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Abstract 

Droughts continue to affect ecosystems, communities, and entire economies. Agriculture bears much of the impact, and in 

many countries it is the most heavily affected sector. Over the past decades, efforts have been made to assess drought risk at 

different spatial scales. Here, we present for the first time an integrated assessment of drought risk for both irrigated and rain-20 

fed agricultural systems at the global scale. Composite hazard indicators were calculated for irrigated and rain-fed systems 

separately using different drought indices based on historical climate conditions (1980-2016). Exposure was analyzed for 

irrigated and non-irrigated crops. Vulnerability was assessed through a social-ecological systems perspective, using social-

ecological susceptibility and lack of coping capacity indicators that were weighted by drought experts from around the world. 

The analysis shows that drought risk of rain-fed and irrigated agricultural systems displays a heterogeneous pattern at the 25 

global level with higher risk for southeastern Europe, as well as northern and southern Africa. By providing information on 

the drivers and spatial patterns of drought risk in all dimensions of hazard, exposure, and vulnerability, the presented analysis 

can support the identification of tailored measures to reduce drought risk and increase the resilience of agricultural systems.  
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1 Introduction 

Droughts exceed all other natural hazards in terms of the number of people affected, and have contributed to some of the 

world's most severe famines (FAO, 2018; CRED and UNISDR, 2018). Drought is conceived as an exceptional and sustained 

lack of water caused by a deviation from normal conditions over a certain region (Tallaksen and Van Lanen, 2004, Van Loon 

et al., 2016). It can have manifold impacts on social, ecological, and economic systems, for instance agricultural losses, public 35 

water shortages, reduced hydropower supply, and reduced labor or productivity. While many sectors are affected by drought, 

agriculture’s high dependency on water means it is often the first one of the most heavily affected sectors (Dilley et al., 2005; 

UNDRR, 2019). With nearly 1.4 billion people (18% of the global population) employed in agriculture, droughts threaten the 

livelihoods of many, and are hampering the achievement of the Sustainable Development Goals (SDGs) – notably SDG1 (no 

poverty), SDG2 (zero hunger), SDG3 (good health & well-being), and SDG15 (life on land). While there is ambiguity 40 

regarding global drought trends over the past century (Sheffield et al., 2012; Trenberth et al., 2013; McCabe and Wolock, 

2015), drought hazards will likely increase in many regions in the coming decades (Sheffield and Wood, 2008; Dai, 2011; 

Trenberth et al., 2013; Spinoni et al., 2017; UNDRR, 2019, Spinoni et al., 2019b). Identifying pathways towards more drought 

resilient societies therefore remains a global priority.  

  45 

Recent severe droughts in southeastern Brazil (2014-2017), California (2011-2017), the Caribbean (2013-2016), northern 

China (2010-2011), Europe (2011, 2015, 2018), India (2016, 2019), the Horn of Africa (2011-2012), South Africa (2015-2016, 

2018), and Viet Nam (2016), have clearly shown that the risk of negative impacts associated with droughts is not only linked 

to the severity, frequency, and duration of drought events, but also to the degree of exposure, susceptibility and coping capacity 

of a given social-ecological system. Despite this, proactive management of drought risk is still not a reality in many regions 50 

across the world. Droughts and their impacts are still mostly addressed through reactive crisis management approaches, for 

example, by providing relief measures (Rojas, 2018). To improve the monitoring, assessment, understanding, and ultimately 

proactive management of drought risk effectively, we need to acknowledge that the root causes, patterns and dynamics of 

exposure and vulnerability need to be considered alongside climate variability in an integrated manner (Spinoni et al., 2019a; 

Hagenlocher et al., 2019). 55 

  

Over the past decades, major efforts have been made to improve natural hazard risk assessments and their methodologies 

across scales, ranging from global risk assessments to local level assessments. At the global scale several studies have been 

published in recent years, focusing on the assessment of flood risk (Hirabayashi et al., 2013; Ward et al., 2013, 2014), seismic 

risk (Silva et al., 2018), cyclone risk (Peduzzi et al., 2012), or multi-hazard risk (e.g. Dilley et al., 2005; Peduzzi et al., 2009; 60 

Welle and Birkmann, 2015; Garschagen et al., 2016; INFORM, 2019; Koks et al., 2019; UNDRR, 2019). While major progress 

has been made regarding the mapping, prediction and monitoring of drought events at the global scale (e.g. Yuan and Wood, 

2013; Geng et al., 2013; Spinoni et al., 2013, 2019b; Damberg and AghaKouchak, 2014; Hao et al., 2014; Carrão et al., 2017), 
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very few studies have assessed either exposure to drought hazards (Güneralp et al., 2015) or drought risk at the global level 

(Carrão et al., 2016; Dilley et al., 2005). The study by Carrão et al. (2016) presents the first attempt to map drought risk at the 65 

global scale while considering drought hazard (based on precipitation deficits), exposure (population, livestock, crops, water 

stress), and societal vulnerability (based on social, economic and infrastructural indicators). While generic drought risk 

assessments are useful to get an overview of the key patterns and hotspots of drought risk, it is increasingly acknowledged that 

drought risk assessment should be tailored to the needs of specific users, so that management plans can be developed to reduce 

impacts (Vogt et al., 2018; UNDRR, 2019). Impact or sector specific assessments of who (e.g. farmers) and what (e.g. crops) 70 

is at risk to what (e.g. abnormally low soil moisture, deficit in rainfall, below average streamflow), where, and why, are needed 

to inform targeted drought risk reduction, resilience and adaptation strategies (IPCC, 2014). Such analyses are currently 

lacking. Furthermore, in their exposure analysis, Carrão et al. (2016) do not distinguish between rain-fed and irrigated 

agriculture, although different hazard indicators are relevant when assessing drought risk for these systems. In addition, the 

vulnerability analysis presented by Carrão et al. (2016) is based on a reduced set of social, economic and infrastructure-related 75 

indicators, and does not account for the role of ecosystem-related indicators as a driver of drought risk - a gap that was recently 

highlighted in a systematic review of existing drought risk assessments across the globe (Hagenlocher et al., 2019). A social-

ecological systems perspective, especially when assessing drought risk in the context of agricultural systems, where livelihoods 

depend on ecosystems and their services, can help to better understand the role of ecosystems and their services as a driver of 

drought risk, but also as an opportunity for drought risk reduction (Kloos and Renaud, 2016).  80 

 

This paper addresses some of the above gaps by presenting, for the first time, an integrated drought risk assessment that brings 

together data from different sources and disciplines for rain-fed and irrigated agricultural systems considering relevant drought 

hazard indicators, exposure and vulnerability at the global scale. The spatial variability of drought risk on global and regional 

scales might help to identify leverage points for reducing impacts and properly anticipate, adapt and move towards resilient 85 

agricultural systems. 

