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Abstract: In this study, a geological investigation and statistical analysis of the post-earthquake slope

deposit failures in a meizoseismal area were presented, with a selected example from the 2008 Ms 8.0

Wenchuan earthquake occurred in Sichuan Province in China. The typical slope deposit failures were15

surveyed in three meizoseismal areas, namely Qingchuan county in Guangyuan city, Beichuan county

in Mianyang city, and the epicenter area, Wenchuan county in Aba Tibetan Autonomous Prefecture.

According to the movement, material and deformation mechanism of rock or soil, the failures of the

post-earthquake landslide deposit could be subdivided into four categories, i.e. slide, rockfall, erosion

and flow. This classification of failures of landslide deposit considers the topographic and failure after20

the earthquake. Besides, some other important factors such as topography, lithology and hydrogeology

are also considered. The above mentioned four failure categories are further split into 12

sub-classification. The complicated deformation mechanism and different failure patterns of the slope

deposits are analyzed in typical deposits. This classification provides a good reference for the

prediction of geological hazards, whereas mitigation of the landslide or debris flows caused by loose25

deposits in the meizoseismal area is still a difficult task.

1. Introduction

The failure types of post-earthquake deposits have been examined in several studies, and classification

(1938) is primarily based on materials (earth and rock), movement (flow and slip) and velocity (slow

or very rapid), without considering the effect of topography, landform, volume and inducing30

mechanism. Based on the material and type of movement, Varnes (1954,1978) classified the slope

failure into five types, i.e. fall, topple, slide, spread and flow, and this has been the most widely used

classification for landslides in the world. According to seismic parameters, materials and geologic

environment, Keefer (1984) divided the landslides into 14 types. Considering the landslide shape and
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geotechnical parameters, Hutchinson (1988) divided the slope deformation failure modes into a creep,35

frozen ground phenomena, and landslides, but did not consider the trigger mechanism and the effect of

the volume. Hungr (2001) classified the landslides into ten types based on genetic and morphological

characteristics, which introduced a new category in combination with unsorted material and sorted

material. However, the deformation-failure modes, the particularity of the loose post-earthquake main

body has not been paid much attention in previous studies, and further studies should be conducted40

based on these landslide classifications.

The purpose of the new classification proposed in this paper is that landslide deposits can be

effectively split into common categories according to deformation mechanisms, which retains the

established concept and reveals the deformation and failure trend of landslide events. This is easier to

achieve with a statistical analysis of a field survey, without resorting to more complex taxonomic45

methods. Moreover, understanding deformation and failure mode could help to mitigate and prevent

similar geological disasters. Some authors have made good attempts and achieved significant results.

For instance, the “locking section” was used in one study of mechanisms of large-scale landslides

occurred in China by Huang (2011) to identify a three-section model which includes sliding, tension

cracking and shearing. Using the same apparatus, Yang (2015) also evaluated the post-earthquake50

rainfall-triggered deposit failure occurred in Lushan area, Sichuan province, China.

The discussion of this paper focuses on the deformation and failure mechanism of loose deposits after

the earthquake. Although deformation and damage mechanism of the accumulation body have been

preliminarily considered, classification and specialty of the landslide deposits have not been well

developed. Wang (1981) found that the after-shock caused the cyclic shear to induce the decrease in55

the strength of sliding surface shear on rock slope instability. Some researchers used inertia, damping,

weakening, and liquefied instability to interpret the instability of the deposit. Seed and Martin (1966)

used the regular soil deposit for a laboratory test, with limited effort focused on the large deformation

of inclined slope caused by material liquefaction. Kramer (1997) proposed that instability of

post-earthquake can be spilt into weakened instability and inertial instability. Based on indoor60

experiments and field tests, a few researchers studied the liquefaction mechanism and shear

deformation of loose deposits after earthquakes in China, Japan, and New Zealand. It was confirmed

that liquefaction or shear forces established slope deformation. However, the empirical models for the

deformation and failure of loose deposits after such earthquakes have not been proposed.

Nearly 45,000 loose deposits were induced by the 2008 Wenchuan8.0’s earthquake in China spreading65

in 51 disaster areas of 130 thousand km2. These include 13,229 landslide deposits, 5,180 rockfall

deposits, and 2,400 debris-flow deposits in Sichuan Province, according to the post-earthquake survey

(Huang, 2009). Many loose deposits of the Sichuan Post-earthquake areas are susceptible to rainfall or

landslides induced by the aftershock. More than 12,000 potential geological hazards were triggered by

rainfalls (Fig.1), which killed hundreds of people (Kirschbaum, 2010; Liao, 2011).70



A clear classification system of the deformation mode of the accumulation body is more beneficial to

the stability evaluation of multifarious geo-hazards. In particular, the geological hazard classification

system in strong earthquake areas should consider the effect of multiple factors, such as topography,

stratum lithology, material, motion velocity, deformation, and failure mechanism. A practical type of

classification based on selected attributes is a good classification and a quick way to solve practical75

engineering problems. According to the material and sedimentological characteristics, Fan (2017)

divided the dam landslides caused by the 2008 Wenchuan earthquake into three categories, which will

help the prevention and control of landslide dams in strong earthquake areas, however, there is no

classification for loose deposits such as debris flows and rockfall deposits.

