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Abstract. Dynamical model skill in forecasting extratropical precipitation is limited beyond the medium-range (around 15 

days), but such models are often more skilful at predicting atmospheric variables. We explore the potential benefits of using 10 

weather pattern (WP) predictions as an intermediary step in forecasting UK precipitation and meteorological drought on sub-

seasonal time scales. MSLP forecasts from the ECMWF ensemble prediction system (ECMWF-EPS) are post-processed into 

probabilistic WP predictions. Then we derive precipitation estimates and dichotomous drought event probabilities by sampling 

from the conditional distributions of precipitation given the WPs. We compare this model to the direct precipitation and 

drought forecasts from ECMWF-EPS and to a baseline Markov chain WP method. A perfect-prognosis model is also tested to 15 

illustrate the potential of WPs in forecasting. Using a range of skill diagnostics, we find that for 31- and 46-day lead-times, 

dynamical, and to a lesser extent Markov, model forecasts using WPs can achieve higher skill scores that the non-WP method, 

particularly for precipitation. Forecast skill scores are generally modest (rarely above 0.4), although those for the perfect-

prognosis model highlight the potential predictability of precipitation and drought using WPs, with certain situations yielding 

skill scores of almost 0.8, and drought event hit and false alarm rates of 70% and 30%, respectively. 20 

1 Introduction 

Droughts are a recurrent climatic feature in the UK. Severe events, such as those in 1975-76, 1995 and 2010-12, had significant 

implications for many sectors, including agriculture, water resources and the economy, as well as for ecosystems and natural 

habitats (Marsh, 1995; Marsh et al., 2007; Rodda and Marsh, 2011; Kendon et al., 2013). To mitigate the effects of drought, 

it is crucial that relevant sectors plan ahead, and drought forecasts have an important role in designing these strategies. Despite 25 

this, there is very little published research on UK drought prediction, and studies have predominantly focussed on hydrological 

drought (Wedgbrow et al., 2002; Wedgbrow et al., 2005; Hannaford et al., 2011). 

Meteorological drought is challenging to predict using dynamical ensemble prediction systems (Yoon et al., 2012; Dutra et 

al., 2013; Yuan and Wood, 2013; Mwangi et al., 2014; Lavaysse et al., 2015). This is primarily due to the complex processes 

involved in precipitation formation, making it a difficult variable to forecast beyond short lead-times (Golding, 2000; Cuo et 30 

al., 2011; Smith et al., 2012; Saha et al., 2014). At longer lead-times, dynamical model skill in predicting atmospheric variables 

tends to be much higher (Saha et al., 2014; Scaife et al., 2014; Vitart, 2014; Baker et al., 2018). This has led researchers to 

investigate the potential of using atmospheric forecasts as a precursor to predicting precipitation-related hazards (Lavers et al., 

2014; Lavers et al., 2016; Baker et al., 2018). 

Weather pattern (WP; also called weather types, circulation patterns and circulation types) classifications are a candidate for 35 

such an application. A WP classification consists of a number of individual WPs, which are typically defined by an atmospheric 

variable and represent the broad-scale atmospheric circulation over a given domain (Huth et al., 2008). They can be used to 

make general predictions of local-scale variables such as wind speed, temperature and precipitation and are a tool for reducing 

atmospheric variability to a few discrete states. WP classifications have mainly been studied in the context of extreme hydro-

meteorological events (Hay et al., 1991; Wilby, 1998; Bárdossy and Filiz, 2005; Richardson et al., 2018a; Richardson et al., 40 
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2018b), and as a tool for analysing historical and future changes in atmospheric circulation patterns (Hay et al., 1992; Wilby, 

1994; Brigode et al., 2018). See Huth et al. (2008) for a comprehensive review of WP classifications. 

Until recently, the capability of dynamical models to predict WP occurrences had been little researched. Ferranti et al. (2015) 

evaluated the forecast skill of the medium-range European Centre for Medium-Range Weather Forecasts ensemble prediction 

system (ECMWF-EPS) (Buizza et al., 2007; Vitart et al., 2008) using WPs. They objectively defined four WPs according to 45 

daily 500 hPa geopotential heights over the North Atlantic – European sector. Model forecasts of this variable for October 

through April between 2007 and 2012 were then assigned to the closest matching WP using the root-mean-square difference. 

Verification scores indicated that there was superior skill for predictions initialised during negative phases of the North Atlantic 

Oscillation (NAO) (Walker and Bliss, 1932). Similarly, WPs were used to evaluate the skill of the Antarctic Mesoscale 

Prediction System by Nigro et al. (2011). 50 

To support weather forecasting in the UK in the medium- to long range, the Met Office use a WP classification, MO30, in a 

post-processing system named “Decider” (Neal et al., 2016). Using a range of ensemble prediction systems, forecast mean 

sea-level pressure (MSLP) fields over Europe and the North Atlantic Ocean are assigned to the best-matching WP according 

to the sum-of-squared differences between the forecast MSLP anomaly and WP MSLP anomaly fields. Decider therefore 

produces a probabilistic prediction of WP occurrences for each day in the forecast lead-time. Decider has various operational 55 

applications: predicting the possibility of flow transporting volcanic ash originating in Iceland into UK airspace, highlighting 

potential periods of coastal flood risk around the British Isles (Neal et al., 2018) and as an early-forecast system for fluvial 

flooding (Richardson et al., in review). 

For Japan, Vuillaume and Herath (2017) defined a set of WPs according to MSLP. These WPs were used to refine bias-

correction procedures, via regression modelling, of precipitation from two global ensemble forecast systems. The authors 60 

found that improvements from the bias-correction method using WPs was strongly dependent on the WP, but overall superior 

to the global (non-WP) method. Relevant to this study, Lavaysse et al. (2018) predicted monthly drought in Europe using a 

WP-based method. They aggregated ECMWF-EPS daily reforecasts of WPs to predict monthly frequency anomalies of each 

WP. For each 1° grid cell, the predictor was chosen to be the WP that corresponded to the maximum absolute temporal 

correlation between the monthly WP frequency of occurrence anomaly and the monthly Standardised Precipitation Index (SPI) 65 

(McKee et al., 1993). Using this relationship, the model predicted drought in a grid cell when 40% of the ECMWF-EPS 

ensemble members forecast a Standardised Precipitation Index (SPI; McKee et al., 1993) value below -1. Compared to direct 