2 Methods 

Today, it is widely acknowledged that risk associated with natural hazards, climate variability and change is a function of 

hazard, exposure and vulnerability (IPCC, 2014; UNDRR, 2019). Following that logic, Figure 01 shows the overall workflow 

of the assessment, while the subsequent sections describe in detail how drought risk for agricultural systems, including both 90 

irrigated and rain-fed systems, were assessed at the global scale.  
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Fig 01. Workflow for the overall global drought risk assessment for agricultural systems (including irrigated and rain-fed 

systems). 95 

 

The composite drought hazard indicators were calculated for irrigated and rain-fed systems separately using drought indices 

based on historical climate conditions (1980-2016), which resulted in integrated hazard maps for both rain-fed and irrigated 

agricultural systems, respectively. The different irrigated and non-irrigated crops by country were considered as the exposed 

element. Due to the lack of high-resolution gridded data on agricultural-dependent population at the global scale, this exposure 100 

indicator was not considered. The vulnerability component was assessed through a social-ecological systems (SES) lens, where 

social-ecological susceptibility and lack of coping capacity indicators were weighted by drought experts around the world.  

2.1 Drought hazard and exposure indicators 

The drought hazard indicators considered here represent the average drought hazard during the period 1980 to 2016 in each 

spatial unit for which it is computed. Drought hazard is defined as a deviation of the situation in a specific year or month from 105 

long-term mean conditions in the 30-year reference period from 1986 to 2015. To quantify drought hazard for such a long 
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period, we used the global water resources and water use model WaterGAP (Müller Schmied et al., 2014) and the global crop 

water model GCWM (Siebert and Döll, 2010). The models simulate terrestrial hydrology (WaterGAP) and crop water use 

(GCWM) for daily time steps on a spatial resolution of 30 arc-minutes (WaterGAP) or 5 arc-minutes (GCWM). The most 

recent version WaterGAP 2.2d was forced by the WFDEI-GPCC climate data set (Weedon et al., 2014) which was developed 110 

by applying the forcing data methodology developed in the EU-project WATCH on ERA-Interim reanalysis data (Table 01). 

The GCWM used the CRU-TS 3.25 climate data set (Harris et al., 2014) as an input. CRU-TS 3.25 was developed by the 

Climate Research Unit of the University of East Anglia by interpolation of weather station observations and is provided as a 

time series of monthly values. Pseudo daily climate was generated by the GCWM as described in Siebert and Döll (2010). 

Following the definitions of the Intergovernmental Panel on Climate Change put forward in their Fifth Assessment Report 115 

(IPCC, 2014), exposure is defined as the elements located in areas that could be adversely affected by drought hazard. The 

distinct exposure of irrigated and rain-fed agricultural systems to drought was considered by weighting grid cell specific 

hazards with the harvested area of irrigated and rain-fed crops according to the Monthly Irrigated and Rain-fed Cropping Areas 

(MIRCA2000) dataset (Portmann et al., 2010) when aggregating grid cell specific hazards to exposure at a national scale. 

MIRCA2000 was also used to inform the models used in the hazard calculations about growing areas and growing periods of 120 

irrigated and rain-fed crops. The data set refers to the period centered around the year 2000; time series information is not 

available at the global scale. To maximize the representativeness of the land use, the reference period and evaluation period 

used in this study were centered around the year 2000.  

 

Table 01. Hazard and exposure indicators used in the analysis and their processed data 125 

 

Risk 

component 

Composite 

indicator 

Indicator Processed data 

Drought 

hazard 

CH_IrrigAg 

Accumulated 

streamflow deficit 

WaterGAP (1980-2016) with climate forcing WFDEI-GPCC. 

Streamflow monthly time series. 

Accumulated 

irrigation surplus 

GCWM (1980-2016) with climate forcing CRU TS3.25. Monthly 

time series of net irrigation requirements 

CH_RfAg AET/PET 

deviation ratio 

GCWM (1980-2016) with climate forcing CRU TS3.25. Annual 

time series of the deviation of the ratio AET / PET from the long-

term (1986-2015) median of the ratio AET / PET 

Exposed 

elements 

Rainfed & 

irrigated  

Aggregation of 

pixel level data to 

national scale 

MIRCA 2000 dataset was used to compute harvested area 

weighted averages of the indicators 
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2.1.1 Irrigated agricultural systems 

The composite drought hazard indicator is defined as the product of mean severity and frequency of drought events. For 

irrigated agriculture (CH_IrrigAg) it combines an indicator for streamflow drought hazard (SH), i.e. for abnormally low 130 

streamflow in rivers, with an indicator of abnormally high irrigation water requirement (IH) (Fig. 01). It thus considers the 

deviations of both demand and supply of water from normal conditions. SH and IH are computed with a spatial resolution of 

0.5° by 0.5° (55 km by 55 km at the equator). Greenland and Antarctica are excluded. As IH is not meaningful in grid cells 

without irrigation, CH_IrrigAg is only computed for grid cells in which irrigated crops are grown according to MIRCA2000 

(Portmann et al., 2010).  135 

 

IH was calculated by using the GCWM based on a monthly time series of net irrigation requirements from 1980 to 2016. The 

net irrigation requirement is the volume of water needed to ensure that the AET of irrigated crops is similar to their PET. (Fig. 

01). The calculations were performed for 487,121 grid cells with a resolution of 5 arc-minutes containing irrigated crop areas 

and then aggregated to 26,478 grid cells with a 30 arc-minute resolution to be consistent with the resolution used by WaterGAP. 140 

SH was calculated by using WaterGAP based on a monthly time series of streamflow from 1980 to 2016 in 66,896 0.5° grid 

cells world-wide.  