In this study, the geological conditions and the type of geo-hazards induced by the 2008 Wenchuan80

earthquake are first introduced. Subsequently, the classification method and the typical failure mode

of the loose deposits occurred since 2008 are discussed. A new classification method for deformation

and failure modes of deposits considering various factors such as topography, material, motion

velocity, volume, and particle composition is proposed. The formation mechanism and failure modes

of the geological disasters induced by 12 loose deposits are analyzed. The proposed new classification85

of failure modes for loose deposits should also be easily applied to the classification of geological

hazards occurred in other strong earthquake zones.

2. Site Study

2.1 Geological conditions90

Detailed analyses of the landslide deposits show that the slope deposit failure of the post-earthquake

regions in Wenchuan, China are complex. It is important to study the geological conditions in order to

recognize potential geological hazards. The specific failure mode is related to the specific topography,

deformation, and structure of the rock (soil). This study area has crossed various geomorphic units,

covering Qinghai-Tibet plateau, Longmen mountain, Sichuan basin and valley throughout the north to95

south. The terrain shows high in north and west, but low in south and east. Due to well-developed

faults, complicated topography, and various types of rock-soil mass structure and climate change in

this area, many post-earthquake loose deposit slopes were accumulated in the potential geo-hazard

regions, and it is important to study the failure mode and evolution process of the Wenchuan

earthquake area.100



Fig. 1 Loose Deposits triggered by the 2008 Wenchuan 8.0’s earthquake in Sichuan Province, China. (Landslide
deposits are shown in red; rockfall deposits are shown in blue; debris flow deposit shown in green. It is included on
13229 landslides, 5180 rockfalls, and 2400 debris-flows in the study area, by the geological survey in 2009. )
Legend: landslide deposit; rockfall deposit; debris flow deposit

Ⅰ: High mountain plateau region of western Sichuan;Ⅰ1: Shiqu Seda structure denuded hilly plateau are;Ⅰ2: Hongyuan Ruoergai tectonic

denuded swampy plains; Ⅰ3: East bank of Jinsha reive tectonic erosion mountain canyon area; Ⅰ4: Shapuli mountain erosion or denudation

hilly plateau area;Ⅰ5: Yalong river structure erodes the deep valley mountain area;Ⅰ6: Qionlai mountain to Minshan mountain tectonic erosion

ridge mountains;Ⅰ7: Gongga mountain structure erodes extremely high mountains;Ⅰ8: Longmen mountain fault erosion slope in the mountain

area.

Ⅱ Mountain area of southwest Sichuan Ⅱ1: Emei mountain to Wuzhi mount tectonic erosion block mountain area;Ⅱ2: Xichang Yanyuan

Tectonics erodes middle mountainous area of wide valley basin;Ⅱ3: Liangshan tectonic erosion middle mount area.

Ⅲ: Mount area in eastern basin in Sichuan; Ⅲ1: Tectonic erosion low mountain hilly in Sichuan Basin;
1
1Ⅲ : Inclined plain sub-region in

the front of western fault depression basin;
2
1Ⅲ : Mono-clinic low mountain sub-region north of tectonic erosion basin;

3
1Ⅲ : Table low

hilly sub-region south of erosion tectonic basin;
4
1Ⅲ : Parallelism (low mount) valley (hilly）sub-region in eastern of erosion tectonic basin;

Ⅲ2: Michang mount to Dab mount tectonic corrosion bedded middle area;Ⅲ3: Wu mount to Dalou mount strong karst valley middle mountain

area.

2.2 Seismicity and Rainfall

Several high magnitude earthquake has been recorded in the Longmen Mountain tectonic zone along

the eastern margin of Tibetan Plateau (China) in the last few decades. The Ms7.5 Diexi earthquake on105

August 25, 1933, caused the catastrophic landslide which blocked the Minjiang river and formed three

famous “quake lakes” . The rock slide depositions had slipped into a channel and formed landslide



dam, then caused deformation and failure, subsequently the water of this lake pour down, and as a

result, 2500 people had been killed and more than 6800 houses had been destroyed (Ren, 2017). The

Wenchuan earthquake on May 12, 2008, and the Lushan earthquake on April 20, 2013, had110

magnitudes of Ms 8.0 and Ms 7.0, respectively. These epicenters were located Longmen mountain

fault, SW-NE of Chengdu City, and the epicenter was located at the depth from 5 to 20 km, within the

Eurasian plate of the Yangtze plate.

The above-mentioned earthquakes occurred in the Longmenshan fault zone, indicating that the strong

earthquakes in this area are frequent and the geological environment is very fragile, which is the115

source of power for loose accumulations. These recurring earthquakes are the result of the relative

uplift of the Tibetan Plateau and the relative decline of the Sichuan Basin. The relative movement of

the Qinghai-Tibet Plateau and the Sichuan Basin resulted in the uplift of the Longmen Mountains and

formed a large seismic zone parallel to the eastern margin of the Qinghai-Tibet Plateau. The

Longmenshan fault zone includes three major fractures, namely Maoxian-Wenchuan fault and120

Yingxiu-Beichuan fault and Pengxian-Guanxian fault, which are widely distributed on the two largest

anticlinorium, i.e. the Pengguan anticlinorium and Baoxing anticlinorium. Due to the violent new

tectonic movement in the area, the rock mass is broken and the earthquake is frequent, causing a large

number of loose deposits (Fig. 2). As shown in Fig. 2, three major faults were formed, i.e, the fault

located at the junction of Longmen Shan and Sichuan basin, the piedmont fault, also known as125

Pengxian-Guanxian Fault, which is approximately parallel to the Longmen mountain, and the 240 km

main central fault, which is also known as Yingxiu-Beichuan Fault; and the Maoxian-Wenchuan Fault,

also known as the Maoxian-Wenchuan Fault.