ECMWF-EPS drought forecasts, the WP-based model was more skilful in north-eastern Europe during winter, but less skilful 

for central and eastern Europe during spring and summer. Over the UK, the WP model appeared to be superior for north-

western regions in winter, but inferior in summer, although scores for the latter were of low magnitude. 70 

The aforementioned studies have all considered daily WPs. An example of WPs defined on the seasonal time-scale was 

presented by Baker et al. (2018). The authors analysed reforecasts of UK regional winter precipitation between the winters of 

1992-93 and 2011-12 using GloSea5, which has little raw skill in forecasting this variable (MacLachlan et al., 2015). GloSea5 

has, however, been shown to skilfully forecast the winter NAO (Scaife et al., 2014). Baker et al. (2018) exploited this by 

constructing two winter MSLP indices over Europe and the North Atlantic, and reforecasts of these indices were derived from 75 

the raw MSLP fields. A simple regression model then related these indices to regional precipitation and produced more skilful 

forecasts than the raw model output. 

In this study, we shall explore the potential for utilising a WP classification (specifically MO30) in UK meteorological drought 

prediction. We shall predict WPs using two models, ECMWF-EPS and a Markov chain, from which precipitation and drought 

forecasts will be derived. These models will be compared to direct precipitation and drought forecasts from ECMWF-EPS. 80 

We also run an idealised, perfect prognosis model that uses WP observations rather than forecasts as an ‘upper benchmark’ to 
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assess the upper limit of the usefulness of the WP classification. Section 2 contains details of the data sets used, including 

describing the creation of a WP reforecast data set. Section 3 describes the models in detail and the forecast verification 

procedure. In Sect. 4, we shall present the results and in Sect. 5, we draw some conclusions and make recommendations for 

future work. 85 

2 Data 

We use a Met Office WP classification called MO30 (Neal et al., 2016). WPs in MO30 were defined by clustering 154 years 

(1850-2003) of daily MSLP anomaly fields into 30 distinct states. The data were extracted from the European and North 

Atlantic daily to multidecadal climate variability (EMULATE) data set (Ansell et al., 2006) in the domain 30° W-20° E; 35°-

70° N, with a spatial resolution of 5° latitude and longitude. These 30 WPs are therefore representative of the 30 most common 90 

patterns of daily atmospheric circulation over Europe and the North Atlantic (Fig. 1), and they are ordered such that WP1 is 

the most frequently occurring WP annually, while WP30 is the least frequent. A consequence of the clustering process and 

ordering is that the lower-numbered WPs have lower-magnitude MSLP anomalies and are more common in the summer than 

in the winter, and vice versa for the higher-numbered WPs (Richardson et al., 2018a)(Neal et al., 2016). 

For this analysis, we have created a 20-year daily WP probabilistic reforecast data set. We use the sub-seasonal to seasonal 95 

(S2S) project (Vitart et al., 2017) data archive, which, through ECMWF, hosts reforecast data for a multitude of variables and 

by a range of models from around the globe. In particular, we use ECMWF-EPS, which is a coupled atmosphere-ocean-sea-

ice model with a lead-time of 46 days. The horizontal atmospheric resolution is roughly 16 km up to day 15 and 32 km beyond 

this. The model is run at 00Z, twice weekly (Mondays and Thursdays) and has 11 ensemble members for the reforecasts 

(compared to 51 members for the real-time forecasts). For further details, refer to the model webpage (ECMWF, 2017). We 100 

use daily reforecasts of MSLP between 02 January 1997 and 28 December 2016, inclusive, with the same domain and 

resolution as MO30. These fields are converted to anomalies by removing a smoothed climatology and subsequently assigned 

to the closest matching MO30 WP via minimising the sum-of-squared differences. Both the MSLP climatology and the WP 

definitions are the same as those used by Neal et al. (2016) to ensure consistency. We compare this against an observed WP 

time series to measure forecast skill. For this, WPs are assigned from 00Z SLP fields from the ERA-Interim reanalysis data 105 

set (Dee et al., 2011) to align with the ECMWF-EPS forecast times.  

As observed precipitation, we use the Met Office Hadley Centre UK Precipitation (HadUKP) data set (Alexander and Jones, 

2000). For nine regions covering the UK (Fig. 2), we use daily precipitation series from 1979 to 2017. We discretise the data 

into precipitation intervals (“bins”) defined in Table 1; see the supporting material for further information. The large region 

sizes in HadUKP are suitable both for analyses of drought, which is typically considered a regional rather than localised event, 110 

and for MO30 because they correspond to the large-scale circulation patterns that the WPs represent. From the S2S archive, 

we extract ECMWF-EPS precipitation reforecasts for the same dates as the WP reforecast data set. The data have a resolution 

of 0.5° latitude and longitude; grid cells are assigned to whichever of the nine HadUKP regions the cell centres lie in and by 

taking the daily mean of all cells over each region, we produce a probabilistic reforecast data set of precipitation for each of 

the HadUKP regions. These data are discretised in the same way as the HadUKP data. 115 

3 Methods 

3.1 Weather pattern forecast models and verification procedure 

For WP forecasts, we compare two models. The first is ECMWF-EPS, which we shall refer to as EPS-WP (in practice this is 

the WP reforecast data set discussed in the previous subsection). The second model is a 1000-member, first-order, 

nonhomogeneous Markov chain, with separate transition matrices for each month. This is similar to the Markov model used 120 
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for a simulation study by Richardson et al. (2018b), who found it was able to reasonably replicate the observed frequencies of 

occurrences of the MO30 WPs. Full details of the Markov model are given in the supporting material. 