 

For both IH and SH, drought hazard per grid cell was quantified as the product of a (scaled or transformed) mean severity of 

all drought events during the evaluation period 1980-2016 and the frequency of drought events during this period. Drought 145 

events for IH and SH were determined independently. In the case of IH computation, a drought event starts as soon as the 

monthly irrigation requirement exceeds the irrigation requirement threshold and ends when the surplus reaches zero. In the 

case of SH computation, a drought starts if the monthly streamflow drops below the streamflow threshold and ends as soon as 

the deficit reaches zero. For each grid cell and each of the 12 calendar months, a drought threshold was defined as the median 

of the variable values in the respective calendar month during the reference period 1986-2015. To avoid spurious short droughts 150 

and drought interruptions, it was defined that 1) a drought event starts with at least two consecutive months with an IH surplus 

or a SH deficit and 2) one month without an IH surplus or if a SH deficit does not break the event (Spinoni et al., 2019a). The 

accumulated surplus (IH) / deficit (SH) during each drought event is the severity of the drought event. Mean severity is 

computed as the arithmetic average of the severity of all drought events during the evaluation period. As in case of SH the 

deficit and thus the severity of streamflow drought is strongly correlated with the mean annual streamflow, mean severity is 155 

therefore scaled by dividing the accumulated streamflow deficit by mean annual streamflow. In this way scaled mean 

streamflow drought severity is expressed as fraction of the mean annual flow volume that is on average missing during drought 

events. In the case of IH, mean severity is transformed logarithmically before computation of IH.  
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The composite drought hazard indicator for irrigated agriculture CH_IrrigAg was then calculated for each grid cell by 160 

combining the streamflow hazard SH and irrigation requirement hazard IH. To ensure that both indicators are weighted equally, 

their native values were first scaled to a range between 0 and 1 by dividing SH and IH in each grid cell by the maximum SH 

or IH detected globally. The frequency distribution of the SH values calculated that way was shifted to the left with a mean of 

0.244 while the frequency distribution of IH was shifted to the right with a mean of 0.664. Therefore, CH_IrrigAg was 

calculated for each grid cell as: 165 

 

𝐶𝐻_𝐼𝑟𝑟𝑖𝑔𝐴𝑔 = 0.5(𝑆𝐻/𝑆𝐻 + 𝐼𝐻/𝐼𝐻)                                           (01) 

 

with SH being the grid cell specific streamflow hazard, IH being the grid cell specific irrigation requirement hazard and 𝑆𝐻and 

𝐼𝐻 being the mean of SH or IH calculated across all grid cells. 170 

 

The exposure of irrigated agricultural systems to drought at national scale was derived as the harvested area weighted mean of 

the CH_IrrigAg across all grid cells belonging to the respective aggregation units.  

2.1.2 Rain-fed agricultural systems 

The composite drought hazard indicator for rain-fed agriculture (CH_RfAg) was quantified based on the ratio of actual crop 175 

evapotranspiration (AET - in m3 day-1) to potential crop evapotranspiration (PET in m3 day-1), calculated for the evaluation 

period 1980-2016 and compared to the reference period 1986-2015 (Fig. 01). PET quantifies the water requirement of the crop 

without water limitation while AET refers to the evapotranspiration under actual soil moisture conditions. 

 

The GCWM was applied for 24 specific rain-fed crops and the two groups "others annual" and "others perennial" to calculate 180 

crop specific AET and PET on a daily time step. Together, the 24 crops and two crop groups cover all crop species distinguished 

by FAO in their database FAOSTAT. The sum of daily crop specific AET and PET was calculated for all crops and for each 

year in the period 1980-2016 for 927,857 grid cells containing rainfed cropland and aggregated to 37,265 grid cells with the 

resolution 0.5 x 0.5 degree. 

 185 

The mean ratio between AET and PET (𝐴𝐸𝑇/𝑃𝐸𝑇) for the reference period 1986-2015 was then calculated for each grid cell. 

𝐴𝐸𝑇/𝑃𝐸𝑇 reflects long-term water limitations for the geographic unit with low values representing high aridity and high 

values for low aridity. CH_RfAg was then determined by calculating the ratio 𝐴𝐸𝑇/𝑃𝐸𝑇 for each year from 1980-2016, and 

by deriving the percentile of a relative difference of 10% to the long-term mean ratio 𝐴𝐸𝑇/𝑃𝐸𝑇 from the time series. 

Consequently, CH_RfAg reflects the probability for the occurrence of a drought year in which the ratio between total AET and 190 
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total PET across all rain-fed crops is 10% lower than the long-term mean ratio 𝐴𝐸𝑇/𝑃𝐸𝑇. We also tested other percentage 

thresholds (20%, 30%, 50%), but for many parts of the world we never computed reductions of the ratio AET/PET by more 

than 10% of the long-term mean ratio (Supplementary (S5)). Therefore, it was decided to use the 10% threshold consistently. 

2.1.3 Integration of drought exposure of irrigated and rain-fed cropping systems 

The combined drought exposure for rain-fed and irrigated cropping systems was evaluated at country level by averaging the 195 

harvested area weighted drought exposure of irrigated and rain-fed cropping systems. As described before, distinct methods 

were used to calculate hazard and exposure of irrigated and rain-fed systems so that a direct comparison of the exposure values 

is not meaningful. In addition, the frequency distributions differed considerably, with a harvested area weighted global mean 

of the drought exposure of 0.455 for irrigated systems and 0.189 for rain-fed systems. To ensure a more similar weight of rain-

fed and irrigated drought exposure, country specific exposures were divided by the global mean, and then the integrated 200 

exposure was calculated as harvested area weighted mean: 

 

𝐸𝑥𝑝𝑡𝑜𝑡 = ((𝐴𝐻𝑟𝑓 ⋆ 𝐸𝑥𝑝𝑟𝑓  / 0.189) + (𝐴𝐻𝑖𝑟𝑟 ⋆ 𝐸𝑥𝑝𝑖𝑟𝑟  / 0.455)) / 𝐴𝐻𝑡𝑜𝑡                          (02) 

 

with 𝐸𝑥𝑝𝑡𝑜𝑡 , 𝐸𝑥𝑝𝑟𝑓, and 𝐸𝑥𝑝𝑖𝑟𝑟 being the exposure of the whole, rainfed and irrigated cropping systems to drought and 𝐴𝐻𝑡𝑜𝑡, 205 

𝐴𝐻𝑟𝑓, and 𝐴𝐻𝑖𝑟𝑟  being the harvested area of all crops, rainfed crops and irrigated crops.  

 

2.2 Vulnerability and risk assessment 

According to the Intergovernmental Panel on Climate Change (IPCC) (2014), vulnerability is the predisposition to be adversely 

affected as a result of the sensitivity or susceptibility of a system and its elements to harm, coupled with a lack of coping and 210 

adaptive capacity. The assessment of drought vulnerability is complex because it depends on both biophysical and 

socioeconomic drivers (Naumann et al., 2014). Due to this complexity, the most common method to assess vulnerability in the 

context of natural hazards and climate change is using composite indicators or index-based approaches (Beccari, 2016; 

Sherbinin et al., 2019). Although their usefulness for policy support has also been subject to criticism (Hinkel, 2011, Beccari 

2016), it is widely acknowledged that composite indicators can identify generic leverage points for reducing impacts at the 215 

regional to global scale (Sherbinin et al., 2017, 2019; UNDRR 2019).  

