 323 

season. The inferred probability value increases to ~83% when the February RZSM forecasts, 324 

initialized in January, are in the lower tercile (statistically significant >95% confidence level). 325 

Finally, by early March, when the February RZSM monitoring product is available, the inferred 326 

probability increases to 100% (statistically significant >95% confidence level). In other words, 327 

over 1982-2016, whenever the February RZSM monitoring product for the SA region was in the 328 

lowest tercile, the crop yield in the following season had been below normal (based on detrended 329 

yield). This would be 1-2 months before the start of the harvest season, and about 8-9 months 330 

before the start of the next lean season. 331 

Of course, the estimation of these probabilities is necessarily limited by the small sample 332 

sizes examined; the actual probability of low crop yield based on low February RZSM, for 333 

example, while apparently high, is not a full 100%.  Nevertheless, these results provide, overall, 334 

further evidence of the suitability of the forecasting and monitoring products from the NHyFAS 335 

in supporting early warning of food insecurity in the region.  336 

 337 

 3.3 Performance of NHyFAS in providing routine operational crop yield forecasts 338 

Finally, we evaluate the performance of NHyFAS for supporting food insecurity early 339 

warning in SA by examining the accuracy of RZSM monitoring and RZSM forecasting products 340 

in predicting regional crop yields. We compare the crop yield forecasts made with the RSZM 341 

products against both univariate forecasts (using only past observed crop yields) and forecasts 342 

made with ENSO. As ENSO is a widely used predictor for precipitation and crop yield forecasts 343 
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in this region, we examine the added value of using NHyFAS RZSM monitoring and forecasting 344 

products above and beyond ENSO. All forecasts are done using ARIMA models described in 345 

section 2.6.  346 

Figure 8 shows a comparison between the “observed” reported crop yield (black lines) 347 

and the “out-of-sample” (i.e. post-training period) forecasted yield (red lines) produced with a 348 

univariate model, and the models using environmental exogenous predictors (i) DJF ENSO, (ii) 349 

Feb-RZSM (monitoring) product, (iii) Feb-RZSM (Forecasting product) initialized on Nov. 1., in 350 

addition to that univariate model.   351 

The results indicate that: (i) environmental predictors such as ENSO and the NHyFAS products 352 

can make crop yield forecasts that are more accurate than those produced using only a univariate 353 

approach. When ENSO is used as an additional predictor (in addition to a Univariate model), the 354 

MAE reduces from 0.342 MT/HA to 0.285 MT/HA, a ~17% reduction in error. (ii) Use of the 355 

Feb-RZSM monitoring product has an even larger impact, reducing the MAE by about 50%, to 356 

0.174 MT/HA. (iii) Use of the Feb-RZSM forecasting product (initialized on Nov 1) has an 357 

impact similar to that of DJF ENSO.  Although the MAE is about 6% larger when the forecasting 358 

product is used rather than the ENSO predictor, the forecasting product has the significant 359 

advantage of being available for about 4 months earlier. For comparison (not shown here) MAE 360 

of Feb-RZSM forecasting product (initialized on Nov 1) is slightly smaller (~6%) than the MAE 361 

of August-October (ASO)-ENSO (also available in early Nov) and is comparable to the MAE of 362 

September-November (SON)-ENSO (available in early December) as a predictor of crop yield 363 

forecast. 364 

Table 1 shows the number of times the observed yield is within the 80% confidence 365 

interval of the forecasts and the mean spread of the confidence interval. The improvement in 366 
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performance obtained when the Feb-RZSM monitoring product is used is clear; during 10 of the 367 

11 years in the validation period, the observed yield falls within the 80% confidence interval, 368 

whereas this happens in only 7 years when DJF ENSO is used as the additional predictor. The 369 

mean spread of the confidence interval associated with the use of the Feb-RZSM monitoring 370 

product (0.70 MT/HA) is also the smallest.  371 

4  Discussion 372 

 373 

This study makes a case for the application of NHyFAS’s RZSM forecasting and 374 

monitoring products in supporting the early warning of food insecurity in SA. It has been shown 375 

that the successful early warning of crop yield, and especially below-normal crop yield years, 376 

can be issued based on these products. In this section, we address a few important caveats. 377 

 378 

4.1 Comparison with existing drought forecasting systems and approaches: 379 

In this study, we keep the comparison with existing forecasting systems and approaches 380 

limited to the comparison of the performance of NHyFAS products with (i) ESP (i.e. 381 

climatology) based RZSM forecasts and (ii) ENSO-based crop yield forecasts, both of which are 382 

commonly used approaches for drought forecasting in the region, including by early warning 383 

agencies such as FEWS NET. Comparison against both approaches shows clear added value of 384 

using the NHyFAS products. We could not compare the performance of the NHyFAS with 385 

