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Abstract. This study aims at evaluating the performancedashfflood forecasts issued from deterministic andemble
meteorological prognostic systems. The hydro-metegical modeling chain includes the Weather Reagdeaand
Forecasting model (WRF) forcing the rainfall-runeffodel MARINE dedicated to flash flood. Two distirensemble
prediction systems accounting for (i) perturbediahiand lateral boundary conditions of the metémgizal state and (ii)
mesoscale model physical parameterizations, hage meplemented on the Agly catchment of the Eas®ymenees with
three sub-catchments exhibiting different rainfaiimes.

Different evaluations of the performance of theraydeteorological strategies have been performgde(ification of short-
range ensemble prediction systems and corresporstiegm flow forecasts, for a better understandihgow forecasts
behave, (ii) usual measures derived from a conticgéable approach, to test an alert thresholdedaece, and (iii) overall
evaluation of the hydro-meteorological chain usihg Continuous Rank Probability Score, for a gdnguantification of
the ensemble performances.

Results show that the overall discharge forecashigoved by both ensemble strategies with resfethe deterministic
forecast. Threshold exceedance detections for flemaching also benefit from large hydro-meteorolagjiensemble spread.
There are no substantial differences between bagkrable strategies on these test cases in terrhsobttie issuance of
flood warnings and the overall performances, suijugeshat both sources of external-scale uncegtang important to take

into account.

1 Introduction

Flash floods are among the most devastating nathaaards worldwide, producing important human aadics
economic losses. The Western Mediterranean regiannually affected by several extreme precipitagigents which lead
to flash flooding. During the extended warm seadba, early intrusion of upper-level cold air masaes the relatively

large sea surface temperature boost the convestaiable potential energy of the low-level Meditarean warm and moist
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air. This natural hazard results from the persistenf deep moist convection and intense precipitatver specific
hydrographic catchments during several hours. Aaym#estern Mediterranean small-to-medium sizedrrhasins are
highly urbanized, steep and close to the coastliheir hydrological responses are inherently shbarge, rapid and
unexpected flows exacerbate flood damage. The dpwent and evaluation of the state-of-the-art hyghteorological
forecasting tools is a major issue in the HydratabiCycle in the Mediterranean Experiment (HyMeXpbinski et al.
2014). This program aims at addressing the follgnéeience questions, amongst others: How can weoiwapheavy
rainfall process knowledge and prediction? Howwarimprove hydrological prediction?

Hydrometeorological forecasting tools can contebtat a better understanding and forecasting of fleods so as to
implement more reliable forecasting and warningtesys over the Western Mediterranean. Short-rangantdative
precipitation forecasts (QPFs) by high-resolutiomerical weather prediction (NWP) models are aacdtfie tool to further
extend flood forecasting lead-times beyond therbessponse times. NWP models capture the initiadioth evolution of
small-scale and convectively-driven precipitatiomgth similar spatial and temporal scales to thaslil flood-prone
catchments (Leoncini et al., 2013; Fiori et al.120Ravazanni et al. 2016; Amengual et al. 201Tthohgh QPFs can be
directly used to force one-way hydrological modéfee hydrometeorological forecasts are impactediffgrent types of
uncertainties. Uncertainties are inherent to eddhehydrometeorological chain components: modeameterization and
structure, limitations of measuring devices pravifbbservation data, initial and lateral boundamditions (Zappa et al.,
2010).

External-scale inaccuracies to the hydrological e®@merge from two distinct sources when forengsiieep moist
convection and heavy rainfall with NWP models. fiegrors arise from the complexity and nonlingadt the physical
parameterizations. Second, uncertainties emerge wdpresenting the exact initial atmospheric statet boundary forcing
across the scales where convection develops. HBable spatial and temporal QPF distributions ageessary to render
skilful quantitative discharge forecasts (QDFs) wiseping with floods over small and medium sizeifs@sOtherwise, the
issuance of precise and dependable early floodimgsris inhibited (Le Lay and Saulnier, 2007; Balthes et al., 2009;
Cloke et al., 2013).

To alleviate the impact of these external-scaleetminties, short-range ensemble prediction systSREPSSs) are
used to build hydrological ensemble predictionayst (HEPSs). SREPSs aim at sampling the set ddiplawoutcomes and
at accounting for the most relevant uncertaintieshie atmospheric forecasting process. Uncertaintiethe initial and
boundary fields can be encompassed by convenigettyurbing initial and lateral boundary conditiofh€/LBCs, Grimit
and Mass, 2007; Hsiao et al., 2013). Uncertairitiemodel parameterizations are coped by populatiegensemble with
multiple combinations of equally-skilful physicallemes (Stensrud et al., 2000; Jankov et al., 280&ngual et al., 2008;
Tapiador et al., 2012; Amengual et al., 2017). hodusion of these uncertainties aims at improwimg skill and spread of
the HEPSs by introducing independent informatioalbthe plausible atmospheric states and proce$sesefore, SREPSs
are increasingly used in hydrologic prediction ¢&and Pappenberger, 2009; Verkade et al., 2016ade et al., 2017,
Siddique and Mejia, 2017; Benninga et al., 2017|i&eet al., 2017; Edouard et al., 2018; Jain le2818; Bellier et al.,
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2018). Several studies have stated that probabifstecasts could improve decision-making if agprately handled (e.qg.
Krzysztofowicz, 2001; Todini, 2004; Ramos et al013; Antonetti et al, 2019). As stated by Zappalet(2011), each
member of a meteorological ensemble can be fedaititpdrological model to generate a hydrologicaé¢ast.

The objective of the present work is to evaluate phnedictive skill of two distinct HEPS generatistrategies —
accounting for perturbed IC/LBCs (PILB) and mixduaypics (MPS) — for three flash flood episodes daher Agly basin
(Fig. 1). This catchment of the Eastern Pyrenessbkean selected as an experimental area as ssubcatchments exhibit
different rainfall regimes. Given the small sizetbé subcatchments (from 150 km?2 to 300 km?2), trwallzation of the
precipitation patterns is crucial (Rossa et al.l@0and it's a real challenge to implement QPFs doch small
subcatchments. QPFs are generated by using theh@vdésearch and Forecasting model (WRF; Skamatoak, 2008).
Next, 48-h WRF forecasts are propagated down thirdlng MARINE hydrological model (Roux et al., 201a)investigate
the QDFs in timing and magnitude of these flastodea The resulting HEPSs are examined using diffecéteria to
illustrate the potential benefits of the probalitisiydrometeorological forecast chains. The réshe paper is structured as
follows: section 2 presents a short overview offtash floods, the study area and the observatioetlorks; sections 3 and
4 provide an insight into the hydrological and asptoeric models and the strategies for ensenpaberation results are

presented in section 5. The last section summanieds conclusions and provides further remarks.

2 Data and case studies

2.1 Overview of the Agly catchment

1600
1400
1200
1000
800 m
600
400
200

a) ?j’# ' b)

Figure 1: a) Location of the Agly catchment and ofhe meteorological radar (pink star: OPOUL RADAR, grey area: karstic areas
underlying the Agly catchment, from BDLISA v.2 https://bdlisa.eaufrance.fr/ accessed June 18, 2019).Digital terrain model of
the Agly catchment (Source: IGN; MNT BDALTI) . Also included the main tributaries (blue lines, sotce: IGN, BD CARTHAGE),

the discharge gaging stations (black dots) and thdam and the outlet (black stars).

