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Abstract. This study aims at evaluating the performances of flash flood forecasts issued from deterministic and ensemble 10 

meteorological prognostic systems. The hydro-meteorological modeling chain includes the Weather Research and 

Forecasting model (WRF) forcing the rainfall-runoff model MARINE dedicated to flash flood. Two distinct ensemble 

prediction systems accounting for (i) perturbed initial and lateral boundary conditions of the meteorological state and (ii) 

mesoscale model physical parameterizations, have been implemented on the Agly catchment of the Eastern Pyrenees with 

three sub-catchments exhibiting different rainfall regimes. 15 

Different evaluations of the performance of the hydrometeorological strategies have been performed: (i) verification of short-

range ensemble prediction systems and corresponding stream flow forecasts, for a better understanding of how forecasts 

behave, (ii) usual measures derived from a contingency table approach, to test an alert threshold exceedance, and (iii) overall 

evaluation of the hydro-meteorological chain using the Continuous Rank Probability Score, for a general quantification of 

the ensemble performances. 20 

Results show that the overall discharge forecast is improved by both ensemble strategies with respect to the deterministic 

forecast. Threshold exceedance detections for flood warning also benefit from large hydro-meteorological ensemble spread. 

There are no substantial differences between both ensemble strategies on these test cases in terms both of the issuance of 

flood warnings and the overall performances, suggesting that both sources of external-scale uncertainty are important to take 

into account. 25 

1 Introduction 

Flash floods are among the most devastating natural hazards worldwide, producing important human and socio-

economic losses. The Western Mediterranean region is annually affected by several extreme precipitation events which lead 

to flash flooding. During the extended warm season, the early intrusion of upper-level cold air masses and the relatively 

large sea surface temperature boost the convective available potential energy of the low-level Mediterranean warm and moist 30 
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air. This natural hazard results from the persistence of deep moist convection and intense precipitation over specific 

hydrographic catchments during several hours. As many Western Mediterranean small-to-medium sized river basins are 

highly urbanized, steep and close to the coastline, their hydrological responses are inherently short. Large, rapid and 

unexpected flows exacerbate flood damage. The development and evaluation of the state-of-the-art hydrometeorological 

forecasting tools is a major issue in the Hydrological Cycle in the Mediterranean Experiment (HyMeX; Drobinski et al. 5 

2014). This program aims at addressing the following science questions, amongst others: How can we improve heavy 

rainfall process knowledge and prediction? How can we improve hydrological prediction?  

Hydrometeorological forecasting tools can contribute to a better understanding and forecasting of flash floods so as to 

implement more reliable forecasting and warning systems over the Western Mediterranean. Short-range quantitative 

precipitation forecasts (QPFs) by high-resolution numerical weather prediction (NWP) models are an effective tool to further 10 

extend flood forecasting lead-times beyond the basin response times. NWP models capture the initiation and evolution of 

small-scale and convectively-driven precipitations, with similar spatial and temporal scales to the flash flood-prone 

catchments (Leoncini et al., 2013; Fiori et al., 2014; Ravazanni et al. 2016; Amengual et al. 2017). Although QPFs can be 

directly used to force one-way hydrological models, the hydrometeorological forecasts are impacted by different types of 

uncertainties. Uncertainties are inherent to each of the hydrometeorological chain components: model parameterization and 15 

structure, limitations of measuring devices providing observation data, initial and lateral boundary conditions (Zappa et al., 

2010).  

External-scale inaccuracies to the hydrological models emerge from two distinct sources when forecasting deep moist 

convection and heavy rainfall with NWP models. First, errors arise from the complexity and nonlinearity of the physical 

parameterizations. Second, uncertainties emerge when representing the exact initial atmospheric state and boundary forcing 20 

across the scales where convection develops. But reliable spatial and temporal QPF distributions are necessary to render 

skilful quantitative discharge forecasts (QDFs) when coping with floods over small and medium size basins. Otherwise, the 

issuance of precise and dependable early flood warnings is inhibited (Le Lay and Saulnier, 2007; Bartholmes et al., 2009; 

Cloke et al., 2013).  

To alleviate the impact of these external-scale uncertainties, short-range ensemble prediction systems (SREPSs) are 25 

used to build hydrological ensemble prediction systems (HEPSs). SREPSs aim at sampling the set of plausible outcomes and 

at accounting for the most relevant uncertainties in the atmospheric forecasting process. Uncertainties in the initial and 

boundary fields can be encompassed by conveniently perturbing initial and lateral boundary conditions (IC/LBCs, Grimit 

and Mass, 2007; Hsiao et al., 2013). Uncertainties in model parameterizations are coped by populating the ensemble with 

multiple combinations of equally-skilful physical schemes (Stensrud et al., 2000; Jankov et al., 2005; Amengual et al., 2008; 30 

Tapiador et al., 2012; Amengual et al., 2017). The inclusion of these uncertainties aims at improving the skill and spread of 

the HEPSs by introducing independent information of all the plausible atmospheric states and processes. Therefore, SREPSs 

are increasingly used in hydrologic prediction (Cloke and Pappenberger, 2009; Verkade et al., 2013; Verkade et al., 2017; 

Siddique and Mejia, 2017; Benninga et al., 2017; Bellier et al., 2017; Edouard et al., 2018; Jain et al, 2018; Bellier et al., 
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2018). Several studies have stated that probabilistic forecasts could improve decision-making if appropriately handled (e.g. 

Krzysztofowicz, 2001; Todini, 2004; Ramos et al., 2013; Antonetti et al, 2019). As stated by Zappa et al. (2011), each 

member of a meteorological ensemble can be fed into a hydrological model to generate a hydrological forecast. 

The objective of the present work is to evaluate the predictive skill of two distinct HEPS generation strategies –

accounting for perturbed IC/LBCs (PILB) and mixed-physics (MPS) – for three flash flood episodes over the Agly basin 5 

(Fig. 1). This catchment of the Eastern Pyrenees has been selected as an experimental area as several subcatchments exhibit 

different rainfall regimes. Given the small size of the subcatchments (from 150 km² to 300 km²), the localization of the 

precipitation patterns is crucial (Rossa et al., 2010) and it's a real challenge to implement QPFs for such small 

subcatchments. QPFs are generated by using the Weather Research and Forecasting model (WRF; Skamarock et al., 2008). 

Next, 48-h WRF forecasts are propagated down through the MARINE hydrological model (Roux et al., 2011) to investigate 10 

the QDFs in timing and magnitude of these flash floods. The resulting HEPSs are examined using different criteria to 

illustrate the potential benefits of the probabilistic hydrometeorological forecast chains. The rest of the paper is structured as 

follows: section 2 presents a short overview of the flash floods, the study area and the observational networks; sections 3 and 

4 provide an insight into the hydrological and atmospheric models and the strategies for ensemble generation; results are 

presented in section 5. The last section summarizes main conclusions and provides further remarks. 15 

2 Data and case studies 

2.1 Overview of the Agly catchment 

 

a) b)  

Figure 1: a) Location of the Agly catchment and of the meteorological radar (pink star: OPOUL RADAR, grey area: karstic areas 20 
underlying the Agly catchment, from BDLISA v.2 https://bdlisa.eaufrance.fr/ accessed June 18, 2019). b) Digital terrain model of 
the Agly catchment (Source: IGN; MNT BDALTI) . Also included the main tributaries (blue lines, source: IGN, BD CARTHAGE), 
the discharge gaging stations (black dots) and the dam and the outlet (black stars). 