FEWS NET or SADC’s official historical forecasts because: 386 

(i) FEWS NET’s official forecast is an outlook of food insecurity conditions (Funk et al. 2019) 387 

(https://fews.net/) which is based not only on agroclimatology (i.e., agriculture and climate 388 

conditions) but also on market conditions and nutrition and livelihood conditions. The NHyFAS 389 

forecasts that are now being used by FEWS NET would fall into the category of 390 

https://paperpile.com/c/OgwJfj/2iRvT
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agroclimatological conditions. In fact, the goal of the evaluation of the NHyFAS forecasts is to 391 

establish whether NHyFAS forecasts can be suitable agroclimatological forecast inputs for 392 

FEWS NET to guide the development of food insecurity outlook assessments. Also, FEWS NET 393 

Food Insecurity Outlook is partly based on subjective assessments, in some ways similar to the 394 

U.S. drought monitor (Svoboda et al., 2002) or U.S. Seasonal Drought Outlook, in addition to 395 

quantitative assessments such as agroclimatological forecasts. Finally, FEWS NET’s archive of 396 

Food Insecurity Outlooks currently extends back only to mid-2011. 397 

(ii) SADC CSC’s issues probabilistic seasonal-scale rainfall forecasts. These forecasts are based 398 

on multiple models (both statistical and dynamical) as well as subjective expert assessments, 399 

which makes comparison with purely quantitative products inappropriate. Additionally, the 400 

archive of purely quantitative forecasts from SADC CSC only goes back to 2017. 401 

Finally, the NHyFAS products are intended to be used as an addition to the existing early 402 

warning tools of FEWS NET and SADC CSC, which are partners in the efforts described in this 403 

study, rather than replacing any of the existing tools. 404 

 405 

4.2 Influence of crop yield on regional food insecurity and issues in crop yield reports 406 

In this study, it is assumed that when the SA region faces a production shortfall, the 407 

regional food insecurity is likely to rise. This was certainly the case during the 2015-16 El Niño, 408 

the most recent major food insecurity event in the region (SADC 2016). However, this 409 

assumption ignores other important factors that may lead to or further worsen food insecurity in 410 

the region, such as inadequate agricultural inputs, price shocks (which can be global in nature), 411 

rise in population, conflict, limited livelihood options, stocks, etc. Nonetheless, the direct 412 

relationship of crop yield with the interannual variability in available moisture makes RZSM an 413 
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important variable for food security monitoring and thus, it is of keen interest to early warning 414 

systems like FEWS NET, which is presently the primary end user of the NHyFAS. Crop yield 415 

early warning based on the NHyFAS products are also directly relevant to international 416 

collaborative efforts like the GEOGLAM initiative (Becker-Reshef et al. 2018; Becker-Reshef et 417 

al. 2019) and, particularly, to the Crop Monitor for Early Warning (https://cropmonitor.org/), 418 

which provides monthly assessments of crop conditions for the countries most vulnerable to food 419 

insecurity. Such assessments are key to reducing the uncertainty of crop prospects as the growing 420 

season progresses, and to providing critical evidence for informing food security decisions by 421 

humanitarian organizations and governments alike.  422 

It is also worth noting that crop yield reports can be influenced by external factors (for 423 

example, reporting issues related to methods) other than long-term agricultural, technology-424 

driven changes and climate interannual variability. The effect of these factors on the regional 425 

crop yield, of course, cannot be discounted by the detrending method employed in this study. 426 

4.3  Reliance on single climate model forecasts 427 

Finally, the results of this study are also likely affected by the use of only one dynamical 428 

climate forecast model for driving the seasonal hydrologic forecasting system. Adding forecasts 429 

from more climate and hydrologic models would likely enhance the skill of the system (Kirtman 430 

et al. 2014; Krishnamurti et al. 1999). The choice of one dynamical system was made mostly for 431 

logistical purposes, since GEOS archived and real-time forecasts include all atmospheric forcing 432 

variables needed to drive such LSMs, and are available through NASA-GSFC routinely, to 433 

facilitate operational production of NHyFAS forecasts.  434 

https://paperpile.com/c/OgwJfj/6ioZ+vFP9
https://paperpile.com/c/OgwJfj/6ioZ+vFP9
https://cropmonitor.org/
https://paperpile.com/c/OgwJfj/wR53+8Hwa
https://paperpile.com/c/OgwJfj/wR53+8Hwa
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5  Conclusions 435 