Most typical loose deposits triggered by the earthquake occurred in Longmen Mountain of Wenchuan,130

which is around 60 km of Chendu city, Sichuan Province, near the east fringe of Tibetan plateau,

China (Fig.1). Based on the multi-source remote sensing data and field survey data from 2009 to 2018

provided by the China Geological Survey (CGS), rainfall is the main cause of landslides,

rock-avalanches, and mudslides caused by loose debris deformation. Among them, the period of

2010-2014 is the peak of the development of rainfall and geo-hazards, and hundreds of geological135

disasters were caused by the failure of loose deposits after the 2008 Wenchuan earthquake.



Fig. 2 Three main faults along Longmen Mountain tectonic.

It is suspected that the rainfalls and aftershocks have triggered the landslide or debris flow. Rainfall

has played an important role in the conversion of loose accumulations into landslides and has also140

attracted the attention of many research interests. The study area has a subtropical humid climate and

usually brings heavy rainfall between June and September. The average annual precipitation in the

study area is 4.87×1012 m3, and the annual average rainfall is 1003.1 mm. The Longmen mount fault

zone is a concentrated rainfall distribution area with a maximum rainfall of 160 mm in 24 hours,

which provides sufficient external dynamic conditions for the loose accumulation failure. In addition,145

there are more than 1,400 rivers in the study area, and the water flow rate reaches 1.59×104 m3 per

second, which is also an important factor for the deformation and failure of loose deposits (Fig. 3).

Under the combined action of seismic activity and hydrogeological conditions, the loose accumulation

slope in this area has a high-risk failure in the earthquake process. These factors must be taken into

consideration in loose deposits failure modes classification.150



Fig. 3 24 hours rainfall in Sichuan province

3. Investigation Methods

Field investigations were performed to understand the geological features in the area and the

mechanism of the landslides deposits. Methods include outcrop observations and topographical

measurements, as well as the use of drilling, trenching and pit exploration to investigate the internal

conditions of loose deposits. Some giant loose deposits also used geological drilling and standard155

penetration testing (SPT) to study the particle composition. Due to the complex and diverse lithology

of the landslide loose deposits, the engineering geological profile of typical loose deposits is drawn

based on the investigation and analysis of the lithology of the strata. Finally, the deformation and

failure mechanism are analyzed. The main field survey site and research object are the most

representative large deposit body within 50 km wide along the Longmen mount fault zone (Fig.3).160

The field investigation results reveal that the typical lithology of the deposit is the bedrock which

consists of weakly weathered, moderately weathered and strongly weathered coarse and fine granite,

limestone and sandstone. Under weathering or post-earthquake weathering, the bedrock is covered



with a large amount of loose clay, broken rock mass or their mixture, which is the main component of

landslide sediments.165

According to field investigation statistics for the Wenchuan earthquake area in 2010 (CGS), these

deposits can be classified into four types based on the topographic and type of movement (Cruden and

Varnes, 1996), i.e. slide, rockfall, erosion, and debris flow type representing for 62.74%, 24.57%,

11.38%, and 1.31% of the deposits, respectively. The ratios of slide, rockfall, erosion and flow type

are of 41:29.1:28.6:0.4 in plateau mountain areas. In high to medium mountains in a transitional zone170

from the plateau to basin, the slide of landslide deposits induced by Wenchuan earthquake is the main

failure mode (up to 65.3%), followed by erosion mode with 26.6%, rockfall type with 6.5%, and the

debris flow with 1.6%. But in basin and mountain area in Sichuan province, the ratios of slide, rockfall,

erosion and debris flow type are 66.9:31.1:0.5:1.5 (Table 1).
Table 1 Category of the landslide deposits in the study area175

Topographic and geomorphic zoning
Type of movement

Slide rockfall Erosion Debris flow

Plateau and alpine region 3105 2268 2166 34

High to medium mountain area 2311 231 940 57

Basin and mountain area 8361 3886 65 184

Total number 13777 6385 3171 275

4. Typical failure modes of loose deposits

4.1 Slide

The slide type of deposits is usually caused by the reconstruction of rock or soil slopes. Under the
action of external geological forces, e.g. rainfall, aftershocks and human engineering activities, the
loose deposits move along the weak surface or sub-surface. According to topography, material180
materials, motion characteristics, and on-site investigation, we classify the slide into four categories,
i.e. reactivation of old landslide, slide along the weak soils or rocks, the shallow slide of deep deposits
and integral sliding on bedding rock.

4.1.1 Reactivation of old landslide

Stable or almost stable ancient landslide deposit body is induced by the earthquake, and subsequently185
global or partial reactivation may occur to lead to deformation and failure of accumulation body under
the effects of rainfall conditions, aftershocks and human project activities. For instance，the Xindianzi
landslide, located in Yinxiu town, Wenchuan county, obviously the epicenter of the 2008 Wenchuan
earthquake, is a typical reactivation of old landslide (Fig. 4). The source area of the Xindianzi old
landslide is nearly 0.8 km long and 0.5 km wide, while the old slope angle is 25°～30°. The angle of190
old main scarp behind deposits is steep (45°～75°). The estimated volume of the deposits is 6×106 m3

and their material is a single and homogeneous, mostly the loose medium granular soil.