This study focuses on a catchment in the north gidbe Eastern Pyrenees, the Agly, as a tesfaitienplementing
the HEPS strategies. The Agly is a coastal rivethennorth side of the Eastern Pyrenees (Figurdt dyiginates from an
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elevation of approximately 700 m and drains theeRges foothills. It flows into the Mediterraneara $¢ Barcares and has
a length of around 80 km. A dam dedicated to flewdi water management controls approximately 406 &hthe
catchment (Agence de lI'eau Rhone Méditerranée &€ @012). It is located just downstream of thefloence between the
Agly and one of its main right-hand tributariesg thésix River, draining an area of around 15¢ kRigure 1). The main
left-hand tributary, the Verdouble River drains ama of 300 ki located in a region of mid-mountains, culminating
between 400 and 500 meters of altitude (Figuréstanite and gneiss cover about 300?lahthe mountainous part of the
Agly catchment promoting runoff already facilitategt the steep slopes. North of the catchment, thibi€res massif is
dominated by limestones forming karstic networkd%8of the catchment is covered by natural vegetatiorest (45%),
shrubby vegetation (17%), maquis and scrubland §+6%hile 18% is used for agriculture, mainly viaegs.

The Agly catchment is subject to different climaggimes in connection with the distances from tha and the
mountainous reliefs: temperate oceanic in the parht valley, mountain in the south-west part akhditerranean
downstream. The rainfall regime varies from easwést with increasing annual cumulated precipitetiche mean annual
cumulated precipitations (1965-1996) range from @@ at Torreilles (East, Figure 1) up to 1174 mn®aint-Louis-et-
Parahou (West, Figure 1) (DIREN Languedoc-RousgiitEE-GINGER, 2008). Generally, the rainfall regins highly

variable with very intense precipitation eventgalh, winter and spring and very dry summers.

2.2 Available data

The precipitation measurements available on the Agtchment come from two different observatioretinorks:

- PLU: The operational hourly rain-gauge network flonod monitoring purposes and data provided byrdgonal
flood forecasting service, the Service de Prévisies Crues Méditerranée Ouest (SPCMO).

- JP1: 1 krfA quantitative hourly precipitation estimates ANTIRPE J+1 (ANalyse par spaTlaLisation hOraire des
PrEcipitations) that come from a merging of radatadand rain-gauges measurements (Laurantin, 2008;
Champeaux et al., 2009).

The hydrometric data were derived from the netwofloperational measurements at variable time sfelyslroFrance
databank, http://www.hydro.eaufrance.fr/). The atnegauges are located in 5 upstream stations fioemted by the dam
(Table 1 and Figure 1). Table 2 summarizes the rhgdrological features of the 5 stations. This gtwdll focus on 3
recent events started on 04 March 2013, 16 Nove2@&8 and 28 November 2014, being highly variablgb(e 3), with
rainfall lasting respectively 3 days for the spriegent and 4 days for the 2 fall events. The seteetvents have been
labelled with the start date and the duration devics: 20130304 _3d, 20131116 _4d and 20141128_4dhAlfloods feature
moderate specific peak discharges for flash-fldoghlighting the high infiltration rates associatiedthe karstic substrates.
Indeed, the runoff coefficient is always higher floe eastern part (station n°5, Table 3) thanHernwestern part: this is due
to the losses in the karstic systems for the westebcatchments (stations n°1 and 2). The rundfficient is even higher
than 1 for 20130304 _3d at station n°5. There idefitive explanation for that, but several po##ibs can be considered:
(i) the very high soil moisture at the beginningtioé event (65%, Table 3) which can contributeh® tunoff at the outlet
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via subsurface flows; (ii) a possible supply frolne tkarstic system (Figure 1); (iii) the uncertastin the discharge and
precipitation measurements. One event occurregring with an averagely moist soil (20130304_3dbl€a3), while the
other two occurred in autumn with dry soils aftee tsummery drought. The autumn episodes exhiby déferent
intensities: the specific peak discharges rangm 003 to 0.6n3s™*km™2 for 20131116_4d, and from 1 ton#s~'km™2

for 20141128 _4d. Concerning the mean of the maximaimfall intensity over the catchment, they rarigem: 8 to 14
mm. h™! according to PLU and from 9 to ¥dm.h™! according to JP1 for 20131116 _4d; 19 ton8. h~taccording to
PLU and from 15 to 2tam. h~*according to JP1 for 20141128 4d (Table 3). 2018144 is therefore much more intense
than 20131116_4d according to both observed foscengen if JP1 forcing presents lower intensitigsl 30304 3d is in
between both episodes, with specific peak disclsargaging from 0.6 to 1m3s~'km™2, but lower rainfall intensities,
ranging from 7 to 1dmm.h !'according to PLU and from 6 to Ifhm.h !'according to JP1. These episodes are
representative of the different seasonal rainfaflimes that lead to floods over the Agly. In sprifigods are mainly
originated from stratiform type rainfall with mo@dée but persistent precipitation rates that camlrda substantial

accumulations. In autumn, floods are most likelivelm by convective type precipitations of shorteration but high

intensity.

Station River Area (k) | T. (h)
n°1l Ansignan Désix 157 9
n°2 St-Paul-de-Fenouillet Agly 216 10
n°3 Padern Verdouble 161 8
n°4 Vingrau Verdouble 301 11
n°5 Tautavel Verdouble 305 12
Rivesaltes Agly 1053 23

Table 1: Characteristics of the 5 subcatchments anthe whole catchment. The time of concentration isstimated using Bransby
Williams formula (Eq. 3).

Station Period QIX2 (fsh) QMEV (n’s™) TMEV

n°1 1994-2018] 85.0[57.00;120.0] 201 15/03/2011
n°2 1971-2018] 87.0[77.00;99.00] 483 26/09/1992
n°3 2006-2018 - 281 30/11/201}4
n°4 2010-2018 - 525 30/11/20144
n°5 1967-2018] 170.0 [140.0;200.0] 922 13/11/1999

Table 2: Hydrological statistics of the 5 catchmest (From HydroFrance databank, http://www.hydro.eaufance.fr/). QIX2: 2-year
return period of maximum instantaneous discharge ad confidence interval 95%, QMEV: known maximum instntaneous
discharge, TMEV: Date of QMEV.
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PLU JP1
Event Station Cumulated B Max | Cumulated P | Max | Q3 Qg|5 Ty C Hini
(mm) (mm/h) (mm) (mm/h) | (m3s™Y) | (m3s-1km-2) | (dd hhimm) (%)
20130304_3d n°l 186 + 19 [226] 7.4 167 +30[208] .4 6 137 0.87 06 06:35 0.1 480
n°2 183 + 37 [215] 6.9 160 + 25 [217] 5.8 137 0.63 06 09:40 0.12] 513
n°s 181 + 28 [218] 11.2 192 + 26 [294] 11.4 459 501. 06 12:24 1.0 65+
Outlet | 179 + 40 [226] 8.5 178 + 30 [294] 8.6 970 9D - - 567
20131116_4d n°l 227 £ 11 [303] 13.1] 208 + 18 [242] 10.9 47 0.30 18 05:10 00p 35=[
n°2 275 + 26 [303] 14.1 212 + 24 [269] 8.8 131 10.6 18 01:58 0.05 424
n°5 | 181+ 37 [241] 8.0 183+17[230]  10.6 109 0.3 1806:13 | 0.21 55%3
Outlet | 208 + 49 [303] 9.9 194 + 25 [285%] 9.6 260 .29 - - 45+8
20141128 4d  n°1 | 311+12[318] 30.4 284 +40[3p1] 25.0 251 1.60 301456 | 0.4 36zxp
n°2 286 * 28 [312] 18.8 261 £ 41 [357] 15.1 215 990. 29 22:28 0.07 404
n°5 222 + 37 [264] 20.9 234 + 36 [356] 20.7 606 991. 30 07:45 0.677 58+5
Outlet | 269+61[392] 145 | 257+54[492] 124 978 0.93 B - [ 48=+10

Table 3: Main features of the selected flash floodvents. Observed forcing PLU: network of 19 rain-gages, observed forcing JP1: 1 kfquantitative
precipitation estimates, Cumulated P (mm): mean +tandard deviation [max] accumulated precipitation o the catchment during the whole event, Max

I (mm/h): mean of the maximal rainfall intensity over the catchment,Q; (m3/s): peak discharge for the eventh”, (m3/s/km2): ratio of the peak
s

5 discharge for the event to the drainage area of theubcatchment,Ty (dd hh: mm): date of the peak discharge(, (-): observed runoff coefficient, ratio

of the amount of runoff through the outlet to the anount of rainfall on the catchment,H;,; (%): mean + standard deviation initial soil moisture
according to SIM daily root-zone humidity output (Habets et al., 2008).
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Figure 2 shows the spatial repartition of the cuativé rainfall for the three events for both foigsn The rain gauges data

have been interpolated using the Thiessen polygetihads (Thiessen, 1911). According to the locatbmain gauges,

polygons are formed by the perpendicular biseaibibe lines joining nearby gauges. This leads toa@ in which rainfall

is constant within polygon surrounding each galggiability in rainfall clearly emerges especialhgtween the eastern,
5 western and mountainous part.