 

Following the workflow to calculate composite indicators proposed by the Organisation for Economic Co-operation and 

Development (OECD, 2008) and Hagenlocher et al. (2018), the methodological key steps on which the vulnerability 

assessment is based are: 1) definition of the conceptual framework, 2) identification of valid indicators, 3) data acquisition and 220 
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pre-processing, 4) analysis and imputation of missing data, 5) detection and treatment of outliers, 6) assessment of 

multicollinearities, 7) normalization, 8) weighted aggregation, and 9) visualization. 

 

An initial set of vulnerability indicators for agricultural systems was identified based on a recent review of existing drought 

risk assessments (Hagenlocher et al., 2019). In total 64 vulnerability indicators, including social, economic, physical, farming 225 

practices, environmental, governance, crime and conflict factors, were selected and classified by social-ecological 

susceptibility (SOC_SUS, ENV_SUS), lack of coping capacity (COP) and lack of adaptive capacity (AC) following the risk 

framework of the IPCC (IPCC, 2014). Indicator weights, which express the relevance of the identified indicators for 

characterizing and assessing the vulnerability of agricultural systems to droughts, were identified through a global survey of 

relevant experts (n = 78) around the world; the majority of whom have worked in academia and for governmental organizations 230 

with more than five years of work experience (Meza et al., 2019). In total, 46 of the 64 indicators were considered relevant by 

the experts, comprising susceptibility, coping and adaptive capacity indicators. However, since adaptive capacity is only 

relevant when assessing future risk scenarios and less relevant to current risk, indicators related to adaptive capacity and 

indicators that could be measured with the same data source due to their similarity in what they represent were removed. For 

instance Agriculture (% of GDP) and Dependency on agriculture for livelihood (%) were averaged into one income indicator 235 

and the variables GDP per capita, PPP and Population below the national poverty line (%) both refer to poverty, and therefore 

were also averaged to a combined indicator. This resulted in a set of 26 indicators as part of the vulnerability assessment (Table 

02).  

 

Following data acquisition, the data were pre-processed by transforming absolute to relative values and standardized when 240 

necessary (e.g. travel time to cities ≤30 min (population), divided by the total population). Descriptive statistics were used to 

evaluate the degree of missing data. The imputation of missing values was done with data from previous years and using 

secondary sources following Naumann et al. (2014) in cases where the r value lay between -1.0 to -0.9 or 1.0 to 0.9 using a 

Spearman correlation matrix and scatter diagram for visual interpretation. Following suggestions by Roth et al. (1999), Peng 

et al. (2006) and Enders (2003), listwise and pairwise deletion thresholds were selected when >30% of data were missing on 245 

a country level and when > 20% of data were missing on the indicator level. After the deletion, 168 countries and 26 indicators 

were considered for the final analysis. To detect potential outliers, scatter plots and box plots for each indicator were created. 

Potential outliers were further examined using triangulation with other sources and past years. On this basis, outliers were 

identified in only one indicator (i.e. fertilizer consumption (kg/ha of arable land)) and treated using winsorization following 

Field (2013). Multicollinearities were identified using a Spearman correlation matrix for the different vulnerability components 250 

(social susceptibility, environmental susceptibility and lack of coping capacity). Following the rule proposed by Hinkle et al. 

(2003), any values higher than r > 0.9 or smaller than r < -0.9 were considered very highly correlated. The correlation was 

considered only if it was significant at the 0.05 level (2-tailed). Two indicators for the lack of coping capacity component and 

two from social-susceptibility (e.g. healthy life expectancy at birth (years), and disability-adjusted life) showed high and 
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significant correlations. However, no indicators were excluded on this basis, due to the difference in concepts they represented 255 

and their relevance at global level. In order to render the indicators comparable, the final selected indicators were normalized 

to a range from 0 to 1 using min-max normalization (Naumann et al., 2014; Carrão et al., 2016): 

 

𝑍𝑖 = 𝑋𝑖  – 𝑋𝑚𝑖𝑛  / 𝑋𝑚𝑎𝑥  –  𝑋𝑚𝑖𝑛                              (03) 

 260 

where Zi is the normalized score for each indicator score Xi. For variables with negative cardinality to the overall vulnerability 

the normalization was defined as:  

 

𝑍𝑖 = 1 − (𝑋𝑖  – 𝑋𝑚𝑖𝑛  / 𝑋𝑚𝑎𝑥  –  𝑋𝑚𝑖𝑛)                             (04) 

 265 

Finally, the normalized indicator scores were aggregated into vulnerability components (SOC_SUS, ENV_SUS, COP) using 

weighted arithmetic aggregation based on (using the example of SOC_SUS):  

 

𝑆𝑂𝐶−𝑆𝑈𝑆 =  ∑ 𝑊𝑖  𝑍𝑖                                                                                                                                                              (05) 

 270 

where Wi are the weights for each normalized dataset, and Zi are the weights as obtained from the global expert survey. Thereby, 

weights were normalized to add up to 1. The final indicators and their respective weights are listed in Table 02. The 

vulnerability components of social-ecological susceptibility (SE_SUS) were combined using an average, which was then 

combined with lack of coping capacity (COP) to obtain a final vulnerability index (VI) score: 

 275 

VI =V(SE_SUS) + V (COP) / 2                                                                                                                                                (06) 

 

Table 02.Vulnerability indicators used in the analysis and their related expert-weights*. 