This study focuses on a catchment in the north side of the Eastern Pyrenees, the Agly, as a test site for implementing 

the HEPS strategies. The Agly is a coastal river in the north side of the Eastern Pyrenees (Figure 1). It originates from an 25 
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elevation of approximately 700 m and drains the Pyrenees foothills. It flows into the Mediterranean Sea at Barcarès and has 

a length of around 80 km. A dam dedicated to flood and water management controls approximately 400 km2 of the 

catchment (Agence de l'eau Rhône Méditerranée & Corse, 2012). It is located just downstream of the confluence between the 

Agly and one of its main right-hand tributaries, the Désix River, draining an area of around 150 km2 (Figure 1). The main 

left-hand tributary, the Verdouble River drains an area of 300 km2 located in a region of mid-mountains, culminating 5 

between 400 and 500 meters of altitude (Figure 1). Granite and gneiss cover about 300 km2 of the mountainous part of the 

Agly catchment promoting runoff already facilitated by the steep slopes. North of the catchment, the Corbières massif is 

dominated by limestones forming karstic networks. 80% of the catchment is covered by natural vegetation –forest (45%), 

shrubby vegetation (17%), maquis and scrubland (16%)–, while 18% is used for agriculture, mainly vineyards. 

The Agly catchment is subject to different climate regimes in connection with the distances from the sea and the 10 

mountainous reliefs: temperate oceanic in the north-west valley, mountain in the south-west part and, Mediterranean 

downstream. The rainfall regime varies from east to west with increasing annual cumulated precipitations: the mean annual 

cumulated precipitations (1965-1996) range from 600 mm at Torreilles (East, Figure 1) up to 1174 mm at Saint-Louis-et-

Parahou (West, Figure 1) (DIREN Languedoc-Roussillon/SIEE-GINGER, 2008). Generally, the rainfall regime is highly 

variable with very intense precipitation events in fall, winter and spring and very dry summers. 15 

2.2 Available data 

The precipitation measurements available on the Agly catchment come from two different observational networks: 

- PLU: The operational hourly rain-gauge network for flood monitoring purposes and data provided by the regional 

flood forecasting service, the Service de Prévision des Crues Méditerranée Ouest (SPCMO). 

- JP1: 1 km2 quantitative hourly precipitation estimates ANTILOPE J+1 (ANalyse par spaTIaLisation hOraire des 20 

PrEcipitations) that come from a merging of radar data and rain-gauges measurements (Laurantin, 2008; 

Champeaux et al., 2009).  

The hydrometric data were derived from the network of operational measurements at variable time steps (HydroFrance 

databank, http://www.hydro.eaufrance.fr/). The stream-gauges are located in 5 upstream stations not influenced by the dam 

(Table 1 and Figure 1). Table 2 summarizes the main hydrological features of the 5 stations. This study will focus on 3 25 

recent events started on 04 March 2013, 16 November 2013 and 28 November 2014, being highly variable (Table 3), with 

rainfall lasting respectively 3 days for the spring event and 4 days for the 2 fall events. The selected events have been 

labelled with the start date and the duration as follows: 20130304_3d, 20131116_4d and 20141128_4d. All the floods feature 

moderate specific peak discharges for flash-flood, highlighting the high infiltration rates associated to the karstic substrates. 

Indeed, the runoff coefficient is always higher for the eastern part (station n°5, Table 3) than for the western part: this is due 30 

to the losses in the karstic systems for the western subcatchments (stations n°1 and 2). The runoff coefficient is even higher 

than 1 for 20130304_3d at station n°5. There is no definitive explanation for that, but several possibilities can be considered: 

(i) the very high soil moisture at the beginning of the event (65%, Table 3) which can contribute to the runoff at the outlet 
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via subsurface flows; (ii) a possible supply from the karstic system (Figure 1); (iii) the uncertainties in the discharge and 

precipitation measurements. One event occurred in spring with an averagely moist soil (20130304_3d, Table 3), while the 

other two occurred in autumn with dry soils after the summery drought. The autumn episodes exhibit very different 

intensities: the specific peak discharges range from 0.3 to 0.6 m�s��km�� for 20131116_4d, and from 1 to 2 m�s��km�� 

for 20141128_4d. Concerning the mean of the maximum rainfall intensity over the catchment, they range from: 8 to 14 5 

mm. h�� according to PLU and from 9 to 11 mm. h�� according to JP1 for 20131116_4d; 19 to 30 mm. h��according to 

PLU and from 15 to 25 mm. h��according to JP1 for 20141128_4d (Table 3). 20141128_4d is therefore much more intense 

than 20131116_4d according to both observed forcings even if JP1 forcing presents lower intensities. 20130304_3d is in 

between both episodes, with specific peak discharges ranging from 0.6 to 1.5 m�s��km��, but lower rainfall intensities, 

ranging from 7 to 11 mm. h�� according to PLU and from 6 to 11 mm. h�� according to JP1. These episodes are 10 

representative of the different seasonal rainfall regimes that lead to floods over the Agly. In spring, floods are mainly 

originated from stratiform type rainfall with moderate but persistent precipitation rates that can result in substantial 

accumulations. In autumn, floods are most likely driven by convective type precipitations of shorter duration but high 

intensity.  

 15 

Station River Area (km2) 
� 	
ℎ� 
n°1 Ansignan Désix 157 9 

n°2 St-Paul-de-Fenouillet Agly 216 10 

n°3 Padern Verdouble 161 8 

n°4 Vingrau Verdouble 301 11 

n°5 Tautavel Verdouble 305 12 

Rivesaltes Agly 1053 23 

Table 1: Characteristics of the 5 subcatchments and the whole catchment. The time of concentration is estimated using Bransby 
Williams formula (Eq. 3). 

Station Period QIX2 (m3s-1) QMEV (m3s-1) TMEV 

n°1 1994-2018 85.0 [57.00;120.0] 291 15/03/2011 

n°2 1971-2018 87.0 [77.00;99.00] 483 26/09/1992 

n°3 2006-2018 - 281 30/11/2014 

n°4 2010-2018 - 525 30/11/2014 

n°5 1967-2018 170.0 [140.0;200.0] 922 13/11/1999 

Table 2: Hydrological statistics of the 5 catchments (From HydroFrance databank, http://www.hydro.eaufrance.fr/). QIX2: 2-year 
return period of maximum instantaneous discharge and confidence interval 95%, QMEV: known maximum instantaneous 
discharge, TMEV: Date of QMEV. 20 
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  PLU JP1      

Event Station Cumulated P 

(mm) 

Max I 

(mm/h) 

Cumulated P 

(mm) 

Max I 

(mm/h) 
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���������� 
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��	ℎℎ:��� 
 

�� ���� 

%� 

20130304_3d n°1 186 ± 19 [226] 7.4 167 ± 30 [208] 6.4 137 0.87 06 06:35 0.17 48 ± 0 

 n°2 183 ± 37 [215] 6.9 160 ± 25 [217] 5.8 137 0.63 06 09:40 0.12 51 ± 3 

 n°5 181 ± 28 [218] 11.2 192 ± 26 [294] 11.4 459 1.50 06 12:24 1.07 65 ± 1 

 Outlet 179 ± 40 [226] 8.5 178 ± 30 [294] 8.6 970 0.92 - - 56 ± 7 

20131116_4d n°1 227 ± 11 [303] 13.1 208 ± 18 [242] 10.9 47 0.30 18 05:10 0.05 35 ± 1 

 n°2 275 ± 26 [303] 14.1 212 ± 24 [269] 8.8 131 0.61 18 01:58 0.05 42 ± 4 

 n°5 181 ± 37 [241] 8.0 183 ± 17 [230] 10.6 109 0.36 18 06:13 0.21 55 ± 3 

 Outlet 208 ± 49 [303] 9.9 194 ± 25 [285] 9.6 260 0.25 - - 45 ± 8 

20141128_4d n°1 311 ± 12 [318] 30.4 284 ± 40 [361] 25.0 251 1.60 30 14:56 0.14 36 ± 0 

 n°2 286 ± 28 [312] 18.8 261 ± 41 [357] 15.1 215 0.99 29 22:28 0.07 40 ± 4 

 n°5 222 ± 37 [264] 20.9 234 ± 36 [356] 20.7 606 1.99 30 07:45 0.67 58 ± 5 

 Outlet 269 ± 61 [392] 14.5 257 ± 54 [492] 12.8 978 0.93 - - 48 ± 10 

Table 3: Main features of the selected flash flood events. Observed forcing PLU: network of 19 rain-gauges, observed forcing JP1: 1 km2 quantitative 
precipitation estimates, Cumulated P (mm): mean ± standard deviation [max] accumulated precipitation on the catchment during the whole event, Max 