To evaluate WP forecast skill we use the Jensen-Shannon divergence (JSD), suitable for measuring the distance between two 

probability distributions (Lin, 1991). It is based on information entropy, which is used to measure uncertainty. An information-

theoretic approach to verification is not widespread, although there is some published research on the topic (Leung and North, 125 

1990; Kleeman, 2002; Roulston and Smith, 2002; Ahrens and Walser, 2008; Weijs et al., 2010; Weijs and Giesen, 2011). The 

JSD will be used to measure the forecast performance by quantifying the distance between distributions of the observed and 

forecast WP frequencies. The JSD is based on the Kullback-Leibler divergence (KLD) (Kullback and Leibler, 1951). Let 𝑃 

and 𝑄 be two discrete probability distributions. The KLD from 𝑄 to 𝑃 is given by: 

𝐷$%(𝑃||𝑄) = −+𝑃, log0
𝑄,
𝑃,

1

,23

, 130 

Equation 1 

measured in bits (i.e. a binary unit of information). In our application	𝐼 = 30, the number of WPs and 𝑃 = (𝑝:,3,… , 𝑝:,<=) and 

𝑄 = (𝑞:,3,… , 𝑞:,<=) are the vectors of observed and forecast WP relative frequencies, respectively. (Because these are relative 

frequencies, ∑𝑃 = 1 and ∑𝑄 = 1.) As there would inevitably be some cases where the model predicts no occurrences of 

some WPs (i.e. when 𝑄 contains zeros), 𝐷$%(𝑃||𝑄) will be undefined at times. Using the JSD avoids this problem; it is defined 135 

as: 

𝐷ABC(𝑃||𝑄) =
1
2𝐷$%(𝑃||𝑀) +

1
2𝐷$%(𝑄||𝑀), 

Equation 2 

where 𝑀 = (𝑃 + 𝑄)/2. Unlike the KLD, the JSD is symmetric i.e. 𝐷ABC(𝑃||𝑄) ≡ 𝐷ABC(𝑄||𝑃). Also, 0 ≤ 	𝐷ABC(𝑃||𝑄) ≤ 1, 

with a score of zero indicating 𝑃 and 𝑄 are the same (a perfect forecast). Equation 2 gives the JSD for a single forecast-event 140 

pair; to obtain the average JSD for all forecasts we take the mean of all forecast-event pairs. Skill is evaluated separately for 

each month, with the middle date of each forecast period used to assign the month. We calculate forecast skill for lead-times 

of 16, 31 and 46 days. We use the JSD to compare WP forecast skill of EPS-WP and the Markov model, considering each 

lead-time separately. 

3.2 Precipitation and drought forecast models 145 

We compare four models (Table 2), three of which are forecast models, while one model is a perfect prognosis model. All 

models are considered at the same lead-times as the WP predictions. Two of the forecast models are driven first by a WP 

component: EPS-WP and the Markov model described above. The perfect prognosis model, Perfect-WP, is used as an ‘upper 

benchmark’ with (future) observed WPs as input, rather than forecast WPs. It is an idealised model that cannot be used 

operationally, but it allows us to assess the potential usefulness of WPs in precipitation and drought forecasting. Precipitation 150 

is estimated from the WP predictions (or observations in the case of Perfect-WP) by sampling from the conditional distributions 

of precipitation given each WP. As we discretised the precipitation, these conditional distributions reflect the observed relative 

frequencies of each precipitation interval occurring. The sampling procedure is done for each ensemble member and each day 

in the forecast lead-time, with the results summed across all members and days to provide probabilistic forecasts of summed 

precipitation intervals (Table 1). A full description of this method is detailed in the supporting information. The fourth model 155 

(the third forecast model) is the direct ECMWF-EPS precipitation forecasts (EPS-P), processed to provide probabilistic 

predictions of regional precipitation intervals as described earlier. 
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3.3 Precipitation forecast verification 

To evaluate precipitation forecast performance we use the ranked probability score (RPS) (Epstein, 1969; Murphy, 1971). We 

express the RPS as the ranked probability skill score (RPSS) using 160 

RPSS = 1 −
RPS
RPSMNO

, 

Equation 3 

Where RPSMNO is the score of a climatological forecast, which in our case is the climatological event category (i.e. precipitation 

interval) relative frequencies (PC). A perfect score is achieved when RPSS = 1, which is also the upper limit. Negative 

(positive) values indicate the forecast is performing worse (better) than RPSMNO. 165 

3.4 Drought forecast verification 

We evaluate model performance in predicting dichotomous drought/non-drought events. We define two classes of drought 

severity. The first class, mild drought, is when precipitation sums (over the length of the considered lead-time) are below the 

30.9th percentile of the summed precipitation distribution. The second class is moderate drought, with such sums being below 

the 15.9th percentile. These percentiles are calculated for each region and month using the whole data set from 1979 through 170 

2017, and are chosen as they correspond to SPI values of -0.5 and -1, respectively. 

3.4.1 The Brier Skill Score 

We use three verification techniques to assess skill in predicting droughts. The first is the Brier Skill Score (BSS). The BSS is 

based on the Brier Score (BS) (Brier, 1950), which measures the mean-square error of probability forecasts for a dichotomous 

event, in this case the occurrence or non-occurrence of drought. The BS is converted to a relative measure, or skill score, by 175 

setting 

BSS = 1 −
BS
BSMNO

, 

Equation 4 

where BSMNO is the score of a reference forecast given by the quantiles associated with each drought threshold, 0.309 for mild 

drought and 0.159 for moderate drought. As with the RPSS, a perfect score is achieved when BSS = 1 and negative (positive) 180 

values indicate the forecast is performing worse (better) than BSMNO. 

3.4.2 Reliability diagrams – forecast reliability, resolution and sharpness 

The BS can be decomposed into reliability, resolution and uncertainty terms (Murphy, 1973): 

BS = reliability − resolution + uncertainty, 

Equation 5 185 

enabling a more in-depth assessment of forecast model performance. Reliability diagrams offer a convenient way of visualising 

the first two of these terms (Wilks, 2011). These diagrams consist of two parts, which together show the full joint distribution 

of forecasts and observations. The first element is the calibration function, 𝑔(𝑜3|𝑝,), for 𝑖 = 1,…𝑛, where 𝑜3 indicates the 

event (here, a drought) occurring and the 𝑝, are the forecast probabilities. The calibration function is visualised by plotting the 

event relative frequencies against the forecast probabilities and indicates how well calibrated the forecasts are. We split the 190 

forecast probabilities into 10 bins (subsamples) of 10% probability and the mean of all forecast probabilities in each bin is the 
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value plotted on the diagrams (Bröcker and Smith, 2007). Points along the 1:1 line represent a well-calibrated, reliable, 

forecast, as event probabilities are equal to the forecast probabilities and suggest that we can interpret our forecasts at ‘face 

value’. If the points are to the right (left) of the diagonal, the model is over-forecasting (under-forecasting) the number of 

drought events. 195 

The forecast resolution can also be deduced from the calibration function. For a forecast with poor resolution, the event relative 

frequencies 𝑔(𝑜3|𝑝,) only weakly depend on the forecast probabilities. This is reflected by a smaller difference between the 

calibration function and the horizontal line of the climatological event frequencies and suggests that the forecast is unable to 

resolve when a drought is more or less likely to occur than the climatological probability. Good resolution, on the other hand, 

means that the forecasts are able to distinguish different subsets of forecast occasions for which the subsequent event outcomes 200 

are different to each other.  