（a)

(b)

Fig.4 A slow soils slide on the of Xindianzi old landslide, (a)Schematic of loose deposits before the deformation;
(b) Schematic of deposits after the failure, large of homogeneous materials stop in the slope foot.

195

Creep and sliding deformation of Xindianzi old landslide is slow at the beginning, but after the strong

rainfall infiltration on August 11 2010 and the slope excavation on the crown, the landslide

displacement and deformation increased rapidly. The water content of this loose soil accumulations

increased rapidly after rainfall, and the gravity of the sliding body also increased. As a result, the shear

strength of the main body composed of loose deposits decreased, and even the strength of the soil200

decreased resulting in liquefaction. The loose granular structure and high sensitivity to rainwater

softening are the basic conditions for the resurrection of ancient landslides, while the most significant

localities with extra-sensitive loose deposits are largely distributed around the Yingxiu-Beichuan main

fault zone. A large number of reactivations of old landslides have also been found near Tangjia mount

(Hu, 2009)205



4.1.2 Slide along with the weak soils or rocks

（d)

(e)

Fig.5 The landslide occurred at Fenghuang Mountain, Sichuan, China, in 2011.(a)image of Fenghuang
Mountain landslide; (b) Gully at the trailing edge of a landslide;(c) Soft crushed soil by drilled;(d)
Schematic of loose deposits before failure;(d)Schematic of loose deposits after failure.

Slides along with the weak soils or rocks usually occur in deposits with weak interlayers. The main

body consists of loose deposits, broken rocks, and their mixtures. The weak interlayer consists of

plastic-soft clay or clastic sediments, and the bedrocks are usually consist of fully weathered-fully210

weathered shale, mudstone or sandstone. Before the deformation of the rock and soil in the weak

interlayer occurs, the landslide generally moves slowly, and the moving speed is usually less than

0.1m / 1a. Whereas under the influence of earthquakes, rainfall and human engineering activities, the

loose deposit will suddenly accelerate in the case of the transfixion of weak interlayer or the weak

zone (Huang, 2011).215

Fenghuang Mountain landslide locates in Ershe village, Leigu town, Beichuan county, with a total

square volume about 1.08 × 106 m3. It is the slide on the weak interlayer with the following main

features: the landslide deposit is nearly 420 m long and 1560 m wide, with the average slope angle of

25°, which is affected by deformation. Its main scarp is 25 m high in average, presenting two moving

steps, with the horizontal distance of 167 m and the height of 80 m. The middle of deposits is 111.6 m220

thick, 94 m thick in the slope toe and 58 m thick in the slope head. Most of the material of this

landslide deposits are composed of limestone, carbonaceous shale, silty clay, crushed stone or pebbly

clay. The soil sample exposed by drilling is characterized by kneading and water absorption,

suggesting that the soil sample is subjected to high compression and grinding. According to geological

hazard monitoring, the slip velocity of this accumulation body is 0.08 m/1year. Excavation of the road225

at the toe of the slope resulted in the rapid down move of the deposit along the weak interlayer (Fig.

5).



4.1.3 Shallow slide of deep deposits

A shallow slide on the deep earthquake deposits generally occurs in highly consolidated deep rock and

soil. The velocity is extremely high (often greater than 0.1 m/a), and sometimes the surface230

fragmentation of the soil accelerates with the rise in slope increases throughout the movement. This

type of failure is caused by earthquake, rainfall or human activities. It leads to the deterioration of the

structure and strength of the shallow surface of the stratum, followed by the creep and sliding

deformation of the shallow of deposit body(Fig. 6).

(a)

(b) (c)

Fig.6 Majiapo landslide in Beichuan County. (a) Photograph of a shallow slide in Majiapo shallow landslide,
Sichuan Province, China;(b) Schematic before failure;(c) Schematic after failure.

235

Majiapo landslide locates in Yuli town, Beichuan county, which is nearly 330 m wide and 230 m long.

Its volumes are nearly 4×105m3 and less than 10 m thick of the main body. The landslide deformation

was very slow before the Tangjia Mountain earthquake lake was formed. However, after the toe of

these deposits was submerged by the water, the shallow landslide moved quickly. The landslide

deposits have a steep (25°～45°) slope angle about 28 m high. The source of the deposits is largely240

composed of gravelly soils with highly weathered phyllite and slate (takes up 50-60%). Likewise,

these shallow landslides are known to occur both on the surface land and under the earthquake lake

water.

4.1.4 Integral sliding on bedding rock

Integral sliding on bedding rock generally occurs in loose rock deposit with a forward gentle laminar245

rock layer. The topography of this failure mode is characteristic by V-shaped or U-shaped valleys.

These slopes are composed of medium-to-sloping layered rocks. They may slide along the bedding

plane under the action of their own weight or load, or they may be deformation and failure caused by

external loads such as rainfall or earthquakes.



(a)

(b) (c)

Fig.7 Photography and schematic of slide in Fuqing town, Wangchang county, Sichuan province, China,2011.
250

An integral landslide is located in Fuqing town, Wangchang county, Sichuan Province. The landslide

was formed during the 2008 Wenchuan earthquake as well of which the tectonic crown cracks are

0.5-1.0 cm wide, 1-2 m long, or 0.5-0.8 cm wide, 2-3 m long. The landslide occurred after the

constant rain in July 2011, of which the deposit area is 1.36×104m2 and a total volume of 1.31×105m3.