20130304_3d JP1

Bouisse  20130304_3d PLU
[V
500 500
350 350
300 300
250 250
200 200
150 y ; 150
igg g e “‘_ - . Vingrau, i 125 =
75 !I’aul_de_Fenouillet lautavel %go g
—
Rivesalte: 50 - I 50
: 25 |
10 o Ansignan 1 25
5 ’ Dam. 10
Belgignan®, 0 “ S5
Mosset StFeliudamont, 1 A 0
Vinca
Bouisse  20131116_4d PLU
500
350 350
300 300
250 / 250
200 Padern, 200
150 ) . 150
125 = Vingrauy, 125 =
100 £ Tautavel | 100 =
75 ? 75
50 | | 50
25 35
10 E 10
o 5
Mosset StFeliudamont, 16°KM" " 0 0
Vinca
Bouisse 20141128_4d PLU 20141128_4d JPl
~"
Vingrau,
Tautavel
AnsSignan
- Dam
L ]
Mosset StFeliudamont, 15epxriﬁnanl1

Vinca

10 Figure 2: Spatial variability of the cumulative rainfall for event 20130304_3d (top), 20131116 _4d (ndie¢) and 20141128 4d
(bottom), according to the observations: PLU (leftthe operational hourly rain-gauge network and JP1(right) 1 km? merging of
radar data and rain-gauges measurements.
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3 Hydrological tool
3.1 Rainfall-runoff model

The MARINE model is a distributed mechanistic hydgical model specially developed for flash floadhslations. It
models the main physical processes in flash flapdinfiltration, overland flow, lateral flows in 8and channel routing.

Conversely, it does not incorporate low-rate flawgesses such as evapotranspiration or base flow.

Distributed input data

Rainfall Soil survey D.E.M. Vegetation and land use
Initial soil
water content  jyqraylic conductivity Hillslope Surface roughness
Saturated water content Flow pathway
Soil suction Drainage network
SIRGIGERS
WATERSHED
% ! i
- Surface runoff*—» Overland flow* v
A — Drainage network flow*
—— Infiltration*. .. . . . . »Subsurface flow*
VERTICAL LATERAL
FLUXES TRANSFERS
*Distributed ouput variables Output hydrographs

Figure 3: Structure of the MARINE model.

MARINE is structured into three main modules tha aun for each catchment grid cell (Figure 3). Tire module allows
the separation of surface runoff and infiltraticging the Green-Ampt model (Green and Ampt, 191he $econd module
represents subsurface downbhill flow, based on #wemlised Darcy law used in the TOPMODEL hydrataimodel
(Beven and Kirby, 1979). Lastly, the third moduémresents overland and channel flows. Rainfall &xd transferred to
the catchment outlet using the Saint-Venant egnat&implified with kinematic wave assumptions (Ere&992). The
model distinguishes grid cells with a drainage mekw-where channel flow is calculated on a triaagwhannel section
(Maubourguet et al., 2007) — from grid cells onghilpes, where overland flow is calculated for éiméire surface area of the
cell. For more details about the MARINE model, thaders can refer to Roux et al. (2011), Garaméba. (2015b) or
Douinot et al. (2018).

The MARINE model works with distributed input dagach as: (i) a digital elevation model (DEM) of tt@&tchment to
shape the flow pathway and distinguish hillslopksdeom drainage network cells, according to aind area threshold; (ii)
soil survey data to initialize the hydraulic andrage properties of the soil, which are used aarpaters in the infiltration
and lateral flow models; (iii) vegetation and lamsk data to configure the surface roughness paeasneted in the overland
flow model. As the MARINE model is event-basednitist be initialized to take into account the presgiooisture state of
the catchment. This is done by using the spatidy daot-zone humidity outputs (resolution = 8 kmk8) from Météo-

France’s SIM operational chain (Habets et al., 2008
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3.2 Calibration/Validation on the Agly catchment

MARINE requires parameter calibration so as to eagly reproduce hydrological behaviours. Based poavious

sensitivity analyses by Garambois et al. (2013) fparameters are calibrated: soil depththe transmissivity used in
lateral subsurface flow modellir@, hydraulic conductivity at saturatidh,, and friction coefficients for low and high-
water channelsy;, andny, respectivelyCy, Cx andC, are the multiplier coefficients for spatialisedtigated hydraulic
conductivities and soil depths. Note thatandn, are kept invariant throughout the drainage netw®he calibration of the
Agly catchment at the Saint-Paul-de-Fenouilletista{n°2, Table 1 and Figure 1) were performed aragnbois et al.

(2015a) according to their proposed methodologye @Vvents used for this calibration are older tihansé considered in the
present study (20020411, 20031204, 20040221, 24120101010, 20110315, see Garambois et al., 20Tha cost

function Ly, is designed to evaluate the performance of theein@bux et al., 2011; Garambois et al., 2015a):

1 1 |QS_QD| 1 |TS_TO|
LNP=§LN+§<1—%)+—(1—u), @)

i 3 T,

whereQ, andQy are respectively the simulated and observed paakff; 7,7 andT,y are the simulated and observed time to
peak, and? is the time of concentration of the catchmeéntdenotes the efficiency coefficient (Nash and $i¢l1970):
n s_p»0)\2
=1— Yiz1(Qf Q'l)z , )
i, (e?-e°)
wheren is the number of observation data, #fdandQ° are the simulated and the observed runoff. Theattd times of

concentration of each subcatchment are given iteThhusing Bransby Williams formula (Pilgrim andr@ery, 1992):
T, = 14.6LA™%15702 3)

whereT, [min] is the time of concentratioh, [km] is the total length of channel,[km?] is the drainage basin area,
S [m/m] is the average slope. Note that the range of sdiarebothL,, andL, spans from-o to 1, one being the perfect

score.

Table 4 lists thd., andLy, efficiencies for the validation cases: the 3 stddévents with different forcings and 2 older
flash flood events with available data, only usedthie validation process of the hydrological motek not further studied.
Table 4 and Figure 4 show that:

- Only one event (20130304 _3d with PLU forcing) idlwemulated at the 5 gauging stations,

- Only one event (20130304_3d with both PLU and 3rdirigs) is well simulated at mountainous statidh, n

- All the other events are correctly simulated onty & part of the catchment: either the eastern peat the
Mediterranean Sea (stations n°3, n°4 and n°5heisbuth-west mountainous part (station n°1), ernbrth-west

continental part (station n°2).
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Event forcing n°l n°2 n°3 n°4 n°5
19920926_PLU - 0.920.93 - -

20090411 _PLU <0(<0) | 0.500.12) <0(<0) - <0(<0)
20130304_3d_PLU| 0.780.80 | 0.61(0.72 | 0.610.43) | 0.670.60 | 0.700.61)
20130304_3d _JP1] 0.740.73 | <0(0.34) | 0.6710.52 | 0.770.66 | 0.7890.69
20131116_4d _PLU <0(<0) | 0.640.41) | 0.06(<0) <0(<0) 0.38(<0)
20131116_4d _JP1 <0(<0) <0(0.36) <0(<0 <0(<Q) (e22)
20141128_4d _PLU <0(<0) 0.11(<0) 0.650.16) | 0.670.47) | 0.790.6])
20141128_4d _JP1 <0(<0)| 0.680.64 | 0.780.73 | 0.81(0.74 | 0.890.8))

Table 4: Lyp(Ly) efficiencies for each station (see numbering Tablg) and for each validation events, PLU: forcing vth the
network of 19 raingages, JP1: forcing with 1 krfi quantitative precipitation estimates. Bold valuesndicate efficiencies above 0.5.