The second element of reliability diagrams is the refinement distribution, 𝑔(𝑝,). This expresses how confident the forecast 

models are by counting the number of times a forecast is issued in each probability bin. This feature is also called sharpness. 

A low-sharpness model would overwhelmingly predict drought at the climatological frequency, while a high-sharpness model 

would forecast drought at extreme high and low probabilities, reflecting its level of certainty with which a drought will or will 205 

not occur, independent of whether a drought actually does subsequently occur or not. 

3.4.3 Relative operating characteristics 

As a final diagnostic we use the relative operating characteristic (ROC) curve (Mason, 1982; Wilks, 2011), which visualises a 

model’s ability to discriminate between events and non-events. Conditioned on the observations, the ROC curve may be 

considered a measure of potential usefulness – it essentially asks what the forecast is, given that a drought has occurred. The 210 

ROC curve plots the hit rate (when the model forecasts a drought and a drought subsequently occurs) against the false alarm 

rate (when the model forecasts a drought but a drought does not then occur). We compute the hit rate and false alarm rate for 

cumulative probabilities between 0% and 100% at intervals of 10%. A skilful forecast model will have a hit rate greater than 

a false alarm rate, and the ROC curve would therefore bow towards the top-left corner of the plot. The ROC curve of a forecast 

system with no skill would lie along the diagonal, as the hit rate and false alarm rate would be equal, meaning the forecast is 215 

no better than a random guess. The area under the ROC curve (AUC) is a useful scalar summary. AUC ranges between zero 

and one, with higher scores indicating greater skill. 

4 Results 

To reduce information overload, we do not show results for every combination of region, lead-time and drought class. Key 

results not shown will be conveyed via the text. We aggregate the precipitation results from monthly to three-month seasons 220 

for visual clarity and combine regional results for the ROC and reliability diagrams for the same reason. 

4.1 WP forecasts 

We find that EPS-WP is more skilful at predicting the WPs than the Markov model for every month and every lead-time, 

although the difference in skill between the two models decreases as the lead-time increases. The skill difference between 

models is much larger for a lead-time of 16 days compared to a lead-time of 46 days. For a 46-day lead-time, the difference in 225 

skill is negligible for May through October; in fact, these months have the smallest differences in JSD for all lead-times. This 

is presumably because the summer months are associated with fewer WPs compared to winter (Richardson et al., 2018a), 

resulting in a more skilful Markov model due to higher transition probabilities. 

An interesting result is how JSD scores for both models, especially for Markov, decrease as the lead-time increases (Fig. 3), 

suggesting an improvement in skill with lead-time. This is the opposite of the expected (and usual) effect and is probably 230 
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because both the observations and the forecasts tend towards climatology at longer lead-times. The JSD measures the distance 

between probability distributions, and at the shorter lead-times, the forecast relative frequency distribution tends to be much 

noisier compared to the observed relative frequency distribution i.e. a greater number of different WPs are predicted than 

observed. As the lead-time is increased, the observations become noisier and as a result the JSD tends to score the differences 

between these distributions as more similar (a smaller divergence). 235 

4.2 Precipitation forecasts 

During summer and spring, all three forecast models are well matched, although for a 16-day lead-time Markov is the least 

skilful. For this lead-time, EPS-P mostly scores similarly to EPS-WP, although it has higher skill for some regions (Figs. 4b 

and 4c) and even outperforms Perfect-WP for several regions in summer (Fig. 4c). At lead-times of 31 and 46 days, there is 

little difference in forecast model skill during spring and summer, although in summer NI and SWE appear to benefit from 240 

dynamical WP predictions (i.e. EPS-WP), as do the four eastern regions from any kind of WP forecast (EPS-WP and Markov; 

Fig. 5). On the other hand, using WP predictions is to the detriment of precipitation forecast skill in spring for SEE, as shown 

by the superior performance of EPS-P (Fig. 5). This split between the east and west is also found by Lavaysse et al. (2015), 

who used ECMWF-EPS to predict meteorological drought with a one month lead-time. 

For winter and autumn, EPS-WP is the most skilful forecast model except when considering a 16-day lead-time, for which 245 

EPS-P is often the best performer. Scotland benefits most from the use of EPS-WP, as even at the shortest lead-time this model 

is superior (Figs. 4a and 4d). Note that the skill of the WP forecasts matter, as Markov is associated with poor precipitation 

skill at this lead-time, which corresponds to its low skill in forecasting the WPs compared to EPS-WP (Fig. 3). EPS-WP is the 

most skilful model for 31- and 46-day lead-times; EPS-P and Markov score fairly evenly overall for a 31-day lead-time, with 

the former model the least skilful for a 46-day lead-time (Fig. 5). The difference in skill between EPS-WP and Markov is much 250 

larger for northern and western regions, particularly in winter. Therefore the improvement in skill by predicting the WPs with 

a dynamical model, rather than Markov (Fig. 3), translates to a spatially non-uniform gain in skill for precipitation, with 

western and northern regions the principal beneficiaries. However, it is difficult to say why this is the case, as from the JSD 

scores alone we do not know whether EPS-WP is better at predicting all WPs, or just some of them. Similarly, as the RPSS is 

for all forecast dates, we can’t be sure whether the improvement in precipitation forecast skill comes from an improvement 255 

over all periods or if the gain is made for predictions of dry or wet periods; drought forecast analysis results in the next 

subsection will go some way to answering this. 

Unsurprisingly, Perfect-WP is uniformly the most skilful precipitation ‘forecast’ model for all regions, seasons and lead-times, 

except for some regions and seasons with a 16-day lead-time. At this shortest lead-time, Perfect-WP is the most skilful in all 

cases during winter (Fig. 4a) and in all cases except NS during spring (Fig. 4b) and NEE during autumn (Fig. 4d), for which 260 

EPS-P is the most skilful. The only season in which Perfect-WP does not have the most skill for most regions is during summer, 

when EPS-P is superior (Fig. 4c). For lead-times of 31 and 46 days, perfectly predicting WPs would enable by far the most 

skilful precipitation estimates of any model, for all regions and seasons (Fig. 5). This model is obviously not practical, but the 

results serve to show that WPs are a potentially useful tool in medium-range precipitation forecasting. 