The formation lithology in the landslide deposit primarily consists of sandstone of the Triassic system255

(T) and Quaternary residual slope alluvial soil(Q). The angle of bedding rock is steep (more than 35°),

and the main body is 9.6 m height on average, of which the main scarp is 8 in height. Remaining

unstable landslide height 8 m may slide suddenly in the future. According to field reconnaissance, the

velocity of this landslide is a 0.5 m/1 year, and the rainfall infiltration and becomes a weak surface

along the bedding limestone are the main failure factors (Fig.7).260

4.2 Rockfall

Rockfall is produced in steep slope deposits which under external forces, including gravity,

earthquake, weathering denudation or human activities. It is a single or compound movement with

sharp fall, caving, sliding, rolling, jumping, and other special forms, sometimes they hit each other in

the process of movement, then pile in the slope toe (Rens, 2008). Most of the rockfall sources are rock265

deposits with low shear strength and 2-3 groups of penetrating fractures. Whether or not rock fall

occurs depends on deposits steepness and deposit stability. Based on the rockfall travel velocity and

movement way, rockfall type can be split into the following three sub-types.

4.2.1 rockfall-slide

Xinmo catastrophic rockfall-sliding rock avalanche is the recent famous massive rock rockfall in270

Wenchuan earthquake area, causing 10 people died and 73 people missing. This massive deposits

located in Xinmo village, Diexi town, Mao County, Sichuan province. It may be originated from the

1993 Diexi 7.3 s earthquake that caused several cracks in the crown of the slope. Besides, after a long

period of weathering, rain erosion, and 2008 Wenchuan M8.0 s earthquake, the slops trailing edge

https://www.researchgate.net/scientific-contributions/49416873_Rens_van_Beek


fissure stretched downward and finally passed, and then the massive rock mass traveled more than 2275

km. The total volume of the rock mass deposits is about 4.5×106m3, about 210 m long and 300 widths,

and the fastest traveling velocity of the massive loose landslide deposits is about 74.6 m (Fig. 8) (Xu,

2017; Fang, 2017; Meng, 2018).

(c)

(d)

Fig.8 Photograph and schematic of massive rock rockfall in Xinmo village, Diexi Town, Sichuan, China,2017.
(a)photograph of rockfall deposits on 10 May 2017; (b) photograph of massive rockfall-slide deposits on 20 May
2018; (c) schematic of massive deposit before it’s failure; (d) schematic of massive after the failure.

Massive rockfall-sliding is one of the catastrophic disasters that pose threats to the people’s lives in280

the earthquake area. If the loose deposits consisted of densely structured rocks and joint fissure which

had an unstable effect on rocks extensive distributed, fractures would be formed through a plane.

Subsequently, under the action of multiple earthquakes and long-term gravity, the aging deformation

is generated. When the rainfall accumulates several months and overall the stability of the loose

deposits, the catastrophic landslide may be produced suddenly.285

4.2.2 Crack-slide rockfall

A crack-slide rockfall is a form of a steep slope, characterized by steep and vertical fractures on the

crown of the slope, occurring when loosely cemented material or rock layers move on a short distance

and dump at the toe of the slope (Tarbuck.1998). Though the surface of the slope displacement is

small, deep crown cracks had been formed by rain infiltrated, earthquake, or weathering (Fig.9).290

Moreover, the gravity of overburden deposits based on the weak layer increases in the process of

rainfall, thereby making deposits falls down gradually along a parallel surface. This deformation

mostly occurs in the consequent bedding landslide deposits.



(b)

(c)

Fig. 9 Aerial photograph and schematic of crack-slide rockfall in Jiguan mountain, Chongzhou City, Sichuan,
China,2018. (a)aerial photograph of Jiguan mountain; (b)schematic of loose deposit before failure;(c)
schematic of crack-slide rockfall.

Jiguan mountain crack-slide rockfall occurred on July 9, 2018, which is about 40 km south of the295

epicenter of 2008 Wenchuan earthquake. Fig.10 gives an aerial photograph of the rockfall. At the

crown of the rockfall, there were several vertical cracks about 2.5 m deep. The amount of the rockfall

deposits was about 250 m wide and 560 m long, with the total volume of about 3.8×106 m3. Most

materials of the deposit were primarily composed of silty sandstone and limestone that formed from

the Mesozoic era, the Triassic (T). In the area where the rockfall occurred, the artificial slope was 7.5300

m high with an over 70 degrees angle and covering considerable underlying rocks on the consequent

bedding sandstone layer.

4.2.3 Toppling rockfall

Toppling failure is one of the most common failure forms of rock deposit slope in the strong

earthquake area. The main failure mode of the toppling failure is bending and overturning, which is305

caused by bending stress. Toppling generally occurs in steep rocks with vertical joints. Moreover, the

soft rock and hard rock interlaced sedimentary rock often occurs toppling failure. When the lower soft

interlayer is weathered or eroded by rainfall, the upper loose accumulation body would be suspended,

falls, rebounds or rolls down under the action of gravity. Toppling rockfall is characterized by

breaking rocks and discontinuous structural cracks, usually triggered by earthquakes or human310

activities (e.g. hydropower stations building, highways building and other works)（Guo, 20l7). Besides,

effective inter-granular stress would decrease in deposit material due to the increase in internal



seepage pressure and the decrease in pore water pressure, thereby causing a rockfall.. This

deformation failure model can be defined as toppling rockfall.

315

(a)

(b)

Fig.10 Aerial photograph and schematic of toppling rockfall at Yinping，Mao county, Sichuan, China. (a)
aerial photograph at Yinping ;(b)schematic of toppling rockfall before failure;(c)schematic of toppling
rockfall after failure.