I (mm/h): mean of the maximal rainfall intensity over the catchment,  !" 	
#$/&�: peak discharge for the event,  !"'& 	
#
$/&/(#)�: ratio of the peak 

discharge for the event to the drainage area of the subcatchment, *!" 	
++	,,:##�: date of the peak discharge, -. (-): observed runoff coefficient, ratio 5 
of the amount of runoff through the outlet to the amount of rainfall on the catchment, /010	
%�: mean ± standard deviation initial soil moisture 
according to SIM daily root-zone humidity output (Habets et al., 2008). 
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Figure 2 shows the spatial repartition of the cumulative rainfall for the three events for both forcings. The rain gauges data 

have been interpolated using the Thiessen polygon methods (Thiessen, 1911). According to the location of rain gauges, 

polygons are formed by the perpendicular bisectors of the lines joining nearby gauges. This leads to a map in which rainfall 

is constant within polygon surrounding each gauge. Variability in rainfall clearly emerges especially between the eastern, 

western and mountainous part. 5 

 

 

Figure 2: Spatial variability of the cumulative rainfall for event 20130304_3d (top), 20131116_4d (middle) and 20141128_4d 10 

(bottom), according to the observations: PLU (left) the operational hourly rain-gauge network and JP1 (right) 1 km2 merging of 

radar data and rain-gauges measurements. 
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3 Hydrological tool 

3.1 Rainfall-runoff model 

The MARINE model is a distributed mechanistic hydrological model specially developed for flash flood simulations. It 

models the main physical processes in flash flooding: infiltration, overland flow, lateral flows in soil and channel routing. 

Conversely, it does not incorporate low-rate flow processes such as evapotranspiration or base flow. 5 

 

Figure 3: Structure of the MARINE model. 

MARINE is structured into three main modules that are run for each catchment grid cell (Figure 3). The first module allows 

the separation of surface runoff and infiltration using the Green-Ampt model (Green and Ampt, 1911). The second module 

represents subsurface downhill flow, based on the generalised Darcy law used in the TOPMODEL hydrological model 10 

(Beven and Kirby, 1979). Lastly, the third module represents overland and channel flows. Rainfall excess is transferred to 

the catchment outlet using the Saint-Venant equations simplified with kinematic wave assumptions (Fread, 1992). The 

model distinguishes grid cells with a drainage network –where channel flow is calculated on a triangular channel section 

(Maubourguet et al., 2007) – from grid cells on hillslopes, where overland flow is calculated for the entire surface area of the 

cell. For more details about the MARINE model, the readers can refer to Roux et al. (2011), Garambois et al. (2015b) or 15 

Douinot et al. (2018). 

The MARINE model works with distributed input data such as: (i) a digital elevation model (DEM) of the catchment to 

shape the flow pathway and distinguish hillslope cells from drainage network cells, according to a drained area threshold; (ii) 

soil survey data to initialize the hydraulic and storage properties of the soil, which are used as parameters in the infiltration 

and lateral flow models; (iii) vegetation and land-use data to configure the surface roughness parameters used in the overland 20 

flow model. As the MARINE model is event-based, it must be initialized to take into account the previous moisture state of 

the catchment. This is done by using the spatial daily root-zone humidity outputs (resolution = 8 km×8 km) from Météo-

France’s SIM operational chain (Habets et al., 2008). 
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3.2 Calibration/Validation on the Agly catchment 

MARINE requires parameter calibration so as to accurately reproduce hydrological behaviours. Based on previous 

sensitivity analyses by Garambois et al. (2013), five parameters are calibrated: soil depth �2, the transmissivity used in 

lateral subsurface flow modelling �3, hydraulic conductivity at saturation �4, and friction coefficients for low and high-

water channels, 56  and 57 , respectively. �3 , �4  and �2  are the multiplier coefficients for spatialised, saturated hydraulic 5 

conductivities and soil depths. Note that 56 and 57 are kept invariant throughout the drainage network. The calibration of the 

Agly catchment at the Saint-Paul-de-Fenouillet station (n°2, Table 1 and Figure 1) were performed by Garambois et al. 

(2015a) according to their proposed methodology. The events used for this calibration are older than those considered in the 

present study (20020411, 20031204, 20040221, 20051115, 20101010, 20110315, see Garambois et al., 2015a). The cost 

function 89: is designed to evaluate the performance of the model (Roux et al., 2011; Garambois et al., 2015a): 10 

89: = �
� 89 +

�
� =1 −

�@AB�@AC�
@AC D + �

� E1 −
�3AB�3AC�
3F G ,        (1) 

where ���  and ��� are respectively the simulated and observed peak runoff, 
�� and 
�� are the simulated and observed time to 

peak, and 
H is the time of concentration of the catchment. 89 denotes the efficiency coefficient (Nash and Sutcliffe, 1970): 

89 = 1 − ∑ J@KB�@KCL
MNKOP

∑ J@KC�@CQQQQL
MNKOP
 ,           (2) 

where 5 is the number of observation data, and �� and �� are the simulated and the observed runoff. The estimated times of 15 

concentration of each subcatchment are given in Table 1, using Bransby Williams formula (Pilgrim and Cordery, 1992): 


� = 14.68T�U.�V�U.� ,           (3) 

where 
� 	W�X5Y is the time of concentration, 8	W��Y  is the total length of channel, T	W���Y  is the drainage basin area, 

V	W�/�Y is the average slope. Note that the range of values for both 89: and 89 spans from −∞ to 1, one being the perfect 

score. 20 

Table 4 lists the 89 and 89: efficiencies for the validation cases: the 3 studied events with different forcings and 2 older 

flash flood events with available data, only used for the validation process of the hydrological model, but not further studied. 

Table 4 and Figure 4 show that:  

- Only one event (20130304_3d with PLU forcing) is well simulated at the 5 gauging stations, 

- Only one event (20130304_3d with both PLU and JP1 forcings) is well simulated at mountainous station n°1, 25 

- All the other events are correctly simulated only for a part of the catchment: either the eastern part near the 

Mediterranean Sea (stations n°3, n°4 and n°5), or the south-west mountainous part (station n°1), or the north-west 

continental part (station n°2). 
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Event forcing n°1 n°2 n°3 n°4 n°5 

19920926_PLU - 0.92(0.93) - -  

20090411_PLU <0(<0) 0.50(0.12) <0(<0) - <0(<0) 

20130304_3d_PLU 0.78(0.80) 0.61(0.72) 0.61(0.43) 0.67(0.60) 0.70(0.61) 

20130304_3d _JP1 0.74(0.73) <0(0.34) 0.67(0.52) 0.77(0.66) 0.78(0.69) 

20131116_4d _PLU <0(<0) 0.64(0.41) 0.06(<0) <0(<0) 0.38(<0) 

20131116_4d _JP1 <0(<0) <0(0.36) <0(<0) <0(<0) 0.24(<0) 

20141128_4d _PLU <0(<0) 0.11(<0) 0.65(0.16) 0.67(0.47) 0.79(0.61) 

20141128_4d _JP1 <0(<0) 0.68(0.64) 0.78(0.73) 0.81(0.74) 0.89(0.81) 

Table 4: [\]
[\� efficiencies for each station (see numbering Table 1) and for each validation events, PLU: forcing with the 
network of 19 raingages, JP1: forcing with 1 km2 quantitative precipitation estimates. Bold values indicate efficiencies above 0.5. 