As expected, the different parts of the catchmethibit various behaviours which are difficult toroectly simulate
with a single calibration by just using observasiaat the station n°2. On one hand, events withivelsg moderate peak
discharge are usually not correctly simulated by RMME whatever the observed forcing, as is the cakehe
20090411 PLU and 20131116_4d events. Indeed, deudieors have pointed out that specific peak disgbs larger than
0.5m3s 'km~2 are one of the relevant criteria to define a flélslod (Braud et al., 2014; Gaume et al. 2009). The
20090411 PLU and 20131116 4d events exhibit smp#lak discharges (Table 3), except for the 201314d @pisode at
station n°2, where the results are correct forhe forcing (Figure 4). When the simulated hydrqdraare suitable for the
eastern Agly, the discharge is overestimated olerwestern part (e.g. 20141128_4d; Figure 4). Quelye when the
simulated hydrographs are correct over the wegtgiy, the peak discharges are underestimated iealséern part as in the
20130304 _3d episode. Difficulties in correctly slating the hydrological responses over all the attfuments arise due to
the important losses associated to the karstidergsystem across the Agly basin (Figure 1). Karstibstrates enhance the
non-linear rainfall-runoff transformation, leaditma myriad of runoff responses that are difficaliencompass with single
parameterizations of the infiltration process indfojogical models that do not take explicitly ind@count the karst
(Amengual et al., 2017).

With respect to the two major 20130304_3d and 202814d events, both simulated with the two obseffeecing,
simulations are more satisfactory with the 1’kyuantitative precipitation estimates ANTILOPE Jof the eastern than for
the western part. This may be due to the fact tiratradar is located close to the sea, being tlaenbeorographically
sheltered over the western Agly (Figure 1). Sevetiaér calibration tests could have been carrigdsolas to improve the
results of the hydrological model such as one catibn for each sub-catchment. However, the manmpgse of this study
focuses on the potential of ensemble strategiespoove flash flood forecasting. Furthermore, NWBd®l driven runoff

simulations have been compared both against theredd discharges and against the observed rairegand radar
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precipitation driven runoff runs. Hence, the impafithe external-scale uncertainties on the qualitthe distinct HEPS can

be emphasized.
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Figure 4 : Hyetogram and hydrogram at station n°1 @ft), n°2 (center) and n°5 (right) for three eventsPLU: forcing with the
network of 19 raingages, JP1: forcing with 1 krf quantitative precipitation estimates, Qobs: obserwd discharge at the station, Q
PLU: simulated discharge with PLU forcing, Q JP1: smulated discharge with JP1 forcing.

4  Meteorological tools

The fully compressible and non-hydrostatic WRF nhddes been employed to generate the ensemble meniier
WRF set-up consists of a single computational dancaimpletely spanning the Western Mediterraneaiomnegt 2.5 km
spatial horizontal resolution (i.e. 767 x 575 gpigints) and 50 vertical levels (Figure 5). Deepshoonvection is explicitly

solved due to the high-spatial resolution. All #resemble experiments have a temporal forecastirigamoof 48-h, starting
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at 00 UTC on the day before of the main observexk ffleods. Starting on this day warranties a suétddsad-time to issue
warnings to local water management services. Fesetthydrometeorological episodes lasting more 2hdays, successive
consecutive 48-h simulations have been performtadjrgy on the next days at 00 UTC. Hence, théaithith and subsequent
evolution of the most active precipitation systeand the overall rainfall episodes are completeboempassed.

WRF simulations have been forced by using the dl&esemble Prediction System of the European Cefoire
Medium Range Weather Forecasts (ECMWF-EPS). The MR&mble has been built by using the referenee (i.
unperturbed) run, while the PILB approach has ad®rsid a selected set of the overall ECMWF-EPS pdipul. Finally, the
hourly QPFs are used to force one-way the MARINElIelgo as to build the HEPSs. In addition, the rdatdstic ECMWF
forecasts have been also dynamically downscaledssto have a control baseline for comparative mepagainst the
ensemble strategies.

Deterministic simulations have used the followingygical parameterizations: the WRF single momermiaés
microphysics scheme, including graupel (WSM6; Hand Lim 2006); the 1.5-order Mellor—Yamada—Jahpundary layer
scheme (MYJ; Janjj 1994); the Dudhia short-wave scheme (Dudhia, 1988 RRTM longwave scheme (Mlawer et al.,
1997); the unified Noah land surface model (Tewaral. 2004); and the Eta similarity surface-lagerdel (Janjt, 1994).
Note that the WRF configuration for the control slations is the same as the daily operational patin by the research
Meteorology Group at the University of the Baledslands (http://meteo.uib.es/wrf).
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Figure 5 : Configuration of the computational doman used for the WRF numerical simulations.

12



10

15

20

25

30

https://doi.org/10.5194/nhess-2019-232
Preprint. Discussion started: 2 September 2019
(© Author(s) 2019. CC BY 4.0 License.

4.1 PILB ensemble

The operational ECMWF-EPS is formed by 51 membéhe reference and 50 perturbed forecasts— at Tig@&rsl
resolution (20 km) and aims to cope with uncertamtelated to the actual state of the atmospfdre.daily synoptic-scale
uncertainties are encompassed by perturbing arlimihalysis through the flow-dependent singulactees technique
(Buizza and Palmer, 1995; Molteni et al., 1996)e TRILB ensemble is based on dynamically downscathese 20
ECMWF-EPS members exhibiting maximum IC/LBC peraiitns over the WRF domain. This strategy seelsrteliorate
the mismatch between the synoptic-scale error ¢graptimization time for the singular vectors and gub-synoptic error
growth, more relevant for short-range forecastsnadll- and medium-sized basins (Ravazzani et @L62Amengual et al.
2017).

At this aim, a k-means clustering algorithm usihg Principal Components of the 500 hPa geopotemidl850 hPa
temperature fields is applied to the entire ECMWHSSEover the WRF numerical domain. Then, the 50rebkemembers
are categorized in 20 clusters and the 20 closesibars to the centroids are used as initial anddeny fields for the PILB
ensemble. Boundary fields are updated every 3 hpagdical schemes remain invariant for all the erfilde members and

are the same that these used to run the deterimWRF simulations.