For instance, Yinping toppling rockfall was triggered by the 1933 Diexi Ms7.3 earthquake and the

2008 Wenchuan earthquake. This rockfall deposits formed from 1993 and blocked the Min river. The

geo-structure of this landslide dam is featured by the consequent bedding structure and steep cliff.

Because the rock has been falling for 85 years, the rockfall deposits are approximately 1000 m wide320

and 1500 m long, the rockfall rock traveling distance more than 1400 m (Huang, 2009). After the

2008 Wenchuan earthquake, the average thickness of the rockfall deposits were over 180 m, and the

total volume of were over 2.1×108 m3. Such loose deposits are mostly composed of Quaternary(Q),

Triassic metasandstone, crystalline limestone(T) (Fig.10).

4.3 Erosion325

Erosion often occurred in loose deposit body induced by rainfall or flow in the area with undulating

landscape. This mode of motion is usually a spatial continuous motion, and the deposit is carried away

by the current from high to low. These processes contributed to the formation of unstable rock and soil

masses in the surface of gullies during the different courses of geological erosion (J.Dvorak, 1994),

deformation and destruction, and finally the deposits moved with the grading movement of mud (sand)330

flow, which depends on the water content, mobility and movement evolution.



4.3.1 Scouring and lateral erosion

Scouring and lateral erosion have two main mechanisms: scouring and lateral erosion. River erosion is
the direct removal of soil particles by the current. The rate of scouring is determined by the impact of
the flow and the erosion resistance of the bank's loose deposit material. When the weight of the upper335
deposit is greater than the strength of the slip zone, the failure will occur subsequently, resulting in
lateral erosion. The process depends on many factors, including the particle composition of the slope
material, the water content and the coverage of the vegetation. These two erosion processes are
interrelated because the scouring at the bottom of the river bank produces steeper slopes or
overhanging clods that are more unstable and may be laterally eroded (Fig.11)340

(b)

(c)

Fig. 11 Schematic and photograph of Scouring and lateral erosion of loose deposits at Baihe Village,
Qingchuan county, Sichuan Province, China,2014. (a)photograph of scouring of Baihe Deposit;(b)schematic
of deposits before the failure;(c)schematic of deposits after the failure;

This type is primarily formed on the surface of loose deposits body, and usually, both sides of the

slope have U-shaped or V-shaped canyon. They will be strengthened if they occur on a hillside with

less vegetation or both sides of the gullies that have been lost vegetational by earthquake or mining

deforestation. Under heavy rain and extreme rainfall conditions, the upstream water continuously345

washed away the loose deposits, thereby caused the slopes on both sides of the valley to be washed

repeatedly, and the valley section gradually expanded and deepened, and finally causes the slope

failure (Fig. 11). For instance, the deposits of scouring and later near Baihe Village, Qiangchuan

county, Sichuan province, China, 2014, which destroyed 15 houses and caused 3 death, is underlain

sericite phyllite of the Silurian system(S). After thousands of years of erosion, the erosion efficiency350

determines the speed of the material in the rockfall process, so the erosion accelerated after the

Wenchuan earthquake.



4.3.2 Steam Bank erosion

It often occurred at the toe of the loose deposits, and it would be damaged and degraded by the stream,355

river and lake. Due to the scour, dredging and erosion of current, the upper part of the deposit is not

balanced, resulting in local downward cutting or rockfall of the deformation mode. This study has a

typical example for the stream bank erosion of the slope deposit in Soqiao village, Wenchuan County,

Sichuan province, China (Fig.12)(Yang，2012).

(b)

(c)

Fig.12 Schematic and photograph of bank erosion in Rope bridge/Soqiao village, Wenchuan county, Sichuan
Province, China,2014. (a)photograph of scouring of bank Deposit;(b) schematic of deposits before the
failure;(c)schematic of deposits after the failure.
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Streambank erosion in Suoqiao village located in the left bank of the Minjiang River, where belong to

middle mountain canyon landform. The deposit about 200 m wide and 220-250 m long, while the

main body area is approximately 3.88×104m2 and a total volume of 6.52×105m3. Most of the material

in the toe is gravelly soil, includes 10%～30% phyllite and limestone debris. The erosion movement

of the bank is slow in winter, but the loose deposits travel move faster in rain season. The Suoqiao365

deposits are unstable because of the bank erosion in the toe and it has a weak sliding surface.

Accordingly, it is speculated that landslides will occur in future heavy rain or earthquake conditions.



4.3.3 Debris flow cutting

Debris flow cutting typically occurred in a slope of loose deposit body with a slope up to 45 degrees,

usually initiated during heavy rainfall, which upstream materials driven by a rainstorm or debris flow.370

When the water accumulates rapidly in the upstream, a debris flow will form in the middle and lower

reaches, Subsequently rushed out of the channel, and cut the slope foot result in a steep air surface.

The existence of these loose materials on the slope and the development of heavy rainfall events are

the main reasons for the deformation and failure of these deposits (Xu, 2012).

(d)

(e)
Fig.13 Schematic and photograph of debris flows cutting in Wenjia gully, Qinping Town, Sichuan Province,
China,2010. (a)aerial photograph of Wenjiagou Deposits;(b) photograph in the upstream of debris flow
deposits;(c) photograph in the downstream of Wenjiagou debris flow deposits;(d) schematic of the deposits
before the failure;(c) schematic of deposits after the failure.