As expected, the different parts of the catchment exhibit various behaviours which are difficult to correctly simulate 

with a single calibration by just using observations at the station n°2. On one hand, events with relatively moderate peak 

discharge are usually not correctly simulated by MARINE whatever the observed forcing, as is the case of the 5 

20090411_PLU and 20131116_4d events. Indeed, several authors have pointed out that specific peak discharges larger than 

0.5	���������  are one of the relevant criteria to define a flash flood (Braud et al., 2014; Gaume et al. 2009). The 

20090411_PLU and 20131116_4d events exhibit smaller peak discharges (Table 3), except for the 20131116_4d episode at 

station n°2, where the results are correct for the PLU forcing (Figure 4). When the simulated hydrographs are suitable for the 

eastern Agly, the discharge is overestimated over the western part (e.g. 20141128_4d; Figure 4). Conversely, when the 10 

simulated hydrographs are correct over the western Agly, the peak discharges are underestimated in the eastern part as in the 

20130304_3d episode. Difficulties in correctly simulating the hydrological responses over all the subcatchments arise due to 

the important losses associated to the karstic aquifer system across the Agly basin (Figure 1). Karstic substrates enhance the 

non-linear rainfall-runoff transformation, leading to a myriad of runoff responses that are difficult to encompass with single 

parameterizations of the infiltration process in hydrological models that do not take explicitly into account the karst 15 

(Amengual et al., 2017). 

With respect to the two major 20130304_3d and 20141128_4d events, both simulated with the two observed forcing, 

simulations are more satisfactory with the 1 km2 quantitative precipitation estimates ANTILOPE J+1 for the eastern than for 

the western part. This may be due to the fact that the radar is located close to the sea, being the beams orographically 

sheltered over the western Agly (Figure 1). Several other calibration tests could have been carried out so as to improve the 20 

results of the hydrological model such as one calibration for each sub-catchment. However, the main purpose of this study 

focuses on the potential of ensemble strategies to improve flash flood forecasting. Furthermore, NWP model driven runoff 

simulations have been compared both against the observed discharges and against the observed rain-gauge and radar 
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precipitation driven runoff runs. Hence, the impact of the external-scale uncertainties on the quality of the distinct HEPS can 

be emphasized. 

 

 

 5 

Figure 4 : Hyetogram and hydrogram at station n°1 (left), n°2 (center) and n°5 (right) for three events, PLU: forcing with the 
network of 19 raingages, JP1: forcing with 1 km2 quantitative precipitation estimates, Qobs: observed discharge at the station, Q 
PLU: simulated discharge with PLU forcing, Q JP1: simulated discharge with JP1 forcing. 

4 Meteorological tools 

The fully compressible and non-hydrostatic WRF model has been employed to generate the ensemble members. The 10 

WRF set-up consists of a single computational domain completely spanning the Western Mediterranean region at 2.5 km 

spatial horizontal resolution (i.e. 767 x 575 grid-points) and 50 vertical levels (Figure 5). Deep moist convection is explicitly 

solved due to the high-spatial resolution. All the ensemble experiments have a temporal forecasting horizon of 48-h, starting 
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at 00 UTC on the day before of the main observed peak floods. Starting on this day warranties a suitable lead-time to issue 

warnings to local water management services. For these hydrometeorological episodes lasting more than 2 days, successive 

consecutive 48-h simulations have been performed, starting on the next days at 00 UTC. Hence, the initiation and subsequent 

evolution of the most active precipitation systems and the overall rainfall episodes are completely encompassed.  

WRF simulations have been forced by using the global Ensemble Prediction System of the European Centre for 5 

Medium Range Weather Forecasts (ECMWF-EPS). The MPS ensemble has been built by using the reference (i.e. 

unperturbed) run, while the PILB approach has considered a selected set of the overall ECMWF-EPS population. Finally, the 

hourly QPFs are used to force one-way the MARINE model so as to build the HEPSs. In addition, the deterministic ECMWF 

forecasts have been also dynamically downscaled so as to have a control baseline for comparative purposes against the 

ensemble strategies. 10 

Deterministic simulations have used the following physical parameterizations: the WRF single moment 6-class 

microphysics scheme, including graupel (WSM6; Hong and Lim 2006); the 1.5-order Mellor–Yamada–Janjić boundary layer 

scheme (MYJ; Janjić, 1994); the Dudhia short-wave scheme (Dudhia, 1989); the RRTM longwave scheme (Mlawer et al., 

1997); the unified Noah land surface model (Tewari et al. 2004); and the Eta similarity surface-layer model (Janjić, 1994). 

Note that the WRF configuration for the control simulations is the same as the daily operational set-up run by the research 15 

Meteorology Group at the University of the Balearic Islands (http://meteo.uib.es/wrf). 

 

Figure 5 : Configuration of the computational domain used for the WRF numerical simulations.  
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4.1 PILB ensemble 

The operational ECMWF-EPS is formed by 51 members –the reference and 50 perturbed forecasts– at T639 spectral 

resolution (20 km) and aims to cope with uncertainties related to the actual state of the atmosphere. The daily synoptic-scale 

uncertainties are encompassed by perturbing an initial analysis through the flow-dependent singular vectors technique 

(Buizza and Palmer, 1995; Molteni et al., 1996). The PILB ensemble is based on dynamically downscaling these 20 5 

ECMWF-EPS members exhibiting maximum IC/LBC perturbations over the WRF domain. This strategy seeks to ameliorate 

the mismatch between the synoptic-scale error growth optimization time for the singular vectors and the sub-synoptic error 

growth, more relevant for short-range forecasts at small- and medium-sized basins (Ravazzani et al., 2016; Amengual et al. 

2017). 

At this aim, a k-means clustering algorithm using the Principal Components of the 500 hPa geopotential and 850 hPa 10 

temperature fields is applied to the entire ECMWF-EPS over the WRF numerical domain. Then, the 50 ensemble members 

are categorized in 20 clusters and the 20 closest members to the centroids are used as initial and boundary fields for the PILB 

ensemble. Boundary fields are updated every 3 h and physical schemes remain invariant for all the ensemble members and 

are the same that these used to run the deterministic WRF simulations. 

4.2 Mixed-physics (MPS) ensemble 15 

There is not an optimum set of physical numerical parameterizations when simulating severe weather and intense 

precipitation events. Several studies have shown that different combinations of physical parameterizations render similar 

performances (Jankov et al., 2005; Evans et al., 2012). That is, the meteorological variables are sensitive to a myriad of 

processes which are differently parameterized by capable numerical schemes. When simulating flash flooding driven by 

convective-type precipitation, cumulus parameterizations are the main candidates for direct uncertainty sampling. However, 20 

as convection is explicitly resolved, uncertainties arising from the microphysical sub-grid processes and planetary boundary 

layer (PBL) schemes have been encompassed. The former regulates the distinct forms of rainfall, the latter accounts for the 

turbulent vertical fluxes of heat, momentum and moisture within the PBL and throughout the atmosphere. Both physical 

mechanisms are also dominant when controlling deep moist convection. The MPS ensemble has been generated by 

combining the following 5 microphysical and 4 boundary layer schemes, summing up to 20 members: 25 

- Microphysical schemes: (i) WRF single-moment 6-class (WSM6; Hong and Lim, 2006); (ii) Goddard (Tao et al., 

1989); (iii) New Thompson (Thompson et al., 2008); and (iv, v) National Severe Storm Laboratory (NSSL) two-

moment (Mansell et al., 2010) with two cloud condensation nuclei (CCN) prediction values of 0.5·109 and 1.0·109 

cm-3. 