Indicator Data source Weight* 

Social susceptibility (SOC_SUS) 

Share of GDP from agr., forestry and fishing in US$ (%) FAO (2016) 0.96 

Rural population (% of total population) World Bank (2011-2017) 0.85 

Prevalence of undernourishment (% of population) World Bank (2015) 0.82 

Literacy rate, adult total (% of people ages 15 and above) World Bank (2015) 0.80 

Prevalence of conflict/insecurity (Crime and Theft, Index (0-30)) World Bank (2017) 0.76 

Proportion of population living below the national poverty line (%)  SDG indicators (2015-2017) 0.75 

Access to improved water sources (% of total population with access) World Bank/FAO (2015) 0.66 

DALYs (Disability-Adjusted Life Years)(DALYs per 100,000, Rate) GBD (2016) 0.65 

GINI index World Bank (2017) 0.64 

Insecticides and pesticides used (ton/ha) FAO (2016) 0.63 
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Gender Inequality Index UNDP (2018) 0.62 

Electricity production from hydroelectric sources (% of total) World Bank (2015) 0.62 

Unemployment, total (% of total labor force) (national estimate) World Bank (2017) 0.60 

Dependency ratio (Population ages 15-64 (% of total population)) World Bank (2011-2016) 0.60 

Population using at least basic sanitation services (%) WHO (2015) 0.60 

Healthy life expectancy (HALE) at birth (years) WHO (2014) 0.56 

Ecological susceptibility (ECO_SUS) 

Average land degradation in GLASOD erosion degree FAO (1991) 0.92 

Fertilizer consumption (kilograms per hectare of arable land) World Bank (2015) 0.74 

Average soil erosion FAO (1991) 0.72 

Terrestrial and marine protected areas (% of total territorial area) World Bank (2016-2017) 0.63 

Lack of coping capacity (COP) 

Saved any money in the past year (% age 15+) Global FINDEX (2014-2017) 0.87 

Government Effectiveness: Percentile Rank World Bank (2017) 0.85 

Total dam storage capacity per capita. Unit: m3/inhab FAO Aquastat (2017) 0.82 

Total renewable water resources per capita (m3/inhab/year) FAO (2014) 0.76 

Corruption Perception Index (CPI) Transparency International (2017) 0.68 

Travel time to cities ≤30 min (population) (%) JRC (2015) 0.65 

 * derived from a global expert survey (Meza et al., 2019) 

 280 

The final drought risk index (DRI) (Fig. 01) was calculated by multiplying the indices for drought hazard/exposure and 

vulnerability. At pixel level, the presence of hazard and vulnerability point to a certain drought risk, independent of how much 

crop area is contained in the specific pixel. At aggregated level, the different crop areas in the specific pixels must be 

considered; therefore exposure was calculated as harvested area weighted mean of the pixel level hazard and then multiplied 

with vulnerability to calculate drought risk at country level.  285 

 

The total drought risk score for irrigated and rain-fed systems combined (DRItot) is derived by multiplying the exposure of the 

whole cropping system Exptot (Equation 02) with the vulnerability index VI.  

2.3 Comparison against drought impact data 

The outcomes of the risk assessment for irrigated and rain-fed systems combined (DRItot) were compared against impact data 290 

from the international Emergency Events Database (EM-DAT) of the Centre for Research on the Epidemiology of Disasters 

(CRED) using visual correlation (Fig. 06). EM-DAT systematically collects reports of drought events and drought impacts 

from various sources, including UN agencies, NGOs, insurance companies, research institutes and press agencies. Here, the 

number of drought events within the period 1980-2016 was used as an input for the comparison. Thereby, a drought event is 
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registered in EM-DAT when at least one of the following criteria applies: 10 or more people dead; 100 or more people affected; 295 

declaration of a state of emergency or a call for international assistance. 

3 Results 

This section presents the results of the global drought risk assessment for agricultural systems (irrigated and rain-fed) at pixel 

level (Fig. 02 and 03) and for the total risk of both systems combined at national resolution (Fig. 04). The patterns colored 

dark red show high levels of the different risk components, while the dark blue colors reflects low scores of the different risk 300 

components. 

 

 

3.1 Drought risk for irrigated agricultural systems 

 305 
Fig 02. Drought risk (a), hazard/exposure (b) and vulnerability (c) for irrigated agricultural systems. The legends were defined 

by assigning the median of the value distribution to the yellow color in the center, the 90th percentile to the deepest red color, 

the 10th percentile to the deepest blue color, and by determining the class ranges of the other colors by linear interpolation. 

Risk was directly calculated by multiplying hazard with vulnerability (pixel-level analysis).  

 310 
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The drought risk for irrigated agricultural systems varies significantly among continents and countries. Especially large 

countries such as USA, Brazil, China and Australia show a high variation at country level, due to varying climatic conditions. 

Drought hazard/exposure was highest in regions with a high density of irrigated land and high irrigation water requirements 

such as the western part of USA, central Asia, northern India, northern China and southern Australia. Vulnerability was high 

particularly in sub-Saharan Africa but also in some countries in central Asia and the Middle East region and low in general for 315 

industrialized and high income countries. The combination of hazard and vulnerability to risk resulted in highest values for 

large parts of west, central and south Asia, eastern Africa and the eastern part of Brazil. Low risk areas include western Europe, 

USA, Australia and most parts of China (Fig. 02).  

3.2 Drought risk for rain-fed agricultural systems 

 320 
Fig 03. Drought risk (a), hazard/exposure (b) and vulnerability (c) for rain-fed agricultural systems. The legends were defined 

by assigning the median of the value distribution to the yellow color in the center, the 90th percentile to the deepest red color, 

the 10th percentile to the deepest blue color and by determining the class ranges of the other colors by linear interpolation. 

Risk was calculated by multiplying hazard/exposure with vulnerability (pixel level analysis). 

 325 
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High levels of risk (dark yellow to red color scheme) for rain-fed agricultural systems are observed in southern Africa, 

southeastern Europe, northern Mexico, northeast Brazil, at the western coast of South America, southern Russia and western 

Asia. The vulnerability to drought highlights the relevance to increase the coping capacity of the countries in order to reduce 

their overall drought risk. For instance, Australia, despite being highly exposed to drought hazard, has low socio-ecological 

susceptibility and high enough coping capacities to considerably reduce the overall drought risk. 330 

3.3 Drought risk for agricultural systems (irrigated and rain-fed combined) 

 
Fig 04. Drought risk (a), hazard/exposure of irrigated (b), rain-fed (c), and the whole crop production sector (d). The legends 

were defined by assigning the median of the value distribution to the yellow color in the center, the 90th percentile to the 

deepest red color, the 10th percentile to the deepest blue color, and by determining the class ranges of the other colors by linear 335 

interpolation. Risk was calculated by multiplying hazard/exposure with vulnerability shown in Fig. 02c and 03c. 

 

The hazard/exposure maps shown in Figure 04 are slightly different to the ones shown in Figures 02 and 03 due to the 

aggregation at country level. The analysis shows that regions with low hazard/exposure of rain-fed and irrigated crops to 

drought tend to be tropical and subarctic regions following the Köppen-Geiger climate classification (1980-2016) (Beck et al., 340 

2018). There are significant regional differences when comparing irrigated and rain-fed drought hazard/exposure. For instance, 

the northern part of Latin America and Central Africa have low hazard/exposure levels, given the humid climate conditions 

resulting in a low total risk, even though those regions are characterized by high vulnerability levels. Southern Africa, however, 

has a high amount of drought-exposed rain-fed crops, but a lower vulnerability compared to other African countries. Despite 
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this, risk scores in that region are very high. Very high drought hazard/exposure and vulnerability levels can be found in the 345 

Middle East and Northern Africa.  