375

The famous debris flows cutting type is Wenjia gully which located in the north of Qinping town,

Mianzhu city, Sichuan province, China. The catastrophic deposits were formed by the 2008

Wenchuan earthquake and have been experienced several times of heavy rain and continuous rain.

From September 2008 to September 2011, six large-scale debris flows were formed, which seriously

endangers the safety of life and property of people downstream. The accumulation body has the380

relative height difference of 1.49 km, the ditch length of 4.9 km, and the overall slope dropped by 306

‰. The accumulation body shows three-level platform accumulation from the profile, with the upper

slope, middle and lower level. The trailing edge and the leading edge of the accumulation body of

Hanjiaping, the first-level platform, are both steep (the gradient is 673.8‰ and 644.4‰ respectively),

which significantly contributes to the formation of the catchment power accelerating the discharge.385

The slope falls of the secondary platform (1300 m) and the tertiary platform is relatively small (140.3

‰ and 322.5‰ , respectively), whereas the ditch is deep and narrow and the accumulation body



exhibits a large loose thickness, which makes it extremely easy for the erosion and erosion cutting

deformation and failure.

4.4 Flow390

4.4.1 Debris avalanche

The debris avalanche was originated from the collapsing material caused by the earthquake. Because

of the steep slope, scarce vegetation and extremely loose structure of the deposit, combined with

exterior geological force (e.g. aftershocks and human activities), debris flow material in a

superficial layer of loose deposit slipped downward with high speed, accompanied by the flow of dust395

and tumbling sounds of tumbling rocks.

(b)

(c)

Fig. 14 Photograph and schematic of debris avalanche at Mengjiacao, Mianzi town, Wenchuan, Sichuan, China.
(a)photograph at Mengjiacao; (b)schematic of toppling rockfall before failure; (c)schematic of toppling rockfall
after failure.

Since 2008, there are hundreds of debris avalanche induced by rainfall or aftershock in Wenchuan

earthquake area. The speed of the avalanche chute to the steep channel is usually more than 10 meters

per second, whereas some of the landslide flows are much faster. For instance, the Mengjiacao debris400

avalanche, located in Mianzi town where about 10 km south of Wenchuan county, Sichuan Province,

it is a typical avalanche flow in this area. Because of the consequent rockfall flow since 2008, the rock

or soil has been accumulated in the toe of the slope, and the total volume of this deposits was over 2.5

×106 m3. The material of this landslide-debris flows contains characteristic by the loose coarse and

fine particles that distributed in the different rockfall area. The velocity of this landslide-debris in the405

steep channels usually attain speeds over 12 m/s (Fig.14).



4.4.2 Debris flow

Though the number of the debris flow in Wenchuan earthquake area all deposits is a small

proportion(1.31%), it has aroused the huge attention from geologists and government because of its

fast movement, great harm, difficult prevention and control For instance, the Hongchun gully Debris410

flow occurred in near the Yinxiu town, Wenchuan county, Sichuan, in 14 August 2010, caused 17

people missing. The debris flow has battered the new 213 National Highway, blocked the Min river,

then wiped out Yinxiu town (Fig.15).

(c)

(d)

Fig. 15 Photograph and schematic of debris flow at Hongchun gully, Yinxiu town, Wenchuan, Sichuan, China.
(a) photograph at Hongchun gully in 2009; (b) image of Hongchun gully in 2018; (c)schematic of debris flow
before failure; (c) schematic of debris after failure.

Hongchun gully debris flow is one of the 72 debris flows near the Beichuan-Yinxiu Fault in August415

2010, which is characterized by the amount of loose deposits, the steep drop in the shape of gullies

and critical rainfall (Tang, 2009). The total volume of this debris flow is nearly 80.5×104 m3, all of

these loose materials of the debris flow are composed of granular soil (60%), Boulder (25%), rubble

(10%) and sand (5%). The channel catchment area covers 3.35 square kilometers, the main channel

length is 3.6 kilometers, and the average longitudinal slope of the channel reaches 35. 8%. The top of420

the slope is 2168.4 m asl, and the gully mouth of debris flow is 700 m asl. The debris flow materials

mainly come from three branches in the upper reach of the Hongchun gully, among which 52 are

landslide or rockfall deposits, and the total amount of the loose solid material is 3.57×106m3. Besides,



since the rainfall “8.14” debris flow in Hongcun gully was 16.4 mm per hour and total rainfall reach to

162.1 mm/34 hours before debris flow outbreak, the heavy rainfall is the inducing factor of debris425

flow outbreak (Gan, 2012).

5 Discussion

Previous studies suggested that different types of accumulation body have significantly different

deformation and destruction mechanism and failure modes (Zhang,2012; Cui, 2014; Huang,2015).

Controlled by various factors (e.g. rock and soil mass structure, geological structure, rainfall and430

geographical and geomorphology) of the study area, the accumulation body presents different

deformation and failure modes, and its movement type, speed, scale, geomorphology and landform,

failure modes,etc. are also different(Table 2).