- PBL schemes: (i) Yonsei University (YSU; Hong et al., 2006); (ii) Mellor-Yamada-Janjic (MYJ; Janjic, 1994); (iii) 30 

Mellor–Yamada–Nakanishi–Niino level 2.5 (MYNN; Nakanishi and Niino, 2006)), and (iv) Total Energy–Mass 

Flux (TEMF; Angevine et al., 2010). 
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On one hand, all microphysics schemes involve the simulation of explicitly resolved liquid water, cloud and 

precipitation, and include mixed-phase transformations (i.e. the interaction of ice and liquid water). However, each 

microphysical parameterization treats differently the interaction among five or six moisture species (i.e. water vapour, cloud 

water, rain, cloud ice, snow and graupel); the physical processes of rain production, fall and evaporation; the cloud water 

accretion and auto-conversion; condensation; and saturation adjustment and ice sedimentation. The Western Mediterranean 5 

is affected by air masses of distinct signature (i.e. Saharan, Atlantic, purely Mediterranean or continental central European), 

featuring a high variability of aerosol concentration that influence the moist physical mechanisms. The inclusion of two 

different CCN concentrations copes with uncertainties in the aerosol characteristics. On the other hand, the choice of 

different PBL schemes can be crucial when correctly simulating the onset of mesoscale severe weather phenomena. PBL 

modulates the temperature and moisture profiles in the lower troposphere and the effects of turbulence in the daytime 10 

convective conditions (Hu et al. 2010; Coniglio et al. 2013). Finally, it is worth noting that the initial and lateral boundary 

conditions are kept invariant through all the MPS ensemble members. IC/LBC come from the ECMWF-EPS reference 

forecast for each individual case study and lateral boundary conditions are updated every 3 h.  

5 Results and discussion 

5.1 Verification of the SREPS 15 

The quantitative comparison of the spatial 48-h accumulated precipitations for the PILB and MPS experiments 

against the radar estimates provides a quality outlook of the ensemble performance for the selected episodes over the study 

region. Figure 6, Figure 7 and Figure 8 indicate realistic spatial distributions for all the study cases: high rainfall 

accumulations in the upper tail distributions of both ensemble strategies are a good indication of the potential for heavy 

rainfall. The regional roughed topography (i.e., the pre-Pyrenees, Pyrenees and the Massif Central) is determinant to place 20 

and focus the Probabilistic Quantitative Precipitation Forecasts (PQPF). Both approaches could succeed for issuing warning 

alerts before flash flood scenarios in the region. However, SREPS reliability must be previously checked at basin scales. 

Flash flood forecasting over a single medium-sized is a challenging issue as many small-scale atmospheric factors concur in 

determining the location of deep convection and intense precipitation. A crucial feature in determining correctly the location 

of the rainfall amounts is to accurately simulate the south to north easterly low-level moisture maritime flows impinging over 25 

the mountainous slopes of the Agly basin. 
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Figure 6 : Spatial distributions of the 48-h rainfall amounts for the March 2013 episode according to: (a) radar JP1, (b) MPS 
percentile 90 and (c) PILB percentile 90, starting on 4th 00 UTC, and; (d) radar JP1, (e) MPS percentile 90 and (f) PILB percentile 
90, starting on 5th 00 UTC. The Agly basin is highlighted.  5 
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Figure 7 : Spatial distributions of the 48-h rainfall amounts for the November 2013 episode according to: (a) radar JP1, (b) MPS 
percentile 90 and (c) PILB percentile 90, starting on 16th 00 UTC; (d) radar JP1, (e) MPS percentile 90 and (f) PILB percentile 90, 
starting on 17th 00 UTC; and (g) radar JP1, (h) MPS and (i) PILB, starting on 18th 00 UTC. The Agly basin is highlighted. 
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Figure 8 : Spatial distributions of the 48-h rainfall amounts for the November 2014 episode according to: (a) radar JP1, (b) MPS 
percentile 90 and (c) PILB percentile 90, starting on 28th 00 UTC; and (d) radar JP1, (e) MPS percentile 90 and (f) PILB 
percentile 90, starting on 29th 00 UTC. The Agly basin is highlighted. 

 5 

48-h rain-gauge (PLU) and radar-derived (JP1) rainfall amounts have been used to evaluate the forecasting 

ensemble skill at the relevant hydrological scales. To this end, the cumulative ensemble QPFs have been interpolated to all 

the available rain-gauges and to the radar pixels for each study case (Akima, 1978 and 1996; Figure 9). Most members of the 
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1.75 2 2.25 2.5 2.75 3

42.4

42.6

42.8

43

0510255075100125150200250300350

mm

(b)

1.75 2 2.25 2.5 2.75 3

42.4

42.6

42.8

43

0510255075100125150200250300350

mm

(e)

1.75 2 2.25 2.5 2.75 3

42.4

42.6

42.8

43

0510255075100125150200250300350

mm

(c)

1.75 2 2.25 2.5 2.75 3

42.4

42.6

42.8

43

0510255075100125150200250300350

mm

(f)

1.75 2 2.25 2.5 2.75 3

42.4

42.6

42.8

43

0510255075100125150200250300350

mm

(a)

1.75 2 2.25 2.5 2.75 3

42.4

42.6

42.8

43

0510255075100125150200250300350

mm

(d)

https://doi.org/10.5194/nhess-2019-232
Preprint. Discussion started: 2 September 2019
c© Author(s) 2019. CC BY 4.0 License.



18 
 

 

Figure 9 : 48-h rainfall amounts according to the rain-gauge (PLU, left) and radar-derived (JP1, right) observations and the PILB 
and MPS experiments. Boxes denote the p25 and p75 interquartile ranges, middle horizontal lines show the ensemble median and 
whiskers display the best and the worst ensemble members. Note that the PILB and MPS ensemble experiments start on the day 
indicated in the upper part of each subpanel. 5 
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Figure 10 : Statistical scores of the 48-h rainfall amounts for the PILB and MPS ensemble members when compared against the 
rain-gauge (PLU, left) and the radar-driven (JP1, right) observations. Boxes denote the p25 and p75 interquartile ranges, middle 
horizontal lines show the ensemble median and whiskers display the best and the worst ensemble members. Note that the PILB 
and MPS ensembles start on the day indicated in the upper part of each subpanel. 5 
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In addition, the skill of each ensemble strategy in predicting the probability for different accumulations –ranging 

from light to torrential rainfalls– has been assessed by means of the ROC curves. The ROC curve expresses the true hit rate 

of a probabilistic forecast at different false alarm rates, while the area under the ROC curve (AUC) quantifies the ability of 

the ensemble to discriminate between the occurrence or non-occurrence of an event (Schwartz et al., 2010). ROC curves 

have been computed by using all the study cases and the radar-derived (JP1) rainfall accumulations have been employed as 5 

the observed baseline. The following 48-h accumulated precipitation thresholds have been considered: 5, 10, 15, 25, 50, 75, 

100, 125, 150 and 200 mm. As the forecast probabilities are computed and verified against each radar pixel, the statistical 

sample sums up to 54145 members (7735 radar grid-points times 7 ensemble experiments).  

Probabilistic QPFs from the PILB approach shows slightly higher forecasting skills than MPS for small rainfall 

accumulations (i.e., ≤ 15 mm; Table 5 and Figure 11). Even so, the AUCs are above 0.85 for both ensemble strategies. For 10 

moderate to high rainfall thresholds (25-75 mm), PILB and MPS are almost statistically indistinguishable, with AUCs well 

above 0.7. Depending on the precipitation limit, MPS or PILB features a slightly higher probabilistic forecasting skill. At 

greater thresholds (≥ 100 mm), PILB shows a larger discrimination ability, with areas slighter higher than 0.7 for all the 

cases, except the most extreme precipitation accumulation. On the other hand, MPS renders values close to but below 0.7. In 

general, both strategies exhibit an elevate quality of the probabilistic forecasts for low to moderate rainfall accumulations. 15 

Remarkably, the discrimination ability of the PILB strategy is maintained up to 150 mm. This result points out to a more 

effective encompassing of uncertainties emerging from the IC/LBCs than from the microphysical and PBL physical 

inaccuracies likely due to the dominant role of the regional complex orography when controlling rainfall location. However, 

the high AUCs rendered by both ensemble strategies suggest to account for both sources of uncertainty so as to obtain high-

quality PQPFs.  20 

Precipitation threshold (mm) ROC areas 

MPS PILB 

5 0.855 (0.846‒0.864) 0.917 (0.911‒0.922) 