4.2  Mixed-physics (MPS) ensemble

There is not an optimum set of physical numericalameterizations when simulating severe weatheriateshse
precipitation events. Several studies have showh different combinations of physical parameteriweg render similar
performances (Jankov et al., 2005; Evans et all2P(That is, the meteorological variables are itigasto a myriad of
processes which are differently parameterized Ipaloke numerical schemes. When simulating flashdilugp driven by
convective-type precipitation, cumulus parametéiors are the main candidates for direct uncetasaimpling. However,
as convection is explicitly resolved, uncertaingesing from the microphysical sub-grid procesaed planetary boundary
layer (PBL) schemes have been encompassed. Therfoegulates the distinct forms of rainfall, thédaaccounts for the
turbulent vertical fluxes of heat, momentum and snoe within the PBL and throughout the atmosphBrh physical
mechanisms are also dominant when controlling deejst convection. The MPS ensemble has been gedetat

combining the following 5 microphysical and 4 boanglayer schemes, summing up to 20 members:

- Microphysical schemes: (i) WRF single-moment 6-€l88/SM6; Hong and Lim, 2006); (ii) Goddard (Taoakt
1989); (iii) New Thompson (Thompson et al., 200&)d (iv, v) National Severe Storm Laboratory (NS8A)-
moment (Mansell et al., 2010) with two cloud corstion nuclei (CCN) prediction values of 0.5 40d 1.0-19
cm®,

- PBL schemes: (i) Yonsei University (YSU; Hong et aD06); (ii) Mellor-Yamada-Janjic (MYJ; Janjic994); (iii)
Mellor—Yamada—Nakanishi—Niino level 2.5 (MYNN; Nalshi and Niino, 2006)), and (iv) Total Energy—Mass
Flux (TEMF; Angevine et al., 2010).
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On one hand, all microphysics schemes involve tineulation of explicitly resolved liquid water, clduand
precipitation, and include mixed-phase transforomi (i.e. the interaction of ice and liquid wateljowever, each
microphysical parameterization treats differentig tnteraction among five or six moisture specigs {vater vapour, cloud
water, rain, cloud ice, snow and graupel); the aygrocesses of rain production, fall and evapona the cloud water
accretion and auto-conversion; condensation; angdateon adjustment and ice sedimentation. The @edtlediterranean
is affected by air masses of distinct signatuee Gaharan, Atlantic, purely Mediterranean or camtal central European),
featuring a high variability of aerosol concentatithat influence the moist physical mechanisms iFtlusion of two
different CCN concentrations copes with uncertatin the aerosol characteristics. On the othedht#ive choice of
different PBL schemes can be crucial when corregitiyulating the onset of mesoscale severe weathemgmena. PBL
modulates the temperature and moisture profilethénlower troposphere and the effects of turbuleincéhe daytime
convective conditions (Hu et al. 2010; Coniglioaét2013). Finally, it is worth noting that the tial and lateral boundary
conditions are kept invariant through all the MR&emble members. IC/LBC come from the ECMWF-EP &regice

forecast for each individual case study and lateoaihdary conditions are updated every 3 h.

5 Results and discussion
5.1 Verification of the SREPS

The quantitative comparison of the spatial 48-huaudated precipitations for the PILB and MPS expents
against the radar estimates provides a qualityolatbf the ensemble performance for the selectésbdes over the study
region. Figure 6, Figure 7 and Figure 8 indicatalisdc spatial distributions for all the study eas high rainfall
accumulations in the upper tail distributions ottbensemble strategies are a good indication ofptitential for heavy
rainfall. The regional roughed topography (i.ee fire-Pyrenees, Pyrenees and the Massif Centrdbtésminant to place
and focus the Probabilistic Quantitative Preciptat-orecasts (PQPF). Both approaches could sudoeéssuing warning
alerts before flash flood scenarios in the regidawever, SREPS reliability must be previously cletlat basin scales.
Flash flood forecasting over a single medium-sizea challenging issue as many small-scale atmogptaetors concur in
determining the location of deep convection andrigé precipitation. A crucial feature in determinaorrectly the location
of the rainfall amounts is to accurately simuldie $outh to north easterly low-level moisture nraitflows impinging over

the mountainous slopes of the Agly basin.
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Figure 6 : Spatial distributions of the 48-h rainfdl amounts for the March 2013 episode according to(a) radar JP1, (b) MPS

percentile 90 and (c) PILB percentile 90, startingpn 4th 00 UTC, and; (d) radar JP1, (e) MPS perceng 90 and (f) PILB percentile
5 90, starting on 5th 00 UTC. The Agly basin is higlghted.

15



https://doi.org/10.5194/nhess-2019-232 Natural Hazards ¢
Preprint. Discussion started: 2 September 2019 and Earth System 3 EG U
(© Author(s) 2019. CC BY 4.0 License. Sciences é
Discussions )
@ 350300250200150125100 75 50 25 10 5 O ®) 350300250200150125100 75 50 25 10 5 0O © 350300250200150125100 75 50 25 10 5 O

mm

2 25 275

350300250200150125100 75 50 25 10 5 O O 350300250200150125100 75 50 25 10 5 O

M=

| 428
42,6
F . | 424
2 225 25 275 175 2 225 25 275 3 . 2 225 25 275 3
h i
350300250200150125100 75 50 25 10 5 O ( ) 350300250200150125100 75 50 25 10 5 O 350300250200150125100 75 50 25 10 5 O

2 225 25 275 . 225 25 275 3 . 2 225 25 275 3
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Figure 8 : Spatial distributions of the 48-h rainfdl amounts for the November 2014 episode according: (a) radar JP1, (b) MPS
percentile 90 and (c) PILB percentile 90, startingon 28th 00 UTC; and (d) radar JP1, (e) MPS percerig# 90 and (f) PILB
percentile 90, starting on 29th 00 UTC. The Agly bsin is highlighted.

48-h rain-gauge (PLU) and radar-derived (JP1) adirdmounts have been used to evaluate the foregast
ensemble skill at the relevant hydrological scalesthis end, the cumulative ensemble QPFs have imterpolated to all
the available rain-gauges and to the radar pixeledch study case (Akima, 1978 and 1996; Figur&6st members of the
PILB and MPS ensembles exhibit underestimations tfeg 04-05/03/2013 and 28-29/11/2014 experimentsilew
overestimations for the 16-18/11/2013 simulatidsth strategies do not present remarkable diffagric ensemble skill
and spread when forecasting the total rainfall am®Figure 10). Root mean squared errors (RMSH)canmrelations (r)
are quite similar, indicating a slightly more aaer performance of the MPS or PILB ensemble styatiegpending on the

case study and the starting day of the experiment.
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Figure 9 : 48-h rainfall amounts according to the ain-gauge (PLU, left) and radar-derived (JP1, righ} observations and the PILB
and MPS experiments. Boxes denote the p25 and p#&darquartile ranges, middle horizontal lines show lhe ensemble median and
whiskers display the best and the worst ensemble mmbers. Note that the PILB and MPS ensemble experimés start on the day

indicated in the upper part of each subpanel.
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In addition, the skill of each ensemble strategyiiadicting the probability for different accumutats —ranging
from light to torrential rainfalls— has been asseslsy means of the ROC curves. The ROC curve esgsabe true hit rate
of a probabilistic forecast at different false alarates, while the area under the ROC curve (AU@ntjfies the ability of
the ensemble to discriminate between the occurrencen-occurrence of an event (Schwartz et allLOPOROC curves
have been computed by using all the study caseshenchdar-derived (JP1) rainfall accumulationsehbgen employed as
the observed baseline. The following 48-h accuredigirecipitation thresholds have been consideretio 515, 25, 50, 75,
100, 125, 150 and 200 mm. As the forecast proliesilare computed and verified against each ratet, ghe statistical
sample sums up to 54145 members (7735 radar gidspiames 7 ensemble experiments).

Probabilistic QPFs from the PILB approach showghsly higher forecasting skills than MPS for snmainfall
accumulations (i.es 15 mm; Table 5 and Figure 11). Even so, the AU@sahove 0.85 for both ensemble strategies. For
moderate to high rainfall thresholds (25-75 mm),BPand MPS are almost statistically indistinguislealvith AUCs well
above 0.7. Depending on the precipitation limit, 318r PILB features a slightly higher probabilisiicecasting skill. At
greater thresholds>(100 mm), PILB shows a larger discrimination abjlitvith areas slighter higher than 0.7 for all the
cases, except the most extreme precipitation aclation. On the other hand, MPS renders values d¢mbeit below 0.7. In
general, both strategies exhibit an elevate qualitthe probabilistic forecasts for low to moderaganfall accumulations.
Remarkably, the discrimination ability of the Plidirategy is maintained up to 150 mm. This resuibfgoout to a more
effective encompassing of uncertainties emergirgnfrthe IC/LBCs than from the microphysical and PBhysical
inaccuracies likely due to the dominant role of tbgional complex orography when controlling raihfacation. However,
the high AUCs rendered by both ensemble strategiggest to account for both sources of uncertaatgs to obtain high-
quality PQPFs.