 

Although the drought hazard was computed differently for the different agricultural systems, the countries with high risk of 

drought to both farming systems are Botswana, Namibia and Zimbabwe (Fig. 02 and 03), these countries share the same 

relevant indicators that define their high vulnerability: high soil and land degradation rate, low literacy rate, and low total 350 

renewable water (Supplementary (S3)). Table 03 shows the top and bottom ten countries with the highest/lowest total drought 

risk (DRItot) as well as their hazard/exposure and vulnerability scores.  

 

Table 03. Rank of countries with the highest and lowest risk of drought for combined agricultural systems (rain-fed and 

irrigated) 355 

 

Country Drought risk 

(countries 

rank) 

Risk score 

total 

Hazard/Exposure Vulnerability 

score 
Haz/Exp 

irrigated 

Haz/Exp 

rain-fed 

Haz/Exp 

total 

Zimbabwe 1 0.871 0.967 1.885 1.804 0.483 

Namibia 2 0.846 0.769 2.122 2.061 0.411 

Botswana 3 0.811 0.466 2.095 2.076 0.391 

Morocco 4 0.786 0.774 2.172 1.873 0.419 

Kosovo 5 0.728 0.936 1.871 1.854 0.393 

East Timor 6 0.701 0.971 1.882 1.854 0.378 

Mauritania 7 0.692 0.886 1.670 1.580 0.438 

Lesotho 8 0.692 0.840 1.562 1.556 0.445 

Kazakhstan 9 0.670 0.974 1.573 1.499 0.447 

Algeria 10 0.636 0.969 1.595 1.492 0.426 

Guatemala 158 0.039 0.857 0.026 0.087 0.446 

Gambia 159 0.037 0.760 0.093 0.094 0.394 

Belize 160 0.035 0.943 0.079 0.093 0.375 

Sierra Leone 161 0.023 0.934 0.005 0.057 0.402 

Brunei 162 0.020 0.741 0.000 0.077 0.254 

Guinea 163 0.019 0.822 0.033 0.042 0.452 

Switzerland 164 0.017 0.695 0.046 0.068 0.247 

Guinea-Bissau 165 0.017 0.723 0.026 0.042 0.401 

Fiji Islands 166 0.011 0.833 0.017 0.033 0.329 

Central African Republic 167 0.008 0.646 0.016 0.016 0.505 
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Seven out of the ten countries with the highest overall drought risk are located on the African continent. However, Kosovo, 360 

East Timor and Kazakhstan also possess high risk levels (Table 03). Zimbabwe ranks as the country with the highest drought 

risk mainly due to its high exposure combined with its high vulnerability (S1). 

 

In general, the countries that present higher drought risk have a high amount of exposed crops. Vulnerability varies among 

them, with Zimbabwe being the country with the highest vulnerability. The lack of coping capacity and social-ecological 365 

susceptibility were determinant factors for countries like Botswana and Zimbabwe (S1). There were cases where countries 

such as Namibia presented high socio-ecological susceptibility in contrast with high coping capacity, reducing its overall 

vulnerability. The drought risk in countries such as Lesotho and Mauritania that have in contrast limited coping capacities, is 

notably higher (S1). The analysis also reveals that, although risk is currently close to zero in several countries (e.g. Fiji Islands, 

C.A.R., Guinea-Bissau etc.), this could rapidly change once these countries are affected by droughts given their very high 370 

vulnerability.  

  

The comparison of the drought risks of rain-fed and irrigated cropping systems (Fig. 05) shows that several countries such as 

Zimbabwe, Iraq and Algeria are exposed to high risk for both cropping systems. These countries are frequently hit by drought 

and similarly have a high vulnerability to drought (Fig. 02 and 03). In contrast, countries such as Switzerland, Finland and 375 

New Zealand are characterized by low drought hazard/exposure for irrigated and rain-fed systems and low vulnerability to 

drought (Fig. 02 and 03). In countries such as Botswana, Oman and the United Arab Emirates, drought risk is high for rain-

fed cropping systems but low for irrigated cropping systems (Fig. 05). These countries are defined by arid climate conditions 

exposing rain-fed crops to high risk while the drought risk for irrigated cropping systems is low because of relatively low 

interannual variability in climatic conditions resulting in low variability of irrigation water requirement and streamflow, their 380 

risk is also determined by their different vulnerability dynamics (e.g. hydroelectric sources, retain renewable water). In 

contrast, drought risk for irrigated cropping systems is high and drought risk of rain-fed cropping systems is small in countries 

such as Burkina Faso, Madagascar and Cote D’Ivoire (Fig. 05). In these three countries, there is a big variability in climatic 

conditions with irrigated crops being cultivated in the more arid parts of the country and rain-fed crops in more humid parts. 

In addition, aquatic crops with a high water demand such as rice and sugarcane, are the most commonly cultivated irrigated 385 

crops in these countries (Frenken, 2005).  
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Fig. 05 Country profiles contrasting the drought risk of irrigated and rain-fed agricultural systems. The size of the bubbles 

indicates the crop growing area (sum of rain-fed and irrigated areas per country in Million ha). 390 

 

3.4 Comparison 

The comparison of drought risk (DRItot) with drought events registered in EM-DAT shows good agreement in many countries. 

For countries which have low drought risk such as the countries in tropical Africa, northern and western Europe or countries 

in the northern part of South America, there is either none or just one drought registered in EM-DAT (Figure 06a, 06b). There 395 

is also good agreement for countries in southern Africa and some countries in the African transition zone with very high 

drought risk and many registered drought events and for countries with intermediate drought risk such as Canada, Australia or 

Italy. However, some disagreement between calculated risk and the number of reported drought events is acknowledged. For 

instance, Brazil is not showing high agreement between EM-DAT and the country risk level, even though the eastern part of 

the country presents a high risk for irrigated and rainfed systems (Fig. 2 and 3), total drought risk level is affected by the other 400 

regions with lower risk in the country. The same occurs in other large countries such as USA, Russia, China and India, the 

calculated drought risk is low or intermediate although a large number of drought events have been registered in EM-DAT. 