The key conclusions from this subsection are that, for winter and autumn, precipitation forecasts are notably more skilful when 265 

derived from dynamical predictions of WPs compared to either simple statistical WP predictions or direct precipitation 

forecasts from a dynamical model. Furthermore, the relative gain in skill is greater for longer lead-times, mainly as a result of 

a notable drop in skill for EPS-P when comparing a 31-day to a 46-day lead-time, whereas other forecast models’ score changes 

are less severe. For spring and summer, EPS-P is marginally the most skilful model at a 16-day lead-time, with little to choose 

between all three forecast models at the longer lead-times. A potential reason for the lower skill of WP-based models compared 270 

to EPS-P in summer is that the WPs associated with this season tend to be less clear-cut in terms of being associated with dry 
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or wet conditions (Richardson et al., 2018a), possibly as a result of their higher intra-WP variability compared to winter WPs 

(Richardson et al., 2018b). Only WP6, WP8 and WP9 are distinctly dry or wet and so precipitation estimates from summer 

WPs may not be appropriate for periods of non-normal precipitation.  

4.3 Drought forecasts 275 

4.3.1 Forecast accuracy 

Forecast accuracy for mild and moderate drought is qualitatively similar to those of general precipitation in terms of regional 

and lead-time differences. EPS-WP is overall the most skilful model, although this is less the case for a 16-day lead-time, for 

the three regions in East England and for most regions in spring and summer. Only the results for predicting moderate drought 

at the 46-day lead-time are presented (Fig. 6). This is because the results for mild drought are more similar to the RPSS results 280 

than those of moderate drought, those for the 16-day lead-time are the least useful for drought prediction (which tends to be 

focussed on longer-range forecasts) and those for the 31-day lead-time are qualitatively similar to the 46-day lead-time. 

For the shortest lead-time, EPS-P has the highest accuracy for predicting winter and autumn drought of both classes, except in 

Scotland, for which EPS-WP has the highest skill. Indeed, EPS-WP has the highest skill for the other lead-times during these 

seasons (Fig. 6). However, a key difference is that eastern England droughts are at least as accurately predicted by EPS-P as 285 

by EPS-WP for the two longer lead-times (Fig. 6), whereas for precipitation forecasting the latter tend to be more accurate 

(Fig. 5). Difference in model skill is lower for spring and summer drought forecasts, particularly for moderate drought (Fig. 

6). In fact, for this drought class, there is very little or no gain in skill by using WPs at 31- and 46-day lead-times for spring 

and summer compared to EPS-P (Fig. 6). Furthermore, at these lead-times both models are less skilful than issuing 

climatological drought probabilities (shown by their negative BSS), except for spring predictions of eastern and southern 290 

droughts. This suggests that, during spring and summer, deriving precipitation from predicted WPs may be useful if forecasting 

mild drought, but not for more severe droughts. 

4.3.2 Relative operating characteristics 

All models are better able to discriminate between drought and non-drought events than random chance, with Perfect-WP the 

most able and Markov the least able, subject to similar caveats regarding lead-time and season as for the BSS and RPSS results. 295 

During summer and spring, EPS-P has the highest AUC of any of the three forecast models (Figs. 7 and 8), and for a 16-day 

lead-time scores similarly to Perfect-WP (not shown). On the other hand, EPS-WP has the highest skill during winter and 

autumn at the other lead-times, particularly for mild drought. Markov is consistently the least suitable model for predicting 

drought according to the ROC curve, although still represents a better method of doing so than random chance. 

A use of the ROC curve is to provide end-users with information on how to apply the considered forecast models. As the 300 

plotted points on each curve indicate the hit rate and false alarm rate associated with predicting droughts at each probability 

interval, they can be used to make an informed decision in selecting a probability threshold for issuing a drought forecast. For 

example, should a forecaster choose to issue a mild drought warning in winter at a 20% probability level and 46-day lead-time 

(Fig. 7), then they would expect EPS-WP to achieve a hit rate roughly double that of the false alarm rate (60% and 30%, 

respectively). EPS-P, meanwhile, shows a slightly higher hit rate but at the expense of a higher false alarm rate (65% and 305 

40%). The idealised benchmark model (Perfect-WP) achieves an outstanding score – roughly a 75% hit rate compared to a 

10% false alarm rate. For mild drought, a 20% probability threshold for EPS-WP and EPS-P achieves at least 60% hit rates at 

all lead-times, whereas for moderate drought, this threshold will only achieve such rates at a 16-day lead-time and during 

autumn for all lead-times. In general, it appears that these low probability thresholds yield the best compromise between hits 

and false alarms, although in practice, the costs (e.g. financial) associated with false alarms and missed events will determine 310 

how responders use these probabilities. 
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4.3.3 Forecast reliability, resolution and sharpness 

EPS-WP is the most reliable forecast model, and while all three WP-driven forecast models tend to under-forecast droughts, 

EPS-P only does so for lower probability thresholds, with the higher thresholds resulting in this model over-forecasting. This 

is particularly true for shorter lead-times and during winter, although is still clear for 31-day lead-times in some seasons (Figs. 315 

9 and 10). Sometimes EPS-WP follows the same pattern as EPS-P and over-forecasts drought occurrence for higher predicted 

probabilities (e.g. Figs. 9c, e, g and 10c). However, the total number of forecasts issued in these intervals is generally smaller 

than for EPS-P, as the refinement distributions show most clearly for mild drought (Fig. 9). This means the corresponding 

points of the calibration function are less reliable for EPS-WP (and Markov) due to smaller sample sizes (Bröcker and Smith, 

2007). In fact, all three WP-based models have occasions when there are no issued forecasts with certain probabilities. These 320 

are high probabilities for Perfect-WP and EPS-WP (Figs. 10c and e) but can be as low as between 30% and 40% for Markov 

(Figs. 10e and g). As such, although EPS-WP appears the most reliable model from looking only at the calibration function, 

there is less certainty of this fact for moderate drought and for higher forecast probabilities. This erratic behaviour of the 

conditional event relative frequencies is most obvious in Fig. 10c and is explained by the very low sample sizes of forecasts 

issued with anything but a small probability (Fig. 10e) (Wilks, 1995). An interesting result is that forecasts from EPS-WP are 325 

more reliable than from Perfect-WP (Figs. 9 and 10), despite having lower accuracy (e.g. Fig. 6). As a more skilful BSS is 

composed of smaller reliability and larger resolution terms (Eq. 5), it follows that the resolution of Perfect-WP is sufficiently 

large to overcome the larger reliability term compared to EPS-WP and yield an overall more accurate forecast model. These 

under- or over-forecasting biases must be taken into account by an operational forecaster using these models. 