Precipitation threshold (mm) ROC areas
MPS PILB

5 0.855 (0.8460.864) 0.917 (0.91D.922)
10 0.888 (0.8810.894) 0.913 (0.909.917)
15 0.852 (0.8460.859) 0.877 (0.87:0.881)
25 0.833 (0.8280.839) 0.842 (0.839.847)
50 0.785 (0.7800.790) 0.771 (0.76®.776)
75 0.741 (0.7350.746) 0.741 (0.738.747)
100 0.699 (0.6940.705) 0.721 (0.71%.726)
125 0.690 (0.6840.695) 0.717 (0.71D.722)
150 0.691 (0.6850.697) 0.716 (0.71®.721)
200 0.638 (0.6300.647) 0.689 (0.682.696)

Table 5 : Areas under the ROC curves for the MPS ahPILB ensemble strategies. Associated uncertainty each score (between
brackets) is expressed as the 95% percentile confidce intervals, calculated by using a 10000-samgieotstrap.
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Figure 11 : ROC curves of the MPS and PILB ensemblstrategies. The embedded figures display the shawmpss diagrams
containing the number of forecasts used in each pbability bin and the total number of observations onsidered.

5.2  Verification of stream flow forecasts

As mentioned by Bellier et al. (2017), the visuapection of individual hydrographs is useful fdvedter understanding of
how forecasts behave. The hydrological simulatiwege been forced by the 48-h meteorological sirarat resulting in 7
hydro-meteorological simulations each lasting 2sjayarting respectively on th& and %' of March 2013 (20130304_2d
and 20130305_2d), 617" and 1§ of November 2013 (20131116_2d, 2013117_2d and 208 2d), 28 and 29" of
November 2014 (20141128 2d and 20141129 2d) atTO. Bigure 12 shows the hydrographs at three sstfn°l, n°2
and n°5) of the 20130305 _2d, 20131117 _2d and 2@342d experiments and for the all 48-h performetuitions with:
observed forcing (PLU and JP1), deterministic (WBR) ensemble forecast MPS. Results are very sifoil&@ILB-HEPS.
The median and the $Gnd 98 quantiles of each ensemble strategy, as wellagirst level alert from the flood warning
center in France (SCHAPI), are also shown as reée® In general, the WRF deterministic driven bialyical forecasts
often miss the peak times for all the hydromettatisns (Figure 12). The HEPS improves this feataven if biases in the
EPS still remain as are propagated down to thedhydical model. That is, the MPS-HEPS and PILB-HERSBIbit slight
underestimations (overestimations) for the 20130205and 20141129 2d (20131117_2d) simulations.observed peak
time is included in the boxplots (minimum and maximof all of the data) of the ensemble strategogstie 5 stations,
whereas it is not included in the boxplot for thetegtministic simulations at stations n°1, 2 and 3 &an be seen in Figure
13 for stations n°1 and n°5. It can also be apptedithat the peak timing delay is usually negativéependently of the

experimental set-up. Almost all the hydro-meteogalal simulations result in earlier peak timingartobserved.
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Figure 12: MPS-HEPS hydrograms at station n°1 (left) n°2 (center) and n°5 (right) for the 20130305_2diraulation (top),
20131117_2d simulation (middle), 20141129 _2d simtitan (bottom). Note that Q50 is the ensemble mediaiQ10 denotes the 10th
ensemble quantile, Q90 labels the 90th ensemble auti¢e, Qobs is the observed discharge, WRF is the RF deterministic driven

discharge experiment, PLU is the PLU driven runoffsimulation, and JP1 denotes the JP1 driven dischaegsimulation. Alert 1
corresponds to the first alert level.
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Figure 13: Delay of simulated peak time for the 7imulations at stations n°1 a) and n°5 b) for simulatins with JP1 forcing, PLU
forcing, WRF deterministic forcing and ensemble stategies forcings (MPS and PILB). The boxplot preses five sample statistics:
the minimum, the lower quartile, the median, the uper quartile and the maximum.

The peak plot approach has been adopted to beiee@ate the value of the ensemble strategietheknsemble members
are joined in a single plot by calculating the @ain from the observed peak discharge and timdapgpa et al., 2013;
Ravazzani et al., 2016). Figure 14, Figure 15 agdrE 16 summarize the simulations carried outstations n°2 and n°5
and for simulations 20130305 _2d, 20131117_2d arddlP29 2d. Results exhibit a high inter-event \ality as it might
be expected given their different characteristrResgarding the MPS-HEPS experiments, the observek lgs in the range
of variation of the ensemble for the 20130305 2d ati hydrometric stations n°1 and n°2 (Figure T4)s fact can be
ascribed to the large spread found in the driveak gkscharges: deviations from the observationedngm approximately
—110 to 4200 m3s~*, while timing delays fluctuate from26 to +15 h for station n°2. Indeed, the 80% confidence
interval of the MPS-HEPS simulations never encors@aghe observed discharge for this event. The samarks also
apply for the 20141129 2d case at stations n°)dd5a(Figure 16) and 20131117 _2d at station n°& 806 confidence
interval of the MPS-HEPS simulations encompasseskiserved discharge only for the 20131117 _2d sitionl at stations
n°2, 4 and 5 (Figure 15) and for the 20141128 Zdadion n°2.

The observed peak also lies in the range of variatif the PILB-HEPS ensemble strategy for the 201312d run at
stations n°2, 3, 4 and 5 (Figure 15), and for t©#41129 2d simulation at the five gauge-stationgufé 16). Concerning
both episodes at the gauge-station n°2, PILB-HE#®&asl is larger than MPS-HEPS in terms of the oleskpeak discharge
although smaller for the observed peak time. Thafrom—17 to +22 h for the MPS-HEPS and from3 h to +18 h for
the PILB-HEPS for 20131117_2d and frem2 to +25 h for the MPS-HEPS and from12 h to 48 h for the PILB-HEPS
for 20141129 2d. The opposite is found at statithhfor 20130305_2d and 20141129 2d. The 80% comfielénterval of
the PILB-HEPS simulations encompasses the obsatigettarge only for the 20141128 2d run at statitthand for the
20141129 2d run at stations n°2 and 3 (Figure GB)en those results, it seems that there are netauitial differences
between the both HEPS strategies on these test.case
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Figure 14: Peak flow analysis at stations n°2 a) ana®5 b) for 20130305_2d. X-axis shows the delay frothe observed peak time,
y-axis shows the deviation from the observed peakistharge. The triangles shows the deviation of th@mulations with ensemble
members forcing (grey for MPS, light blue for PILB), the shapes with black contour shows the deviatioof the median of the

5 HEPS simulations with ensemble members forcing, thpink circle shows the deviation of the simulatiorwith JP1 forcing, the
green circle the deviation of the simulation with RU forcing and the dark blue square the deviation ® the simulation with
deterministic WRF forcing. Alert 1 (yellow dashed ine) is the warning threshold, the black star is tk observation used as
normalized reference.
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10 Figure 15: Peak flow analysis at stations n°2 a) anP5 b) for 20131117_2d. See Figure 14 for the ddtaof the legend.
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Figure 16: Peak flow analysis at stations n°2 a) anaP5 b) for 20141129 2d. See Figure 14 for the ddtof the legend.
5.3  System reliability for flood warning

Results of all the performed hydro-meteorologidatudations lead to the conclusion that it is veifficult to correctly
reproduce the spatial variability of the catchmiahaviour, even forcing the hydrological model wathserved rainfall.
Next step was therefore to test the ability oftilgdrometeorogical modelling strategies for issuiglgable flood warnings.
Let's consider a forecast event that either ocourdoes not occur. For flood forecasting, it usuaibnsists in an alert
threshold exceedance. The performance of a hydemrabgical prediction chain can be examined usingpntingency
table (Table 6).