10 0.888 (0.881‒0.894) 0.913 (0.909‒0.917) 

15 0.852 (0.846‒0.859) 0.877 (0.872‒0.881) 

25 0.833 (0.828‒0.839) 0.842 (0.837‒0.847) 

50 0.785 (0.780‒0.790) 0.771 (0.766‒0.776) 

75 0.741 (0.735‒0.746) 0.741 (0.736‒0.747) 

100 0.699 (0.694‒0.705) 0.721 (0.715‒0.726) 

125 0.690 (0.684‒0.695) 0.717 (0.711‒0.722) 

150 0.691 (0.685‒0.697) 0.716 (0.710‒0.721) 

200 0.638 (0.630‒0.647) 0.689 (0.682‒0.696) 

Table 5 : Areas under the ROC curves for the MPS and PILB ensemble strategies. Associated uncertainty to each score (between 
brackets) is expressed as the 95% percentile confidence intervals, calculated by using a 10000-sample bootstrap. 
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Figure 11 : ROC curves of the MPS and PILB ensemble strategies. The embedded figures display the sharpness diagrams 
containing the number of forecasts used in each probability bin and the total number of observations considered. 

5.2 Verification of stream flow forecasts 

As mentioned by Bellier et al. (2017), the visual inspection of individual hydrographs is useful for a better understanding of 5 

how forecasts behave. The hydrological simulations have been forced by the 48-h meteorological simulations, resulting in 7 

hydro-meteorological simulations each lasting 2 days, starting respectively on the 4th and 5th of March 2013 (20130304_2d 

and 20130305_2d), 16th, 17th and 18th of November 2013 (20131116_2d, 2013117_2d and 20131118_2d), 28th and 29th of 

November 2014 (20141128_2d and 20141129_2d) at 00 UTC. Figure 12 shows the hydrographs at three stations (n°1, n°2 

and n°5) of the 20130305_2d, 20131117_2d and 20141129_2d experiments and for the all 48-h performed simulations with: 10 

observed forcing (PLU and JP1), deterministic (WRF) and ensemble forecast MPS. Results are very similar for PILB-HEPS. 

The median and the 10th and 90th quantiles of each ensemble strategy, as well as the first level alert from the flood warning 

center in France (SCHAPI), are also shown as references. In general, the WRF deterministic driven hydrological forecasts 

often miss the peak times for all the hydrometric stations (Figure 12). The HEPS improves this feature, even if biases in the 

EPS still remain as are propagated down to the hydrological model. That is, the MPS-HEPS and PILB-HEPS exhibit slight 15 

underestimations (overestimations) for the 20130305_2d and 20141129_2d (20131117_2d) simulations. The observed peak 

time is included in the boxplots (minimum and maximum of all of the data) of the ensemble strategies for the 5 stations, 

whereas it is not included in the boxplot for the deterministic simulations at stations n°1, 2 and 3 as it can be seen in Figure 

13 for stations n°1 and n°5. It can also be appreciated that the peak timing delay is usually negative, independently of the 

experimental set-up. Almost all the hydro-meteorological simulations result in earlier peak timings than observed. 20 
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Figure 12: MPS-HEPS hydrograms at station n°1 (left), n°2 (center) and n°5 (right) for the 20130305_2d simulation (top), 
20131117_2d simulation (middle), 20141129_2d simulation (bottom). Note that Q50 is the ensemble median, Q10 denotes the 10th 5 
ensemble quantile, Q90 labels the 90th ensemble quantile, Qobs is the observed discharge, WRF is the WRF deterministic driven 
discharge experiment, PLU is the PLU driven runoff simulation, and JP1 denotes the JP1 driven discharge simulation. Alert 1 
corresponds to the first alert level. 
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a) b)  

Figure 13: Delay of simulated peak time for the 7 simulations at stations n°1 a) and n°5 b) for simulations with JP1 forcing, PLU 
forcing, WRF deterministic forcing and ensemble strategies forcings (MPS and PILB). The boxplot presents five sample statistics: 
the minimum, the lower quartile, the median, the upper quartile and the maximum. 

The peak plot approach has been adopted to better appreciate the value of the ensemble strategies: all the ensemble members 5 

are joined in a single plot by calculating the deviation from the observed peak discharge and timing (Zappa et al., 2013; 

Ravazzani et al., 2016). Figure 14, Figure 15 and Figure 16 summarize the simulations carried out for stations n°2 and n°5 

and for simulations 20130305_2d, 20131117_2d and 20141129_2d. Results exhibit a high inter-event variability as it might 

be expected given their different characteristics. Regarding the MPS-HEPS experiments, the observed peak lies in the range 

of variation of the ensemble for the 20130305_2d run at hydrometric stations nº1 and nº2 (Figure 14). This fact can be 10 

ascribed to the large spread found in the driven peak discharges: deviations from the observation range from approximately 

−110	to +200	����� , while timing delays fluctuate from −26	to +15	ℎ  for station n°2. Indeed, the 80% confidence 

interval of the MPS-HEPS simulations never encompasses the observed discharge for this event. The same remarks also 

apply for the 20141129_2d case at stations n°3, 4 and 5 (Figure 16) and 20131117_2d at station n°3. The 80% confidence 

interval of the MPS-HEPS simulations encompasses the observed discharge only for the 20131117_2d simulation at stations 15 

n°2, 4 and 5 (Figure 15) and for the 20141128_2d at station n°2. 

The observed peak also lies in the range of variation of the PILB-HEPS ensemble strategy for the 20131117_2d run at 

stations n°2, 3, 4 and 5 (Figure 15), and for the 20141129_2d simulation at the five gauge-stations (Figure 16). Concerning 

both episodes at the gauge-station n°2, PILB-HEPS spread is larger than MPS-HEPS in terms of the observed peak discharge 

although smaller for the observed peak time. That is, from −17	to +22	ℎ for the MPS-HEPS and from −3	ℎ to +18	ℎ for 20 

the PILB-HEPS for 20131117_2d and from −12	to +25	ℎ for the MPS-HEPS and from −12	ℎ to +8	ℎ for the PILB-HEPS 

for 20141129_2d. The opposite is found at station n°5 for 20130305_2d and 20141129_2d. The 80% confidence interval of 

the PILB-HEPS simulations encompasses the observed discharge only for the 20141128_2d run at station n°2 and for the 

20141129_2d run at stations n°2 and 3 (Figure 16). Given those results, it seems that there are no substantial differences 

between the both HEPS strategies on these test cases. 25 

https://doi.org/10.5194/nhess-2019-232
Preprint. Discussion started: 2 September 2019
c© Author(s) 2019. CC BY 4.0 License.



24 
 

a) b)  

Figure 14: Peak flow analysis at stations n°2 a) and n°5 b) for 20130305_2d. X-axis shows the delay from the observed peak time, 
y-axis shows the deviation from the observed peak discharge. The triangles shows the deviation of the simulations with ensemble 
members forcing (grey for MPS, light blue for PILB), the shapes with black contour shows the deviation of the median of the 
HEPS simulations with ensemble members forcing, the pink circle shows the deviation of the simulation with JP1 forcing, the 5 
green circle the deviation of the simulation with PLU forcing and the dark blue square the deviation of the simulation with 
deterministic WRF forcing. Alert 1 (yellow dashed line) is the warning threshold, the black star is the observation used as 
normalized reference. 

a)  b)  

Figure 15: Peak flow analysis at stations n°2 a) and n°5 b) for 20131117_2d. See Figure 14 for the details of the legend. 10 
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a)  b)  

Figure 16: Peak flow analysis at stations n°2 a) and n°5 b) for 20141129_2d. See Figure 14 for the details of the legend. 