A key difference apparent from the calibration function relates to the ability of the models to identify subsets of forecast 330 

situations where the subsequent event relative frequencies are different, i.e. the forecast resolution. An almost completely 

consistent feature across all lead-times and drought classes is the poorer resolution of EPS-P, particularly obvious in autumn 

(Figs. 9g and 10g), with the conditional event relative frequencies quite clearly closer to the climatological average compared 

to the other models. This should be considered in conjunction with the sharpness of the forecast, which is relatively high for 

this model as shown by the numbers of issued extreme probabilities, particularly those in the upper-tail (Figs. 9h and 10h). 335 

This combination of poor resolution and high sharpness indicates “overconfidence” (Wilks, 2011) – on the occasions that EPS-

P issues a forecast indicating the likelihood of a drought is very high, the actual likelihood of a drought subsequently occurring 

is lower. To compensate for this overconfidence, a user would adjust the probabilities to be less extreme to make the forecasts 

more reliable. 

We can compare these refinement distributions to those of the Markov model, which exhibits low sharpness, overwhelmingly 340 

predicting droughts at the climatological frequency (second column of Figs. 9 and 10). This means that the Markov model is 

not a useful operational tool in these situations, as similar forecasts could be obtained simply by using the climatological 

drought frequency. The refinement distributions for EPS-WP show that for mild drought in winter and spring and for moderate 

drought in all seasons, the model predicts droughts with low probabilities the majority of the time (Figs. 9b, d and 10b, d, f, 

h). For mild drought in summer and autumn, however, this model mostly issues forecasts close to the climatological frequency, 345 

although not nearly as regularly as the Markov model (Fig. 9f, h). As with adjusting for bias, a forecaster can use model 

resolution and sharpness when assessing drought forecast probabilities output by a model. 

5 Discussion and conclusions 

We have compared the performance of a dynamical forecast system (EPS-WP) and a first-order Markov model in predicting 

WP occurrences over a range of lead-times, showing that the dynamical model is always more skilful, although the difference 350 

in skill reduces with lead-time. From these WP predictions, we derived precipitation forecasts and compared them to direct 

precipitation predictions from the dynamical system (EPS-P). EPS-P has the highest overall skill in precipitation and drought 
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forecasts for a 16-day lead-time, whereas EPS-WP predictions provided the greatest skill for longer 31- and 46-day lead-times. 

We also demonstrated the potential in improving WP forecasts further by showing that an idealised, perfect prognosis model 

(Perfect-WP) would provide much more skilful precipitation and drought forecasts, with high hit rates and low false alarm 355 

rates. 

From assessing reliability diagrams we found that WP-based models only issue binary drought forecasts with either very low 

probabilities or probabilities close to the climatological average. In particular, there is little to gain in using the Markov model 

in mild drought prediction over the climatological frequency, as it tends to issue drought forecasts with this probability anyway. 

EPS-P has the highest sharpness, predicting drought occurrence with a wide range of probabilities. In particular, it issues 360 

greater numbers of high-probability drought forecasts compared to WP-based methods. However, this model also has poor 

resolution, indicating it is an overconfident forecast model. Overall, drought forecasts issued by EPS-WP are the most reliable, 

i.e. the forecast probabilities are most similar to the subsequent event probabilities (they “mean what they say”) (Wilks, 2011). 

Perfect-WP tends to under-forecast the number of drought events, while EPS-P over-forecasts drought events, particularly for 

moderate drought. These reliability diagrams are therefore useful to aid users in adjusting for an over- or under-forecasting 365 

bias. 

Given the results presented here, we would recommend the use of EPS-WP for the following drought forecast situations. 

• Winter and autumn 31- and 46-day forecasts. 

• Winter and autumn 16-day forecasts for Scotland (ES, NS and SS). 

• Spring and summer 16-day forecasts for ES. 370 

• Summer 31- and 46-day forecasts of mild drought for eastern and southern regions. 

EPS-P is recommended for: 

• Winter and autumn 16-day forecasts for all regions except those in Scotland. 

• Spring and summer 16-day forecasts for all regions except ES 

• Spring 31- and 46-day forecasts for all regions except those in Scotland. 375 

Otherwise, the use of climatological drought frequencies represents the most parsimonious (in terms of skill versus model 

complexity) choice for: 

• Summer 31- and 46-day forecasts for mild drought in northern and western regions and moderate drought in all 

regions. 

• Spring 31- and 46-day forecasts for Scotland. 380 

Focussing on the 31- and 46-day lead-times (that are more useful for drought prediction than 16-day forecasts), winter and 

autumn are clear-cut, with EPS-WP recommended for every region. Summer is more complex. Mild droughts are best 

predicted by EPS-WP for the eastern and southern regions, but drought climatological frequencies are suggested over the 

forecast models for western and northern regions and more severe droughts for all regions. In spring, climatology is also 

recommended for Scotland, with the use of EPS-P for the remaining regions. 385 

The higher skill of EPS-WP during winter (and possibly autumn) is probably due to the typically higher skill that medium- to 

long-range dynamical forecast systems have in predicting atmospheric variables in this season compared to other seasons 

(Scaife et al., 2014; MacLachlan et al., 2015; Neal et al., 2016). In fact, by forecasting a set of eight WPs derived from MO30, 

Neal et al. (2016) found that ECMWF-EPS exhibited greater skill in winter than summer. Furthermore, the relationship 

between the NAO (which is the primary mode of North Atlantic/European atmospheric circulation) and precipitation is 390 

stronger in this season (Hurrell and Deser, 2009; Lavers et al., 2010; Svensson et al., 2015). This is particularly true for western 
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regions (Jones et al., 2013; Svensson et al., 2015; van Oldenborgh et al., 2015; Hall and Hanna, 2018), which potentially 

explains the greater difference in precipitation and drought forecast skill between EPS-WP and EPS-P in these seasons. The 

skill of precipitation forecasting using observed WPs (Perfect-WP) is also lower for eastern regions than western regions in 

winter, implying that MO30 is not as suited for representing precipitation in the east. Perhaps this is because the WPs are more 395 

closely related to the NAO in this season, compared to other teleconnection patterns. As Hall and Hanna (2018) showed, the 

NAO is not the only important teleconnection pattern influencing UK precipitation. However, in general forecast skill is lower 

for eastern regions independent of the model. 