Threshold exceeded observed
Yes No

Threshold exceeded forecast Yegs  Hits (h) Falsensl4f)

No Misses (m)| Correct negatives (n)

Table 6: Two-by-two contingency table for flood waning evaluation.

Several metrics for the evaluation of flood warnpeyformance can be derived from the contingenblethy considering
the number of hits (h), misses (m), false alarmsauftl corrects negatives (n) for all the simulatiofihe proportion correct
(PC), probability of detection (POD), false alaratio (FAR), critical success index (CSI) and BIA8&va the following

properties (Nurmi, 2003):
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- The PC score corresponds to the ratio of correchiwg forecasts and total forecasts. PC ranges fidm 1, the
latter being the perfect score. Note that the RIgxrdoesn't differentiate between misses and &isens.

- The probability of detection is the ratio of cottgdorecast threshold exceedances to the totalbeurof threshold
exceeded observed. POD ranges from 0 (no hit) 1obkjing the best. Note that for values equal & tmere are no
misses and all occurrences of the event were dtyrfececast. However, POD doesn't penalize falaengs and it
can be artificially improved by overforecasting.

- The false alarm ratio is the ratio of the numbefatde alarms to the total number of threshold edee forecasts.
FAR ranges from 0 to 1, O being perfect. Thathsré are no false alarms and all warning foreoaste correct.
Note that FAR doesn't penalize misses and it caartifecially improved by underforecasting.

- Neither POD nor FAR can give a complete picturdasécasting success. The Critical Success Indexbowsa
both aspects of probability of detection and fakem ratio. Therefore, CSI is more balanced arntkbguantifies
the correspondence between the observed and ftedaascurrences. This index is sensitive to hit p@nalizes
both misses and false alarms. CSI values range @rgno hit) to 1 (no misses, no false alarms), ihdpéhe best.
CSl ignores correct negatives as what it is expkici¢he forecast is to be effective in case oftale

- The frequency bias compares the number of timesvamt was forecast to the number of times an ewast
observed. IBIAS = 1, both frequencies are equal and the forecast lisased. IfBIAS > 1 (< 1), there is an

overforecast (underforecast) tendency: the eveatfar@cast more (less) than it was observed.

As a first step, the probability of exceeding therming threshold has been calculated for each drlsestrategy. Results are
very similar for MPS-HEPS and PILB-HEPS: overalitharespect to the deterministic simulations, betisemble strategies
improve the forecast of threshold exceedance &iost n°5 (Tautavel) and degrade it for station (8#Paul) whereas there
is no clear trend for station n°1 (Ansignan). Abdis been stated in 83.2, when the hydrologic sitiauis are suitable for
the eastern Agly (station n°2), the discharge isrestimated over the western part (station n°5)mast members of the
PILB and MPS ensembles exhibit underestimationgHer04-05/03/2013 and 28-29/11/2014 events, bdSMEPS and
PILB-HEPS result in less false alarm for statioB ahd more misses for station n°2. PILB and MP@ires also exhibit
overestimations for the 16-18/11/2013 event bug tean the deterministic simulation, results aerdfore the same as for
the 2 other events.
Figure 17 to Figure 19 show the results for FAR] &% BIAS scores at the five hydrometric sectioFisese scores are
calculated with respect to the observed dischaagesby using all the runs of the different episodes 48-h simulations
have been performed, these scores are based @iltlveng 7 experiments described in §5.2: 2013030# 20130305_2d,
20131116 _2d, 2013117_2d, 20131118 2d, 20141128@#1129 2d. Some tendencies can be highlighted frese
results:

— The MPS-HEPS strategy overall performs better ttmenPILB-HEPS approach for the tested scores. Hewev

both ensemble strategies scores are very similar.
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— No ensemble strategy performs best for stationfoZAR and CSI: there is no false alarm at thatish (Figure
17) and therefore, the CSI score is the best wgpect to the other stations (Figure 18).
— Although the ensemble improves the peak timingpme events, it doesn't improve the issuance of iwarat least
according to the five tested scores: the detertitni® RF simulation always has better scores thanntiedian of
5 both MPS-HEPS and PILB-HEPS, excepted for BIAS, somietimes better than the maximum.
BIAS shows that both ensemble strategies tend denastimate the discharge at all the gauge-staéigospted station n°1,
in the mountainous part of the catchment (Figur® I®at is, MPS-HEPS and PILB-HEPS tend to undenedée the
discharge at all the stations excepted over thentainous part of the catchment. This is an indicatf the paramount
importance of the orography when controlling theakion of deep convection in the meteorologicalwations. When
10 orography does not play such an important roleedasting the small-scale atmospheric featuresdiméehe triggering and
development of highly localised convective pregipdn cores is more uncertain. As mentioned befBieB-HEPS and
MPS-HEPS tend to exhibit underestimations for ®#9%h30305_ 2d and 20141129 2d simulations, and avwens for
the 20131117_2d run. Conversely, the observedrgrand the deterministic forecast tend to overestnthe discharge
excepted for the two eastern stations n°4 and W.find here the consequences of the hydrologicadehcalibration:
15 when the simulated hydrographs are suitable foredwtern Agly, the discharge is overestimated ¢lverwestern part
(83.2).

FAR at all hydrometric station FAR at all hydrometric station

1.0 - 1.0 -
o o JP1 o o JPl
o o PLU o o PLU
0.8l X X WRF || 0.8l X X WRF |]
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0.6 o 4 06} o
[0}
0.4 - X 0.4 . S
0.2} 4 0.2t
OVO -1 e L - e 0,0 .l e 1 - e
Ansignan StPaul Padern Vingrau Tautavel Ansignan StPaul Padern Vingrau Tautavel

Figure 17: FAR scores at the five gauging stationfor the 7 simulations. Statistical indices have beecomputed by using the
observed discharge. Experiments are labelled as WREBimulated discharge with deterministic WRF forcirg, PLU: simulated
20 discharge with PLU forcing, JP1: simulated discharg with JP1 forcing, MPS and PILB: ensemble strategis.
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Figure 18: as Figure 17, but for CSI.
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Figure 19: as Figure 17, but for BIAS.

QDFs can be evaluated against observed dischaujedso against simulated discharges using obsdorethgs. As stated

by several authors (Verkade et al., 2013; Belliealg 2017), the errors due to the parameterssemdture of the hydrologic

model are therefore not taken into account in @et tase. This approach separates the impact oéxteznal-scale

uncertainties from these emerging from the hydrclgmodel. Evaluations have been again performgduding the

simulated discharges with observed forcing PLU #Ad as the baseline instead of the observed flows.

As expected, when only external-scale uncertairgiestaken into account, the scores for the evaluatgainst simulated

discharges with PLU or JP1 improve: PC, POD and &8lhigher and there are no false alarms at siegimns (n°1, n°2
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and n°3). However, the BIAS score shows that baemble strategies tend to highly underestimatsithalated discharge
at all the stations, excepted at station n°5 wieenpgared to PLU and at stations n°4 and n°5 wherpeoad to JP1 (Figure
20). These stream-gauges are located over theraste of the catchment. Again, the determini$fiBF simulations have
better scores than the median of both HEPS, exddptethe station n°4 and the PC, POD, FAR and Bb&Sres when
compared to JP1.

