
Supporting Information 

1 Markov model for weather pattern (WP) prediction 

Let 𝑊(𝑡) = 𝑖 represent a particular WP𝑖, with 𝑖 = 1,… ,30, on day 𝑡. We construct a first-order, nonhomogeneous 

Markov chain to predict WPs using the following procedure: 

1. Calculate the 12 monthly transition matrices, 𝐗𝒎,𝑚 = 1,… ,12, of MO30: 

𝑥1,2
(3) = Pr(𝑊6 = 𝑖|𝑊689 = 𝑗), for	𝑖, 𝑗 = 1, … , 30. 

Each matrix is calculated using transition probabilities from three consecutive months, centred on the 

month of interest. For example, the transition matrix for June is calculated using data from May, June 

and July. 

2. Set 𝑊(𝑡) as the observed WP at time 𝑡 = 0, the forecast initialisation day. 

3. Generate a random number 𝑥∗ from the standard uniform distribution 𝑈(0,1). 

4. Find the index 𝑦 such that:   
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where 𝑖 = 𝑊(𝑡). 

5. Set 𝑊(𝑡 + 1) = 𝑦 and 𝑡 = 𝑡 + 1. 

6. Repeat steps 3 to 5 until 𝑡 = 𝑇, the final day to be forecast. 

To provide probabilistic output, for each forecast we run 1000 Markov models in parallel. 

2 Estimating precipitation forecasts from weather patterns 

We process the daily HadUKP precipitation data by discretising into 𝑣 bins with historical probabilities 𝑝J for 

𝑏 = 1,… , 𝑣. Dry days form one bin and bin intervals increase for higher precipitation values, see Table 1 in the 

main document. This gives a discrete distribution of precipitation interval relative frequencies, 𝐷(𝑧), with 

conditional distributions for each WP given by 𝐷(𝑧|𝑊 = 𝑖), for 𝑖 = 1,… ,30. We also define 𝑤 summed 

precipitation intervals 𝑠P  for 𝑐 = 1,… ,𝑤. Forecast probabilities of these summed intervals are derived from the 

WP forecast models as follows: 

1. Set the ensemble member 𝑒 ∈ (𝑒9,… , 𝑒T), where 𝑁V is the number of ensemble members; time 𝑡 = 0, 

the first day of the forecast, and then the predicted WP by ensemble member 𝑒 at time 𝑡 is 𝑊V(𝑡) = 𝑖 for 

𝑖 = 1,… 30. 

2. Set 𝑝W = 0, calculate the probabilities 𝑝9,…𝑝3 of each of the 𝑚 daily precipitation bins from the discrete 

precipitation distribution that is conditional on 𝑊V(𝑡) and on the 91-day windows centred on 𝑡 (i.e. 𝑡 −

45, … , 𝑡 + 45) from every year except the current year. This last condition is equivalent to a leave-one-

year-out cross-validation procedure. 



3. Define the maximum value of each bin as 𝑙\] , 𝑏 = 1,…𝑣, with 𝑙\^ = 0. Note that 𝑙\^ = 𝑙\_ = 0, ensuring 

zero precipitation days can be simulated. 

4. Generate 𝑢 random variables 𝑝a∗~𝑈(0,1) for 𝑘 = 1, … , 𝑢. 

5. For each 𝑝a∗ , find the index 𝑞 such that   
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Set 𝑃e = ∑ 𝑝2
e89
2EW  and 𝑃ef9 = ∑ 𝑝2

e
2EW , the cumulative probabilities of the bins adjacent to 𝑝a∗. 

6. Define the difference between the adjacent bins as 𝛼 = 𝑃ef9 − 𝑃e and the difference between the random 

number and the lower cumulative probability as 𝛽 = 𝑝a∗ − 𝑃e. 

7. Estimate the precipitation value for each 𝑝a∗  as 𝑟a(𝑡) = 𝑙\l +
m
n
o𝑙\lp_ − 𝑙\lq. We now have 𝑢 predicted 

daily precipitation values at time 𝑡, 𝒓(𝑡) = (𝑟9(𝑡),… , 𝑟s(𝑡)). 

8. Set 𝑡 = 𝑡 + 1 and repeat steps 3 to 6 until the final day of the forecast, 𝑡tuv, is processed. 

9. Sum the daily precipitation vectors and divide by the random-sample size (∑ 𝒓(𝑡))/𝑢x  for 𝜏 =

0, … , 𝑡tuv. 

10.  Discretise according to the 𝑤 summed precipitation bins 𝑠9, … 𝑠z to obtain a distribution of relative 

frequencies for this ensemble member 𝒇𝒆 = (𝑓9,… , 𝑓z). 

11. Set a new ensemble member 𝑒∗ ∈ ~𝑒9,… 𝑒T��, 𝑒
∗ ≠ 𝑒 and repeat steps 2 to 10 until every ensemble 

member has been processed. 

12. Sum each ensemble member’s distribution of summed precipitation relative frequencies and divide by 

the number of ensemble members to obtain a final forecast probability distribution: 

𝑭 = �B𝒇𝒆
V

� 𝑁V� . 

The number of ensemble members depends on the model. For EPS-WP, 𝑁V = 11, i.e. the number of ensemble 

members of the ECMWF dynamical model. For the Markov model 𝑁V = 1000. We set the number of samples 

drawn from each WP-precipitation conditional distribution as 𝑢 = 10,000. 

 

 