Table 2 Table of characteristics of deformation and failure of loose deposits in Wenchaun earthquake area435
Failure type of landslide

deposits Topography Material Travel velocity Volume Triggering
mechanism

slide

reactivation of
old landslide

Mountain,
Hill,Talus

Gravel, Sand,
Clay, limestone

Various Small to Huge Rainfall, Earthquake,
Human activities

Slide on weak soil
or rocks

Mountain,
Hill

Weak rock,
Gravel,
sand,Silt

Slow Huge Rainfall, Earthquake,
Human activities

Shallow slide of
deep deposits

Mountain,
Hill or
Valley

Gravelly soils,
Weathered rock,

Slow to Ex.
Rapid

Small Earthquake,
Weather,Human

activities
Integral sliding on
bedding rock

Talus,
Mountain

Consolidated
Soils, Rocks

Slow Huge Earthquake, Rainfall,
Human activities

rockfall

rockfall-slide Mountain Rock, Soil Rapid Small to Huge Weathering,
Rainfall, Earthquake

Cracking sliding of
rock rockfall

Mountain,
Hill

Rock Slow to Ex.
Rapid

Small，Middle Weathering,
Rainfall, Earthquake

Toppling rockfall Steep Cliff Rock Rapid Small to Huge Weathering,
Rainfall, Earthquake

erosion

scouring and
lateral erosion of

deposits

Valley,Gully Loose Soil or
Slay, rock
deposits

Slow Small to Huge Rainfall, Weather,

Steam bank erosion Valley,
Gully,River

Soils, Sand, Silt Slow to Ex.
Rapid

Small to Huge Rainfall, Weather

debris flow cutting Valley,Gully Rock，Sand Ex. Rapid Middle，Huge Rainfall, Weather

flow
Debris avalanche Mountain Rock, Clay Slow to Rapid Small, Middle Earthquake,

Weather, Rainfall,

Debris flow Mountain,
Hill, Valley

Stone, Soil,
Sandy gravel

Ex. Rapid Middle, Huge Rainfall

It is worth noteworthy that topography is a factor significantly affecting the failure of landslide deposit.

It also determines the scale, the shape and the deformation and destruction mode of these

accumulation slopes. Macroscopic topography controls the development and distribution deposit body.

Slopes with different gradients, heights, shapes and vegetation significantly effect the disaster mode of440

landslide deposit.

Besides, there was not a clear relationship between the failure mode of the deposits and particle size to

be observed. Deposits are composed of fine particle soil (e.g. sandy soil, gravel soil and clay) that can



be occur sliding, erosion and debris flow. Deposits are composed of the medium and coarse particle

that can also occur such failure as long as there is sufficient rainfall. The precipitation process, rainfall445

and rainfall intensity significantly affect the formation of debris flow. This study suggests that the

continuous rainfall and rainstorm can lead to different failure modes through the same deposits with

the same particle size. Vegetation and its root system can weaken and protect the accumulations of

erosion from being eroded by rainwater. Investigation statistics reveal that deposit with

well-developed vegetation primarily formed slip type deformation and destruction, whereas it is450

unlikely to develop into erosion or rockfall. In contrast, rockfall or erosion deformation and

destruction often occur in places with poor development or underdeveloped vegetation in landslide

deposition.

Moreover, the formation of accumulation was controlled by geological structure. The closer the

distance to Longmen mountain seismic fracture zone, the greater the seismic force and the structure of455

accumulation became loose to form debris flow, which may likely be transformed into rockfall type

and erosion if landslide deposit produced in much closer to fracture zone. Investigation statistics

reveals that the failure of landslide deposit in Wenchuan earthquake area was primarily developed in

rock and rock-soil (e.g. granite, quartzite, dolomite and limestone). Integral sliding on bedding rock

mostly occurred in rock deposit which is composed of hard rock at the top and weak rock at the460

bottom. Deposits largely composed of rocks at the top with highly compacted density and weak

structural bedding surface, thereby inducing a slide on weak soil or rocks easily. Most giant landslide

deposits located in the steep slope near Longmen mountain fault belt, and it was extremely easy to

produce catastrophic landslide or debris flow.

6 Conclusion465

Previous classification studies on loose deposits were based primarily on material, velocity, water

content, geotechnical parameters, and other geological hazards, and the effects of topography,

landform, volume, and triggering mechanisms are generally not considered. This paper presented a

world-recognized classification improvement from the perspectives of topography, velocity, material,

volume and triggering mechanism of loose deposits in the strong earthquake area. Thus, the basis of470

this factors of this classification here is more comprehensive, especially suitable for the actual

classification of geological disasters in the meizoseismal, which help to lay a scientific basis for the

prevention and control of geological disasters.

According to the results of field investigation and statistical analysis, there were four main types and

12 subcategories of failure modes in loose deposits after 2008 Ms8.0 Wenchuan earthquake area,475

where are as follows: (1) Slide, covering the reactivation of old landslide, Slide on weak soil or rocks,

shallow sliding of deep deposits and integral sliding on bedding rock; (2) rockfall, including



rockfall-slide, cracking-sliding rock rockfall, topping soil rockfall and debris flow cutting; (3) Erosion,

e.g. scouring and lateral erosion, stream bank erosion; (4) Flow, e.g. debris avalanche and debris flow.

The investigation statistics on hotspots in Wenchuan earthquake area, Sichuan province, suggests that480

the failure mode of loose deposit was mostly of the slide, some of them may occur rockfall and

erosion, and the fewest of them will occur debris flow.

The category of failure modes in landslide deposits proposed here can serve as preliminary of hazard

& risk assessment. More reliable assessment should consider the geotechnical investigation method

and means under various conditions, and also rely on the accurate geological analysis of landslide485

deposit. These massive deposits are still highly likely to induce geological disasters under the effect of

rainfall, earthquake or human activities. Accordingly, the prediction and stability evaluation of the

deformation and damage of loose deposits formed by strong earthquakes remain a matter of great

concern.
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