Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-264-AC4, 2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License.

NHESSD

Interactive comment

Interactive comment on "Impact data bases application for natural and technological risk management" by Nina I. Frolova et al.

Nina I. Frolova et al.

frolova@esrc.ru

Received and published: 8 November 2019

Authors response to the editor comments

Dear Maria,

Thanks again for your kind comments. According to your comment we added the reference for the CODATA study report to the list of references. In the previous version of the manuscript it was only mentioned as web reference https://doi.org/10.5281/zenodo.3406127 on line #60. We are also looking for future cooperation.

Interactive comment on Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-

Printer-friendly version

Discussion paper

NHESSD

Interactive comment

Printer-friendly version

Discussion paper

NHESSD

Interactive comment

Interactive comment on "Impact databases application for natural and technological risk management" by Nina I. Frolova et al.

Maria Bostenaru Dan (Editor)

csipike@web.de

Received and published: 8 November 2019

Many thanks for your thorough and detailed response! It is indeed very interesting to read about all these initiatives. It would be very good if reference is included to those attached to your response, and sufficient. Looking forward for a future article or presentation describing what is in the response!

Authors response to the editor comments

Dear Maria,

Thanks again for your kind comments.

According to your comment we added the reference for the CODATA study report to the list of references. In the previous version of the manuscript it was only mentioned as web reference https://doi.org/10.5281/zenodo.3406127 on line #60.

We are also looking for future cooperation.

Printer-friendly version

Discussion paper

NHESSD

Interactive comment

Impact databases application for natural and technological risk management

Nina I. Frolova¹, Valery I. Larionov¹, Jean Bonnin², Sergey P. Suchshev³, Alexander Ugarov³, Nataliya Malaeva³

- 5 Seismological Center of IGE, Russian Academy of Sciences, Moscow 101000, Russia
 - ² Institut de Physique du Globe, University of Strasbourg, Strasbourg F-67084, France
 - ³ Extreme Situations Research Center, Moscow 127015, Russia

Correspondence to: Nina I. Frolova (frolova@esrc.ru)

Abstract. Impact databases development and application for risk analysis and management promotes the usage of self10 learning computer systems with elements of artificial intelligence. Such systems learning could be successful when the
databases store the complete information about each event, parameters of the simulation models, the range of its application
and residual errors. Each new description included in the database could increase the reliability of the results obtained with
application of simulation models. The calibration of mathematical models is the first step to self-learning of automated
systems. The article describes the events' database structure, and examples of calibrated computer models as applied to the
15 impact of expected emergencies and risk indicators assessment. Examples of database statistics usage in order to rank the
subjects of the Russian Federation by the frequency of emergencies of different character, as well as risk indicators are
given.

1 Introduction

Analysis of the natural and technological emergencies consequences gives an evidence that natural hazards and technological

20 disasters pose an increasing threat to the safety of citizens and the economy of the Russian Federation. The increasing
severity of the impact indicates the need to improve the effectiveness of measures aimed at risk reduction. The Ministry of
Emergency Situations (EMERCOM) of the Russian Federation considers preventive measures as the priority. They are based
on application of information systems (IS) that provide reliable forecasts, including a reliable assessment of a spatially
distributed indicator that characterizes the safety of a region, which makes it possible to rationally distribute forces and
25 resources in order to reduce risk.

Another important task, which may be solved with IS usage, is to enhance the efficiency of rescue operations. This could be achieved by higher reliability of the operational forecast of situations based on the data contained in the database of events (DB). Examples of successful rescue operations accumulated in DB facilitate the decision-making process and reduce the time when people stay in the affected area, which results in decreasing the fatality likelihood.

Printer-friendly version

Discussion paper

Fig. 2.