Bias at all hydrometric station Bias at all hydrometric station
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Figure 20: Bias scores with respect to the simuladedischarges with forcing PLU (left) and forcing JRL (right) at the five gaging
stations for all the simulations of the 7 simulatias, WRF: simulated discharge with deterministic WRFforcing, PLU: simulated
discharge with PLU forcing, JP1: simulated discharg with JP1 forcing, MPS ensemble strategies.

5.4  Overall view of the modelling performance

Binary events highlight one aspect of the forecaspecially relevant to avoid casualties, damagesconomic losses
(Hersbach, 2000). To obtain a more general quaatifin of the ensemble performances, other criemganecessary. Here,
the overall discharge forecast at the 5 gagindosisitis studied by using the Continuous Rank Priibal$core CRPS;
Matheson and Winkler, 1976). Tldg&®PS measures the differences between the foreBés), and observatiorn?, (x),
expressed as cumulative distributions of one patamegEq. 4). This score has the dimensions of thempatar and is equal
to the mean absolute error (MAE) for a determiniftirecast. The following description is mainlyrie¢ed from Hersbach
(2000):

CRPS = [*7[P(x) — P, (x)]%dx 4)

wherex is the parameter of interest, herein the dischagédx, is the value that actually occurrédt{x) andP,(x) are the

cumulative distributions of andx,, respectively (Egs. 5 and 6).

P(x) = [ p(Mdy, (5)
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wherep(x) is the probability density function of the foretas

0 for x < x,

PG = H G —x) = f o .

(6)

whereXH is the Heaviside function. The minimum value o &RPS is zero for a perfect deterministic forecast {i.e.
P(x) = P, (x)).

Herein, theCRPS is averaged over the ensemble members and ifdremotedCRPS, while thex parameter corresponds
to the discharge at the 5 gaging stations. TRES is very small for the simulations correspondingthe episode of
November 2013 (i.e. 20131116_2d, 20131117 _2d aa82018 2d). This score is always belbvm3s~* for all stations
and the MPS-HEPS and PILB-HEPS strategies. Conyerth& CRPS is quite high — abovB0 m3s~1— for the numerical
runs of the event of November 2014 (i.e. 20141188aAd 20141129 2d), especially at the station ftat is, the
cumulative distributions of discharge are similatviieen the HEPSs and the observed dischargesef@vént of November
2013, but they are dissimilar for the episode o¥&mber 2014. Concerning the experiments for theoeja of March 2013
(i.e. 20130304 _2d and 20130305_2d), @RS is low for stations n°1 and n°3 (belds m3s~1) and higher for stations

n°2, n°4 and n°5 (close to or abad@m3s~1).

To evaluate more easily the performances of themhke strategies, their performances are also cadpagainst the

efficiency of a reference forecast by using thdl skbre with respect to theRPS (Eq. 7) (Bontron, 2004):

CRPSS = 1 — -85 @)

CRPSref ’

The chosen reference forecast is the simulatiofopeed with the deterministic forecast (WRF) andhiat case th€RPS

skill score writes as follows:

CRPSS = 1 — —FPS__ 8)

MAE (WRF) '’

A CRPSS of 1 corresponds to a perfect foreca®RRS = 0), while a value of 0 indicates that the HEPS dral reference
forecast have the same performancéBPS = MAE(WRF)). Negative skill scores denote that the referemaaiction
performs better than the HEPGRPS > MAE (WRF)).

Figure 21 shows that the two ensemble strategiebiexery similar skill scor&€ RPSS:

- In general, both ensemble strategies perform bdtian the deterministic WRF experiment, excepted fo
20130304_2d and 20130305_2d.
— The main differences between both ensemble stesteggie found for the 20131118 2d experiment: Pllearty

outperforms MPS at all the stream-stations
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Figure 21: CRPS skill scores of the seven 48-h experiments and #ie 5 hydrometric stations for the: (a) MPS-HEPS ad (b)
PILB-HEPS strategies. Reference forecast is the dgministic WRF experiment.

As stated before, selecting the runoff simulatigiveh by the deterministic weather forecast as réference does not
account for the errors due to the hydrological nhodlke CRPS skill score can also be calculated by using theukition

performed with the observed precipitation fieldsPand JP1) as the reference:

CRPS

CRPSSPLU =1- MAE(PLU)
s ©)
CRPSSp1 = 1= 3kgen

Not surprisingly, both ensemble strategies havewemall lower performance when compared with th&JRInd JP1 driven
runoff simulations, except for event of Novembed 20It is interesting to notice that for the 2018812d run, the PILB
driven runoff forecasts outperform the radar drivdischarge simulation (Figure 22, right). This @nsistent with the
previous analyses: events with relatively modegsek discharge — as the event of November 2013-ha@treorrectly
simulated by MARINE whatever the observed forcifigifle 4), whereas theRPS is very low for the ensemble simulations
of the event of November 2013. As stated beforlavaCRPS means that the cumulative distributions of disgkaare
similar between both HEPSs and the observed digekdor the event of November 2013, but they assimtilar between
the simulations with both observed forcings andeoled discharges for the same event. This maylbatedeto the fact that
MPS-HEPS and PILB-HEPS exhibit overestimationstfis event maybe compensating errors in the mddettsre that
prevent the simulation with observed forcings fhistevent to be efficient. Both ensemble strategietperform the
hydrological simulations driven by observed foran@LU and JP1) for the mountainous station (n°dsignan) and the
20141128 2d, 20141129 2d, 20131116 2d and 20132#l1&ins. This result is consistent with the diffiguo obtain

satisfactory observations of rainfall in mountais@ueas owing to sparse rain-gauge deployment eauth badar blockage.
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Figure 22: As Fig. 26, but just for the PILB-HEPS ad the (a) PLU and (b) JP1 as reference.

6 Conclusion

One of the main scientific aims of the HyMeX pragrés to improve the hydro-meteorological forecagtoi flash floods
over the Western Mediterranean region. To this ¢make of the most important floods that recentyaloped over the
Agly basin have been selected as study cases. Ftwedasting is a challenging task over this regioigh spatial and
temporal variability in convective cores and raihfiatensity, strong nonlinearities in the rainfallnoff transformation and
antecedent moisture conditions lead to a myriachydrological responses. This work has focussed dping with
uncertainties emerging from the initial and latdvalindary conditions and formulation of numericaather prediction
models. To this end, potentialities of MPS-HEPS BHB-HEPS ensembles have been examined so asdoige suitable
flood forecasts over the Agly basin. Main conclusiare:

- A better ensemble generation strategy at regiacalbshas not been found. Similarities in the pentomce of the
MPS and PILB approaches indicate that both sowtesternal-scale uncertainty contribute similaidyproduce
adequate levels of skill and spread in the PQPFs.

— Ensemble hydro-meteorological simulations have lredusatisfactory for alarm detection, even if indual
ensemble members can be far from the observatiblasm systems benefit from large hydro-meteorolabic
ensemble spreads.

— The overall HEPS performances improved the detestigrdriven runoff simulations.

Some unexpected results also raise interestingiqossit is the case for instance for the evenllofember 2013 which is
poorly simulated using both observed forcings. BErse strategies therefore improve the overall disgé forecast for this
event: what is the specificity of this event thatk®s it poorly simulated? Is it due to the radat min-gauges location? Is it

due to the state of the catchment before the event? due to the model structure itself that ddesepresent the
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hydrological processes involved? These issues neduither investigations and probably more tesesaThe next logical
approach will be to estimate the uncertaintiehenttydrological modelling. Performing hydrologicabdel ensemble to test
the errors due to the model calibration is timestoning but according to Douinot et al. (2017) itaiso useful in
identifying the strengths and weaknesses of theeiimdsimulating the hydrological processes and thiérefore allow

providing the beginnings of an answer to the almestions.
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