5.3 System reliability for flood warning 

Results of all the performed hydro-meteorological simulations lead to the conclusion that it is very difficult to correctly 

reproduce the spatial variability of the catchment behaviour, even forcing the hydrological model with observed rainfall. 5 

Next step was therefore to test the ability of the hydrometeorogical modelling strategies for issuing reliable flood warnings. 

Let's consider a forecast event that either occurs or does not occur. For flood forecasting, it usually consists in an alert 

threshold exceedance. The performance of a hydrometeorological prediction chain can be examined using a contingency 

table (Table 6).  

 10 

 Threshold exceeded observed 

Yes No 

Threshold exceeded forecast Yes Hits (h) False alarms (f) 

No Misses (m) Correct negatives (n) 

Table 6: Two-by-two contingency table for flood warning evaluation. 

Several metrics for the evaluation of flood warning performance can be derived from the contingency table by considering 

the number of hits (h), misses (m), false alarms (f) and corrects negatives (n) for all the simulations. The proportion correct 

(PC), probability of detection (POD), false alarm ratio (FAR), critical success index (CSI) and BIAS have the following 

properties (Nurmi, 2003):  15 
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- The PC score corresponds to the ratio of correct warning forecasts and total forecasts. PC ranges from 0 to 1, the 

latter being the perfect score. Note that the PC index doesn't differentiate between misses and false alarms. 

- The probability of detection is the ratio of correctly forecast threshold exceedances to the total number of threshold 

exceeded observed. POD ranges from 0 (no hit) to 1, 1 being the best. Note that for values equal to one, there are no 

misses and all occurrences of the event were correctly forecast. However, POD doesn't penalize false alarms and it 5 

can be artificially improved by overforecasting. 

- The false alarm ratio is the ratio of the number of false alarms to the total number of threshold exceeded forecasts. 

FAR ranges from 0 to 1, 0 being perfect. That is, there are no false alarms and all warning forecasts were correct. 

Note that FAR doesn't penalize misses and it can be artificially improved by underforecasting. 

- Neither POD nor FAR can give a complete picture of forecasting success. The Critical Success Index combines 10 

both aspects of probability of detection and false alarm ratio. Therefore, CSI is more balanced and better quantifies 

the correspondence between the observed and forecasted occurrences. This index is sensitive to hits and penalizes 

both misses and false alarms. CSI values range from 0 (no hit) to 1 (no misses, no false alarms), 1 being the best. 

CSI ignores correct negatives as what it is expected in the forecast is to be effective in case of alert.  

- The frequency bias compares the number of times an event was forecast to the number of times an event was 15 

observed. If deTV = 1, both frequencies are equal and the forecast is unbiased. If deTV > 1 (< 1), there is an 

overforecast (underforecast) tendency: the event was forecast more (less) than it was observed. 

As a first step, the probability of exceeding the warning threshold has been calculated for each ensemble strategy. Results are 

very similar for MPS-HEPS and PILB-HEPS: overall, with respect to the deterministic simulations, both ensemble strategies 

improve the forecast of threshold exceedance for station n°5 (Tautavel) and degrade it for station n°2 (StPaul) whereas there 20 

is no clear trend for station n°1 (Ansignan). As it has been stated in §3.2, when the hydrologic simulations are suitable for 

the eastern Agly (station n°2), the discharge is overestimated over the western part (station n°5). As most members of the 

PILB and MPS ensembles exhibit underestimations for the 04-05/03/2013 and 28-29/11/2014 events, both MPS-HEPS and 

PILB-HEPS result in less false alarm for station n°5 and more misses for station n°2. PILB and MPS ensembles also exhibit 

overestimations for the 16-18/11/2013 event but less than the deterministic simulation, results are therefore the same as for 25 

the 2 other events. 

Figure 17 to Figure 19 show the results for FAR, CSI and BIAS scores at the five hydrometric sections. These scores are 

calculated with respect to the observed discharges and by using all the runs of the different episodes. As 48-h simulations 

have been performed, these scores are based on the following 7 experiments described in §5.2: 20130304_2d, 20130305_2d, 

20131116_2d, 2013117_2d, 20131118_2d, 20141128_2d, 20141129_2d. Some tendencies can be highlighted from these 30 

results: 

− The MPS-HEPS strategy overall performs better than the PILB-HEPS approach for the tested scores. However, 

both ensemble strategies scores are very similar. 
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− No ensemble strategy performs best for station n°2 for FAR and CSI: there is no false alarm at this station (Figure 

17) and therefore, the CSI score is the best with respect to the other stations (Figure 18). 

− Although the ensemble improves the peak timing in some events, it doesn't improve the issuance of warning at least 

according to the five tested scores: the deterministic WRF simulation always has better scores than the median of 

both MPS-HEPS and PILB-HEPS, excepted for BIAS, and sometimes better than the maximum. 5 

BIAS shows that both ensemble strategies tend to underestimate the discharge at all the gauge-stations excepted station n°1, 

in the mountainous part of the catchment (Figure 19). That is, MPS-HEPS and PILB-HEPS tend to underestimate the 

discharge at all the stations excepted over the mountainous part of the catchment. This is an indication of the paramount 

importance of the orography when controlling the location of deep convection in the meteorological simulations. When 

orography does not play such an important role, forecasting the small-scale atmospheric features linked to the triggering and 10 

development of highly localised convective precipitation cores is more uncertain. As mentioned before, PILB-HEPS and 

MPS-HEPS tend to exhibit underestimations for both 20130305_2d and 20141129_2d simulations, and overestimations for 

the 20131117_2d run. Conversely, the observed forcing and the deterministic forecast tend to overestimate the discharge 

excepted for the two eastern stations n°4 and n°5. We find here the consequences of the hydrological model calibration: 

when the simulated hydrographs are suitable for the eastern Agly, the discharge is overestimated over the western part 15 

(§3.2). 

 

Figure 17: FAR scores at the five gauging stations for the 7 simulations. Statistical indices have been computed by using the 
observed discharge. Experiments are labelled as WRF: simulated discharge with deterministic WRF forcing, PLU: simulated 
discharge with PLU forcing, JP1: simulated discharge with JP1 forcing, MPS and PILB: ensemble strategies. 20 
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Figure 18: as Figure 17, but for CSI. 

 

Figure 19: as Figure 17, but for BIAS. 

QDFs can be evaluated against observed discharges but also against simulated discharges using observed forcings. As stated 5 

by several authors (Verkade et al., 2013; Bellier et al., 2017), the errors due to the parameters and structure of the hydrologic 

model are therefore not taken into account in the last case. This approach separates the impact of the external-scale 

uncertainties from these emerging from the hydrological model. Evaluations have been again performed by using the 

simulated discharges with observed forcing PLU and JP1 as the baseline instead of the observed flows. 

As expected, when only external-scale uncertainties are taken into account, the scores for the evaluation against simulated 10 

discharges with PLU or JP1 improve: PC, POD and CSI are higher and there are no false alarms at three stations (n°1, n°2 
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and n°3). However, the BIAS score shows that both ensemble strategies tend to highly underestimate the simulated discharge 

at all the stations, excepted at station n°5 when compared to PLU and at stations n°4 and n°5 when compared to JP1 (Figure 

20). These stream-gauges are located over the eastern part of the catchment. Again, the deterministic WRF simulations have 

better scores than the median of both HEPS, excepted for the station n°4 and the PC, POD, FAR and BIAS scores when 

compared to JP1. 5 

 

Figure 20: Bias scores with respect to the simulated discharges with forcing PLU (left) and forcing JP1 (right) at the five gaging 
stations for all the simulations of the 7 simulations, WRF: simulated discharge with deterministic WRF forcing, PLU: simulated 
discharge with PLU forcing, JP1: simulated discharge with JP1 forcing, MPS ensemble strategies.  