The reason for this disagreement is that the risk shown in Figure 06a is representative for the whole country while drought 
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events which only have local or regional impacts are also registered in EM-DAT (see Sect. 2.3). For all these big countries, 

we detected considerable spatial heterogeneity with regard to drought risk where regions with high drought risk such as the 405 

central part of USA, northeast Brazil, northern China and northwest India are complemented with other regions of low drought 

risk (Fig. 06a). Therefore, the high number of registered drought events in EM-DAT is corroborated by the presence of high 

regional drought risk (Fig. 02 and 03). 

  

 410 

Fig 06. Comparison of total risk against drought impact data  
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4 Discussion 

The present study performs, for the first time, a separate global drought risk analysis for irrigated and rain-fed cropping 

systems, including regions that indicate a high vulnerability to droughts and are particularly exposed. In previous assessments, 415 

the share of irrigated cropland was either ignored or considered as a vulnerability indicator (Carrão et al., 2016). The drought 

hazard analysis is based on three indicators: streamflow drought hazard (SH), abnormally high irrigation water requirement 

(IH), and a composite drought hazard indicator for rain-fed agriculture (CH_RfAg), which quantify drought as a deviation from 

normal conditions consistent with common definitions. In agreement with the results for drought hazard obtained by Carrão et 

al. (2016), the largest drought hazard is obtained for arid and semi-arid regions such as northern and southern Africa, northern 420 

Mexico, along the coastline of Peru and Chile, the Arabian Peninsula and Mongolia for rain-fed systems, Italy, Turkey and 

Western Mexico for irrigated systems, and the western USA, northeast Brazil, western Argentina, central Asia, Middle East 

countries, western India, northern China and southern Australia for both irrigated and rain-fed systems. In contrast, previous 

studies based on standardized indices such as the SPI have detected the highest drought hazard mainly in humid regions such 

as central Europe, southeast Asia, southern Brazil and tropical Africa (Geng et al., 2015). The reason for this difference could 425 

be that deviations from normal conditions should not be treated similarly for arid and humid regions as not every precipitation 

or streamflow deficit in humid regions will automatically become a hazard for cropping systems. In fact, in humid regions, 

crops often perform better in relatively dry years (Holzkamper et al., 2015). We account for these effects by normalizing 

streamflow deficits with long-term mean annual river discharge (SH) or by calculating the probability of reductions in the 

AET/PET ratio of rain-fed crops in relative terms (CH_RfAg).  430 

 

In the present study, the rain-fed hazard is computed as the probability of a 10% decline in the AET/PET ratio compared to 

long-term mean conditions, whereas the irrigated drought hazard represents the combination of severity and frequency values 

derived from streamflow or irrigation water requirement (see Sect. 2). While the methodology reflects well the common 

understanding of the factors most influential for drought hazard in the two cropping systems, a direct numerical comparison 435 

of the calculated hazard for rain-fed and irrigated systems is not meaningful. The hazards and exposure calculated in this study 

should be used to rank or compare countries within the rain-fed or irrigated domain but not in between. The reasoning for the 

calculation of the total exposure and risk in this study was less to support comparisons across countries but to account for the 

different extend of irrigated and rainfed systems within the specific countries. There are countries in which crop production is 

completely rainfed and countries in which all crops are irrigated so that only the risk for the rainfed or irrigated systems are 440 

relevant. Except from these extremes, crop production in most countries is either predominantly irrigated or predominantly 

rainfed. We account for this by calculating total crop exposure to drought (Fig. 04d) as the harvested area weighted mean of 

the exposures of irrigated crops (Fig. 04b) and of the rainfed crops (Fig. 04c) Our attempt to calculate hazard, exposure and 

risk for the whole crop production sector by assigning a similar weight to the hazard-exposures for rain-fed and irrigated 

systems must be viewed critically and results should be taken with care. A potential way to derive specific weights for rain-445 
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fed and irrigated exposure could be validating calculated hazard and exposure, but also vulnerability and risk, with information 

about drought impacts separately, for both irrigated and rain-fed systems. Lack of data for drought impacts distinguishing rain-

fed and irrigated systems was the main reason why this approach was not implemented for the current study. 

 

The calculation of the drought hazard of irrigated cropping systems in this study is based on the two components streamflow 450 

hazard (SH) and irrigation requirement hazard (IH) reflecting water supply (SH) and water demand (IH) of irrigated systems. 

Therefore we do not consider specifically in our approach the availability and use of groundwater resources for irrigation. It is 

well agreed that dynamics in streamflow are usually larger than dynamics in groundwater storage, so that groundwater is used 

by many farmers to substitute temporary deficits in surface water supply for irrigation systems. In general, access to 

groundwater should therefore be considered to reduce drought hazard and vulnerability of irrigated cropping systems. 455 

Consideration of groundwater resources would, however, require dynamic quantification of groundwater storage and 

groundwater levels, which is challenging for global scale analyses and not possible with the models applied in this study. In 

addition, more conceptual work is needed to decide which degree of temporal variability in groundwater levels constitutes a 

hazard and how to treat long-term depletion of groundwater resources (negative trends) in drought risk studies. 

 460 

The multi-dimensional nature of vulnerability of agricultural systems is represented by a set of 26 expert-weighted indicators. 

One of the major limitations of this data driven approach is the spatial detail information for computing the model, however, 

at a global level it is not feasible to get a harmonized dataset of all the proxy variables, but some caution must be advised when 

zooming in at the subnational level (Naumann et al. 2018). When interpreting the results, it is necessary to consider that some 

highly correlated indicators were maintained in the analysis as they present different drivers of vulnerability and hence different 465 

entry points for vulnerability reduction. The selected indicators comprise social, economic, environmental, physical, and 

governance-related factors contributing to social-ecological susceptibility and the lack of coping capacity. In doing so, the 

present study goes beyond existing global drought risk assessments (Carrão et al., 2016) which are based on equal weights and 

do not consider relevant environmental vulnerability indicators as a driver of drought risk. The latter, however, is relevant 

when assessing drought risk for agricultural systems, where factors such as land degradation or soil erosion are shown to 470 

exacerbate drought risk (Hagenlocher et al., 2019). In future assessments an alternative to the expert-based weighting of 

vulnerability indicators chosen here could be the use of statistical approaches (e.g. Principal Component Analysis) to identify 

relevant indicators. However, given the high number of experts who participated in the weighting exercise (n = 78) the expert-

based approach seems more suitable to identify relevant indicators as compared to an approach that builds on statistical 

significance only. Further, Hagenlocher et al. (2013) evaluated the outcomes of PCA-based and expert-based indicator choice 475 

on a composite vulnerability index, and did not find major differences.  
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The findings of the drought risk assessment presented here correspond to a certain degree to the findings of Carrão et al. (2016). 