 The region of SA witnessed several severe food insecurity events in the last few decades. 436 

Mitigation of food insecurity impact requires timely and effective interventions by national, 437 

regional, and international agencies. To support those interventions, early warning of food 438 

insecurity is needed. In this study, we investigate the suitability of the operational RZSM 439 

products produced by a recently developed NASA seasonal scale hydrologic forecasting system, 440 

NHyFAS, in supporting food insecurity early warning in this region.  441 

The key findings of this study are: (i) the NHyFAS products would have identified the 442 

regional severe 2015-2016 drought event (which peaked in December-February) at least as early 443 

as November 1st of 2015; (ii) February RZSM forecasts produced as early as November 1 (4-5 444 

months before the start of harvest, and about one year before the start of the next lean season) 445 

can explain the interannual variability in regional crop yield production with moderate skill 446 

(correlation 0.49); (iii) use of dynamical climate forecasts adds to the skill (relative to the skill 447 

coming from the initial hydrologic conditions alone) in predicting regional crop yield through the 448 

prediction of February RZSM; (iv) the February RZSM monitoring product, available in early 449 

March (1-2 months before the start of harvest and 8-9 months before the start of the next lean 450 

season) can explain the variability in regional crop yield with high skill (correlation of 0.79); (v) 451 

when the February RZSM forecast (initialized on November 1) is found to be in the lowest 452 

tercile, the subsequent detrended regional crop yield is below normal about 66% of the time 453 

(statistical significance level ~86%), and likewise, when the February RZSM monitoring product 454 

is in the lowest tercile, the subsequent crop yield is (for a limited set of samples considered) 455 

always below normal (statistical significance level >95%); (vi) the February RZSM monitoring 456 

product can provide “out-of-sample” crop yield forecasts with higher skill than DJF ENSO (38% 457 
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reduction in mean error relative to DJF ENSO), whereas the February RZSM forecasting 458 

product, available in early November, can provide crop yield forecasts with comparable skill 459 

(~6% increase in mean error relative to DJF ENSO). 460 

The NHyFAS products described here were first generated in August 2018 for 461 

operational applications by FEWS NET. As described in much detail in Funk et al., (2019), each 462 

month, FEWS NET’s regional scientists (located in eastern, western, and southern Africa) 463 

review the latest products ahead of the FEWS NET’s monthly climate discussions. The NHyFAS 464 

products, in addition to other early warning tools, are used to support or revise the assumptions 465 

of climate and hydrologic conditions in the upcoming season. The updated assumptions are then 466 

passed on to food analysts for the region in order to help inform needed relief actions. This study 467 

demonstrates the value of the NHyFAS products in supporting food insecurity early warning in 468 

the SA region. It is worth mentioning that since NHyFAS currently covers Africa and the Middle 469 

East region, the NHyFAS products are applicable for food insecurity early warning in the rest of 470 

Africa and the Middle East as well. Based on this study, it is postulated (future research pending) 471 

that NHyFAS RZSM products can be particularly effective for those rainfed agriculture regions 472 

and seasons which are not known to have strong teleconnection (e.g. with ENSO), as in the SA 473 

region. Finally, since the data sets and models used to impelement the NHyFAS are available 474 

globally, a similar seasonal RZSM monitoring and forecasting framework can be developed at a 475 

global scale to support food insecurity early warning in other rainfed regions across the globe.    476 

  477 
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Code/Data availability: Crop yield, production, and consumption data were obtained from 478 

USDA FAS’s PSD: https://apps.fas.usda.gov/psdonline/app/index.html#/app/home. Average 479 

price data were obtained from FAO’s FAO STATS database 480 

http://www.fao.org/faostat/en/#home. World Bank Development Indicators were downloaded 481 

from https://data.worldbank.org/indicator/. GEOS forecast data sets are generated and supported 482 

by NASA’s Global Modeling and Assimilation Office (GMAO). Model source code can be 483 

found at NASA’s Land Information System’s GitHub repository 484 

(https://lis.gsfc.nasa.gov/news/latest-lis-code-now-available-github). Model parameters are 485 

available through email request. The daily CHIRPS precipitation data can be found here 486 

(ftp://ftp.chg.ucsb.edu/pub/org/chg/products/CHIRPS-2.0/global_daily/netcdf/p25/). MERRA-2 487 

reanalysis-based atmospheric forcings can be found through NASA’s GES DISC archive 488 