5.4 Overall view of the modelling performance 10 

Binary events highlight one aspect of the forecast, especially relevant to avoid casualties, damages or economic losses 

(Hersbach, 2000). To obtain a more general quantification of the ensemble performances, other criteria are necessary. Here, 

the overall discharge forecast at the 5 gaging stations is studied by using the Continuous Rank Probability Score (�hiV; 

Matheson and Winkler, 1976). The �hiV measures the differences between the forecast, i
j�, and observation, ik
j�, 
expressed as cumulative distributions of one parameter j (Eq. 4). This score has the dimensions of the parameter and is equal 15 

to the mean absolute error (MAE) for a deterministic forecast. The following description is mainly retrieved from Hersbach 

(2000): 

�hiV = l Wi
j� − ik
j�Y��jmn
�n  ,          (4) 

where j is the parameter of interest, herein the discharge, and jk is the value that actually occurred. i
j� and ik
j� are the 

cumulative distributions of j and jk, respectively (Eqs. 5 and 6). 20 

i
j� = l o
p��pq
�n  ,           (5) 
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where o
j� is the probability density function of the forecast j. 

ik
j� = ℋ
j − jk� = s0	for	j < jk1	for	j ≥ jk ,         (6) 

where ℋ  is the Heaviside function. The minimum value of the �hiV  is zero for a perfect deterministic forecast (i.e., 

i
j� = ik
j�).  
Herein, the �hiV is averaged over the ensemble members and is therefore noted �hiVQQQQQQQ, while the j parameter corresponds 5 

to the discharge at the 5 gaging stations. The �hiVQQQQQQQ is very small for the simulations corresponding to the episode of 

November 2013 (i.e. 20131116_2d, 20131117_2d and 20131118_2d). This score is always below 10	m���� for all stations 

and the MPS-HEPS and PILB-HEPS strategies. Conversely, the �hiVQQQQQQQ is quite high – above 50	m����– for the numerical 

runs of the event of November 2014 (i.e. 20141128_2d and 20141129_2d), especially at the station n°5. That is, the 

cumulative distributions of discharge are similar between the HEPSs and the observed discharges for the event of November 10 

2013, but they are dissimilar for the episode of November 2014. Concerning the experiments for the episode of March 2013 

(i.e. 20130304_2d and 20130305_2d), the �hiVQQQQQQQ is low for stations n°1 and n°3 (below 15	m����) and higher for stations 

n°2, n°4 and n°5 (close to or above 20	m����). 
To evaluate more easily the performances of the ensemble strategies, their performances are also compared against the 

efficiency of a reference forecast by using the skill score with respect to the �hiVQQQQQQQ (Eq. 7) (Bontron, 2004): 15 

�hiVV = 1 − Hx:yQQQQQQQQ
Hx:yz{| ,           (7) 

The chosen reference forecast is the simulation performed with the deterministic forecast (WRF) and in that case the �hiVQQQQQQQ 
skill score writes as follows: 

�hiVV = 1 − Hx:yQQQQQQQQ
}~�
�x�� ,           (8) 

A �hiVV of 1 corresponds to a perfect forecast (�hiVQQQQQQQ = 0), while a value of 0 indicates that the HEPS and the reference 20 

forecast have the same performances (�hiVQQQQQQQ = �T�
�h��). Negative skill scores denote that the reference prediction 

performs better than the HEPS (�hiVQQQQQQQ > �T�
�h��). 
Figure 21 shows that the two ensemble strategies exhibit very similar skill score �hiVV: 

− In general, both ensemble strategies perform better than the deterministic WRF experiment, excepted for 

20130304_2d and 20130305_2d. 25 

− The main differences between both ensemble strategies are found for the 20131118_2d experiment: PILB clearly 

outperforms MPS at all the stream-stations 
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a) b)  

Figure 21: -�]�QQQQQQQ skill scores of the seven 48-h experiments and at the 5 hydrometric stations for the: (a) MPS-HEPS and (b) 
PILB-HEPS strategies. Reference forecast is the deterministic WRF experiment. 

As stated before, selecting the runoff simulation driven by the deterministic weather forecast as the reference does not 

account for the errors due to the hydrological model. The �hiVQQQQQQQ skill score can also be calculated by using the simulation 5 

performed with the observed precipitation fields (PLU and JP1) as the reference: 

�hiVV:6� = 1 − Hx:yQQQQQQQQ
}~�
:6��

�hiVV�:� = 1 − Hx:yQQQQQQQQ
}~�
�:��

           (9) 

Not surprisingly, both ensemble strategies have an overall lower performance when compared with the PLU and JP1 driven 

runoff simulations, except for event of November 2013. It is interesting to notice that for the 20131118_2d run, the PILB 

driven runoff forecasts outperform the radar driven discharge simulation (Figure 22, right). This is consistent with the 10 

previous analyses: events with relatively moderate peak discharge – as the event of November 2013– are not correctly 

simulated by MARINE whatever the observed forcing (Table 4), whereas the �hiVQQQQQQQ is very low for the ensemble simulations 

of the event of November 2013. As stated before, a low �hiVQQQQQQQ means that the cumulative distributions of discharge are 

similar between both HEPSs and the observed discharges for the event of November 2013, but they are dissimilar between 

the simulations with both observed forcings and observed discharges for the same event. This may be related to the fact that 15 

MPS-HEPS and PILB-HEPS exhibit overestimations for this event maybe compensating errors in the model structure that 

prevent the simulation with observed forcings for this event to be efficient. Both ensemble strategies outperform the 

hydrological simulations driven by observed forcings (PLU and JP1) for the mountainous station (n°1: Ansignan) and the 

20141128_2d, 20141129_2d, 20131116_2d and 20131118_2d runs. This result is consistent with the difficulty to obtain 

satisfactory observations of rainfall in mountainous areas owing to sparse rain-gauge deployment and beam radar blockage. 20 
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a) b)  

Figure 22: As Fig. 26, but just for the PILB-HEPS and the (a) PLU and (b) JP1 as reference. 

6 Conclusion 

One of the main scientific aims of the HyMeX program is to improve the hydro-meteorological forecasting of flash floods 

over the Western Mediterranean region. To this end, three of the most important floods that recently developed over the 5 

Agly basin have been selected as study cases. Flood forecasting is a challenging task over this region: high spatial and 

temporal variability in convective cores and rainfall intensity, strong nonlinearities in the rainfall-runoff transformation and 

antecedent moisture conditions lead to a myriad of hydrological responses. This work has focussed in coping with 

uncertainties emerging from the initial and lateral boundary conditions and formulation of numerical weather prediction 

models. To this end, potentialities of MPS-HEPS and PILB-HEPS ensembles have been examined so as to produce suitable 10 

flood forecasts over the Agly basin. Main conclusions are: 

− A better ensemble generation strategy at regional scale has not been found. Similarities in the performance of the 

MPS and PILB approaches indicate that both sources of external-scale uncertainty contribute similarly to produce 

adequate levels of skill and spread in the PQPFs.  

− Ensemble hydro-meteorological simulations have resulted satisfactory for alarm detection, even if individual 15 

ensemble members can be far from the observations. Alarm systems benefit from large hydro-meteorological 

ensemble spreads.  

− The overall HEPS performances improved the deterministic driven runoff simulations. 

Some unexpected results also raise interesting questions: it is the case for instance for the event of November 2013 which is 

poorly simulated using both observed forcings. Ensemble strategies therefore improve the overall discharge forecast for this 20 

event: what is the specificity of this event that makes it poorly simulated? Is it due to the radar and rain-gauges location? Is it 

due to the state of the catchment before the event? Is it due to the model structure itself that doesn't represent the 
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hydrological processes involved? These issues require further investigations and probably more test cases. The next logical 

approach will be to estimate the uncertainties in the hydrological modelling. Performing hydrological model ensemble to test 

the errors due to the model calibration is time consuming but according to Douinot et al. (2017) it is also useful in 

identifying the strengths and weaknesses of the model in simulating the hydrological processes and will therefore allow 

providing the beginnings of an answer to the above questions. 5 
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