Although the focus of the current paper is more explicitly on agriculture, both studies present methodological similarities. In 

Carrão et al. (2016) the percentage crop land per grid-cell is one factor in the exposure analysis and the percentage irrigated 480 

agricultural land is one of the vulnerability factors. Although Carrão et al. (2016) include other factors such as population 

density, livestock density and baseline water stress in the analysis, the results give a high weight to the risk for agriculture. In 

both studies the regions less affected by droughts correspond to the regions with low or no exposure for agriculture and 

population (e.g. deserts and tropical forests). This is mainly the case in Amazonia and Central Africa. Also, similarities between 

areas of high levels of risk are evident, including southern and eastern Europe, the Eurasian steppe, northern Africa and the 485 

Middle East, northeastern Brazil and south eastern South America. 

 

Similarities are also found for the risk of irrigated agricultural systems. Examples are irrigated croplands in India, the United 

States and Australia. Differences in the overall patterns are due to the separation of irrigated and non-irrigated agriculture in 

the current study and the aggregated exposure information in Carrão et al. (2016). In an updated version of the risk map from 490 

Carrão et al. (2016), using a higher resolution population database and grid level exposure information, as shown in Vogt et 

al. (2018, Figure 7) similarities are even more evident.  

 

However, the present study includes a spatially explicit model of AET for the main crop types of two different agricultural 

systems (irrigated and rain-fed agriculture), and includes a specialized vulnerability index for this sector according to expert 495 

judgment. These differences have revealed the importance to focus more clearly on distinct impacts (e.g. on irrigated vs rainfed 

systems) when conducting drought risk assessments, even within the same sector. For instance, irrigated agricultural systems 

in Latin America are highly exposed to droughts, whereas the probability of droughts occurring in rain-fed agricultural systems 

in that region is comparably low.  

 500 

Despite these advancements, the presented analysis does have limitations. First, due to the lack of up to date land use data on 

irrigated vs. rain-fed agriculture at global scale, the exposure analysis is based on MIRCA data from the year 2000 (Portmann 

et al., 2010). Given that cropping systems are subject to change, this adds uncertainty to the results. Second, data used for the 

vulnerability analysis stems from different sources which makes it difficult to evaluate the inherent uncertainties in the data. 

Third, the data is not consistently available for all countries for the same years (Table 02). Fourth, the vulnerability analysis is 505 

based on nation-state resolution data, which does not allow for mapping spatial variability in vulnerability at the sub-national 

level. Fifth, applying expert opinions to weight drought vulnerability indicators according to their relevance brings subjectivity 

to the assessment, which necessitates a strong network of relevant experts. Sixth, preventive/adaptive planning requires going 

beyond evaluating drivers of risk and mapping current patterns of risk. Future scenarios of drought risk, considering both 
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changing environmental and climate conditions as well as possible future socio-economic development pathways, are needed 510 

in order to anticipate future challenges.  

 

Future research should address these challenges by also investigating sub-national patterns in vulnerability, and developing 

future drought risk scenarios in all dimensions of drought hazards, exposure, and vulnerability. In addition, attempts to 

investigate changes and trends in drought risk and risk components are highly needed to better understand trajectories of 515 

drought risk in different countries and for the whole world. Further, inherent uncertainties, as well as the sensitivity of the risk 

assessment outcomes towards changes in the input parameters (e.g. indicator choice and weighting), should be investigated 

and validated statistically. This gap has also been highlighted in a recent review of climate vulnerability assessments (Sherbinin 

et al., 2019) in general, as well as in a recent review of drought risk assessments (Hagenlocher et al., 2019) in particular.  

 520 

The comparison conducted in this study, has shown that there is limited data available on agricultural losses and impacts 

caused by droughts at the global level. Furthermore, impacts are not always direct, as droughts can have cascading indirect 

impacts (Freire-Gonzales et al., 2017; Van Lanen et al., 2017) which are difficult to assess. In addition, for countries where 

we find high drought risk (e.g., Mongolia, Iran, Kazakhstan and the countries in southeast Europe), no or very few drought 

events are registered in EM-DAT. The reason for this mismatch could be that drought events in these countries were not 525 

registered in EM-DAT. For example, in Romania, EM-DAT reports two drought events while according to other reports, 

twelve years between 1980 and 2012 were classified as drought years with 48% of the agricultural land affected (Lupu et al., 

2010; Mateescu et al., 2013). On top of this, in Iran, EM-DAT reports one drought event while other sources recounted several 

droughts during 1980-2005, with the most extreme drought lasting for four years from 1999 to 2002 (Javanmard et al., 2017; 

Zoljoodi and Didevarasl, 2013). These examples suggest that it cannot be concluded from missing drought records in EM-530 

DAT that specific countries were not affected by drought. Once improved and reliable impact data is available at the global 

scale, future research should also focus on the statistical validation of drought risk assessments with drought events and impact 

data. Ongoing efforts of countries to report their losses and impacts due to natural hazards (e.g. as part of the Sendai 

Monitoring) are considered as a first important step towards that direction.  

 535 

Lastly, while this study presents the first attempt to assess drought risk for agricultural systems, more work is needed to analyze 

drought risk for other sectors, such as public water supply, tourism, energy production, and water-borne transport, among 

others.  

5 Conclusions 

This paper presents, for the first time, a global-scale drought risk assessment for both irrigated and rain-fed agricultural systems 540 

from a social-ecological perspective by integrating drought indicators for hazard, exposure, and vulnerability. It goes beyond 
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previous studies by including a separated and spatially explicit analysis of the drought hazard and exposure for irrigated and 

rain-fed agricultural systems, as well as an empirically-based weighting of vulnerability indicators. The latter being based on 

the judgment of drought experts around the globe. The presented methodology can serve as a framework for the analysis of 

other affected sectors, such as water or energy. Findings from this study underscore the relevance of analyzing drought risk 545 

from a holistic perspective (i.e., including the sector-specific hazard, exposure and vulnerability) and based on a spatially 

explicit approach. By providing information on high risk areas and underlying drivers, this approach helps to identify priority 

regions as well as entry points for targeted drought risk reduction and adaptation options. While this first attempt provides 

valuable information at the global level, improvements could be achieved with the availability of more spatially explicit 

vulnerability information (i.e. at sub-national levels) and the availability of standardized drought impact information that can 550 

serve for a quantitative validation of risk levels. 
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