(https://disc.gsfc.nasa.gov/datasets?keywords=%22MERRA-489 

2%22&page=1&source=Models%2FAnalyses%20MERRA-2).  NHyFAS forecasts, in the form 490 

of maps, can be found here https://lis.gsfc.nasa.gov/projects/nhyfas. As of now, NHyFAS 491 

forecast data sets are not publicly accessible. 492 
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 691 

Table 1: Performance of ‘out-of-sample’ crop yield forecasting over the validation period of 692 

2008-2018. 693 

 694 

 Univariate 

model 

Univariate 

model + ENSO 

Univariate 

model + Feb-

RZSM 

(Monitoring) 

Univariate 

model + Feb-

RZSM 

(forecast) 

Mean absolute 

error over the 

validation 

period 

(MT/HA) 

0.342 0.285 0.174 0.301 

Number of 

years observed 

yield is within 

95% confidence 

interval bound 

9 10 10 9 

Mean spread of 

95% confidence 

interval 

(MT/HA) 

1.64 1.20 1.07 1.20 

Number of 

years observed 

yield is within 

80% confidence 

interval bound 

9 7 10 7 

Mean spread of 

80% confidence 

interval 

(MT/HA) 

1.07 0.78 0.70 0.78 

 695 

  696 
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 697 

 698 

Figure 1: (a) Schematic representation of a typical seasonal calendar for the southern 699 

Africa region. (taken from: http://fews.net/southern-africa)  (b) Monthly climatology of 700 

maize prices in SA countries. The monthly mean prices are normalized relative to the 701 

maximum mean monthly price for a given country, as the actual values of the mean 702 

monthly prices are different for different countries. Comparison of mean monthly maize 703 

http://fews.net/southern-africa


34 

prices for (c) Malawi (d) Mozambique (e) Zimbabwe (f) South Africa, during the 2015-16 704 

event (red line) with the previous 5-year mean prices (black line). The price data is 705 

available from FAOSTAT (FAO 2019). 706 

  707 
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 708 

 709 

Figure 2: Percentage of income share held by lowest 10% and 20% income population in 710 

the Southern Africa countries. (Data Source: the World Bank’s World Development 711 

Indicators) 712 

 713 
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 714 

Figure 3: Overview of the NHyFAS implementation to produce RZSM monitoring and 715 

forecasting products, as used in this study. 716 

 717 

  718 
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 719 

 720 

Figure 4: Forecast (top panel) and Monitoring of Rootzone soil moisture  (RZSM)  721 

percentiles for the months of November 2015 through February 2016. October 2015  722 

conditions reflect the state of RZSM during the month preceding the forecast 723 

initialization on November 1, 2015. The RZSM monitoring product for a given month 724 

is available during the early part of the following month. The historical climatology 725 

(1982-2010) was used to calculate percentile. 726 

  727 
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 728 

Figure 5: Variability of the correlation between the 3-month seasonal precipitation,  729 

3-month seasonal air temperature (AirT), and monthly RZSM monitoring product 730 

with the detrended crop yield. This result highlights that RZSM is potentially a better 731 

predictor of crop yield than seasonal precipitation and AirT; also, the skill is the 732 

highest in early March when DJF seasonal precipitation, AirT, and February RZSM 733 

monitoring products are available. 734 

  735 
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 736 

Figure 6: Covariability of detrended regional yield in southern Africa with: (a) February 737 

RZSM forecasts (initialized on November 1) generated using ESP method and bias-738 

corrected GEOS forecasts, (b)  February RZSM forecasts (initialized on January 1) 739 

generated using ESP method and bias-corrected GEOS forecasts, and (c) the February 740 

RZSM monitoring product (available in early March). 741 

  742 
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 743 

 744 

Figure 7: Fraction of years with below-normal regional crop yield (based on the rank of 745 

detrended crop yield) given that the corresponding RZSM forecasts (initialized on 746 

November 1 and January 1) and RZSM monitoring product (available in early March) 747 

were in the lowest tercile (based on the rank of the RZSM climatology). Note that the Nov 1 748 

[Jan 1] RZSM forecasts-based probability of ~66% [~83%] is statistically significant at the 749 

~86% [~95%] confidence level. 750 
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 751 

Figure 8: Comparison of the performance of a Univariate model alone, ENSO (DJF), Feb-752 

RZSM monitoring product, Feb-RZSM forecasting product as a predictor in forecasting 753 

crop yield of Southern Africa. Pink [gray] shading indicates 80% [95%] confidence 754 

interval. 755 
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