By analysing the skill of an idealised ‘forecast’ model that assumes perfect WP predictions, we have demonstrated the potential 

for using WP forecasts to derive precipitation and drought predictions. Currently, dynamical models such as the ECMWF 400 

system used here represent the best method of predicting WPs. Moreover, the ECMWF reforecast data used here had 11 

ensemble members, whereas the live forecasts are run with 51 members. Therefore, an operationalised version of the models 

might improve forecast skill or better represent uncertainty. A useful piece of further research would be to assess the forecast 

skill of other models, and even multi-model ensembles, at predicting MO30 WPs or other WP classification systems. Another 

potential method to improve precipitation and drought forecast skill would be to alter the process by which precipitation is 405 

derived from the WPs. Here we have sampled from the entire conditional distribution of precipitation given the WP and season, 

but this may not be the optimal way of estimation. It is possible that other factors influence the precipitation from WPs, such 

as slowly-varying atmospheric and oceanic processes. For example, it would be interesting to see if conditioning the 

distributions further on the state of the NAO index, or some North Atlantic SST index, and sampling precipitation from these, 

would improve forecast skill. This is potentially most useful in predicting more severe forms of drought (D2 in this study), for 410 

which skill from current models is lower than for mild drought.  

 

 

List of references 

 415 

Ahrens, B. and Walser, A. (2008) 'Information-Based Skill Scores for Probabilistic Forecasts', Monthly Weather Review, 
136(1), pp. 352-363. 

Alexander, L.V. and Jones, P.D. (2000) 'Updated Precipitation Series for the U.K. and Discussion of Recent Extremes', 
Atmospheric Science Letters, 1(2), pp. 142-150. 

Ansell, T.J., Jones, P.D., Allan, R.J., Lister, D., Parker, D.E., Brunet, M., Moberg, A., Jacobeit, J., Brohan, P., Rayner, N.A., 420 
Aguilar, E., Alexandersson, H., Barriendos, M., Brandsma, T., Cox, N.J., Della-Marta, P.M., Drebs, A., Founda, D., 
Gerstengarbe, F., Hickey, K., Jónsson, T., Luterbacher, J., Ø, N., Oesterle, H., Petrakis, M., Philipp, A., Rodwell, 
M.J., Saladie, O., Sigro, J., Slonosky, V., Srnec, L., Swail, V., García-Suárez, A.M., Tuomenvirta, H., Wang, X., 
Wanner, H., Werner, P., Wheeler, D. and Xoplaki, E. (2006) 'Daily Mean Sea Level Pressure Reconstructions for the 
European–North Atlantic Region for the Period 1850–2003', Journal of Climate, 19(12), pp. 2717-2742. 425 

Baker, L.H., Shaffrey, L.C. and Scaife, A.A. (2018) 'Improved seasonal prediction of UK regional precipitation using 
atmospheric circulation', International Journal of Climatology, 38, pp. 437-453. 

Bárdossy, A. and Filiz, F. (2005) 'Identification of flood producing atmospheric circulation patterns', Journal of Hydrology, 
313(1–2), pp. 48-57. 

Brier, G.W. (1950) 'Verification of forecasts expressed in terms of probability', Monthly Weather Review, 78(1), pp. 1-3. 430 

Brigode, P., Gérardin, M., Bernardara, P., Gailhard, J. and Ribstein, P. (2018) 'Changes in French weather pattern seasonal 
frequencies projected by a CMIP5 ensemble', International Journal of Climatology, 38(10), pp. 3991-4006. 

Bröcker, J. and Smith, L., A. (2007) 'Increasing the Reliability of Reliability Diagrams', Weather and Forecasting, 22(3), pp. 
651-661. 

11

https://doi.org/10.5194/nhess-2019-221
Preprint. Discussion started: 16 July 2019
c© Author(s) 2019. CC BY 4.0 License.

NN
Sticky Note
I am surprised, that no formal information on "data availability", "author contributions" and "competing interests" is given.

NN
Sticky Note
I think you should formulate a paragraph on the limitations you identified.



Buizza, R., Bidlot, J.-R., Wedi, N., Fuentes, M., Hamrud, M., Holt, G. and Vitart, F. (2007) 'The new ECMWF VAREPS 435 
(Variable Resolution Ensemble Prediction System)', Quarterly Journal of the Royal Meteorological Society, 
133(624), pp. 681-695. 

Cuo, L., Pagano, T.C. and Wang, Q.J. (2011) 'A Review of Quantitative Precipitation Forecasts and Their Use in Short- to 
Medium-Range Streamflow Forecasting', Journal of Hydrometeorology, 12(5), pp. 713-728. 

Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M.A., Balsamo, G., 440 
Bauer, P., Bechtold, P., Beljaars, A.C.M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, 
M., Geer, A.J., Haimberger, L., Healy, S.B., Hersbach, H., Hólm, E.V., Isaksen, L., Kållberg, P., Köhler, M., 
Matricardi, M., McNally, A.P., Monge-Sanz, B.M., Morcrette, J.J., Park, B.K., Peubey, C., de Rosnay, P., Tavolato, 
C., Thépaut, J.N. and Vitart, F. (2011) 'The ERA-Interim reanalysis: configuration and performance of the data 
assimilation system', Quarterly Journal of the Royal Meteorological Society, 137(656), pp. 553-597. 445 

Dutra, E., Di Giuseppe, F., Wetterhall, F. and Pappenberger, F. (2013) 'Seasonal forecasts of droughts in African basins using 
the Standardized Precipitation Index', Hydrol. Earth Syst. Sci., 17(6), pp. 2359-2373. 

ECMWF (2017) ECMWF Model Description CY43R1 [Online]. Available at: 
https://confluence.ecmwf.int/display/S2S/ECMWF+Model+Description+CY43R1 (Accessed: 03/06/2018). 

Epstein, E., S. (1969) 'A Scoring System for Probability Forecasts of Ranked Categories', Journal of Applied Meteorology, 450 
8(6), pp. 985-987. 

Ferranti, L., Corti, S. and Janousek, M. (2015) 'Flow-dependent verification of the ECMWF ensemble over the Euro-Atlantic 
sector', Quarterly Journal of the Royal Meteorological Society, 141(688), pp. 916-924. 

Golding, B.W. (2000) 'Quantitative precipitation forecasting in the UK', Journal of Hydrology, 239(1), pp. 286-305. 

Hall, R.J. and Hanna, E. (2018) 'North Atlantic circulation indices: links with summer and winter UK temperature and 455 
precipitation and implications for seasonal forecasting', International Journal of Climatology, 38(S1), pp. e660-e677. 

Hannaford, J., Lloyd-Hughes, B., Keef, C., Parry, S. and Prudhomme, C. (2011) 'Examining the large-scale spatial coherence 
of European drought using regional indicators of precipitation and streamflow deficit', Hydrological Processes, 25(7), 
pp. 1146-1162. 

Hay, L.E., McCabe, G.J., Wolock, D.M. and Ayers, M.A. (1991) 'Simulation of precipitation by weather type analysis', Water 460 
Resources Research, 27(4), pp. 493-501. 

Hay, L.E., McCabe, G.J., Wolock, D.M. and Ayers, M.A. (1992) 'Use of weather types to disaggregate general circulation 
model predictions', Journal of Geophysical Research: Atmospheres, 97(D3), pp. 2781-2790. 

Hurrell, J.W. and Deser, C. (2009) 'North Atlantic climate variability: The role of the North Atlantic Oscillation', Journal of 
Marine Systems, 78(1), pp. 28-41. 465 

Huth, R., Beck, C., Philipp, A., Demuzere, M., Ustrnul, Z., Cahynová, M., Kyselý, J. and Tveito, O.E. (2008) 'Classifications 
of Atmospheric Circulation Patterns', Annals of the New York Academy of Sciences, 1146(1), pp. 105-152. 

Jones, M.R., Fowler, H.J., Kilsby, C.G. and Blenkinsop, S. (2013) 'An assessment of changes in seasonal and annual extreme 
rainfall in the UK between 1961 and 2009', International Journal of Climatology, 33(5), pp. 1178-1194. 

Kendon, M., Marsh, T. and Parry, S. (2013) 'The 2010–2012 drought in England and Wales', Weather, 68(4), pp. 88-95. 470 

Kharin, V.V. and Zwiers, F.W. (2003) 'Improved Seasonal Probability Forecasts', Journal of Climate, 16(11), pp. 1684-1701. 

Kleeman, R. (2002) 'Measuring Dynamical Prediction Utility Using Relative Entropy', Journal of the Atmospheric Sciences, 
59(13), pp. 2057-2072. 

Kullback, S. and Leibler, R.A. (1951) 'On Information and Sufficiency', Ann. Math. Statist., 22(1), pp. 79-86. 

Lavaysse, C., Vogt, J. and Pappenberger, F. (2015) 'Early warning of drought in Europe using the monthly ensemble system 475 
from ECMWF', Hydrol. Earth Syst. Sci., 19(7), pp. 3273-3286. 

Lavaysse, C., Vogt, J., Toreti, A., Carrera, M.L. and Pappenberger, F. (2018) 'On the use of weather regimes to forecast 
meteorological drought over Europe', Nat. Hazards Earth Syst. Sci., 18(12), pp. 3297-3309. 

Lavers, D., Prudhomme, C. and Hannah, D.M. (2010) 'Large-scale climate, precipitation and British river flows: Identifying 
hydroclimatological connections and dynamics', Journal of Hydrology, 395(3), pp. 242-255. 480 

Lavers, D.A., Pappenberger, F. and Zsoter, E. (2014) 'Extending medium-range predictability of extreme hydrological events 
in Europe', Nature Communications, 5, p. 5382. 

Lavers, D.A., Waliser, D.E., Ralph, F.M. and Dettinger, M.D. (2016) 'Predictability of horizontal water vapor transport relative 
to precipitation: Enhancing situational awareness for forecasting western U.S. extreme precipitation and flooding', 
Geophysical Research Letters, 43(5), pp. 2275-2282. 485 

Leung, L.-Y. and North, G., R. (1990) 'Information Theory and Climate Prediction', Journal of Climate, 3(1), pp. 5-14. 

12

https://doi.org/10.5194/nhess-2019-221
Preprint. Discussion started: 16 July 2019
c© Author(s) 2019. CC BY 4.0 License.



Lin, J. (1991) 'Divergence measures based on the Shannon entropy', IEEE Transactions on Information Theory, 37(1), pp. 
145-151. 

MacLachlan, C., Arribas, A., Peterson, K.A., Maidens, A., Fereday, D., Scaife, A.A., Gordon, M., Vellinga, M., Williams, A., 
Comer, R.E., Camp, J., Xavier, P. and Madec, G. (2015) 'Global Seasonal forecast system version 5 (GloSea5): a 490 
high-resolution seasonal forecast system', Quarterly Journal of the Royal Meteorological Society, 141(689), pp. 1072-
1084. 

Marsh, T., Cole, G. and Wilby, R. (2007) 'Major droughts in England and Wales, 1800–2006', Weather, 62(4), pp. 87-93. 

Marsh, T.J. (1995) 'The 1995 drought - a water resources review in the context of the recent hydrological instability', LTA, 
155(47), p. 149. 495 

Mason, I. (1982) 'A model for assessment of weather forecasts', Australian Meteorological Magazine, 30(4), pp. 291-303. 

McKee, T.B., Doesken, N.J. and Kleist, J. (1993) 'The relationship of drought frequency and duration to time scales', 
Proceedings of the 8th Conference on Applied Climatology. American Meteorological Society Boston, MA. Available 
at: http://clima1.cptec.inpe.br/~rclima1/pdf/paper_spi.pdf. 

Murphy, A., H. (1973) 'A New Vector Partition of the Probability Score', Journal of Applied Meteorology, 12(4), pp. 595-600. 500 

Murphy, A., H. (1971) 'A Note on the Ranked Probability Score', Journal of Applied Meteorology, 10(1), pp. 155-156. 

Mwangi, E., Wetterhall, F., Dutra, E., Di Giuseppe, F. and Pappenberger, F. (2014) 'Forecasting droughts in East Africa', 
Hydrol. Earth Syst. Sci., 18(2), pp. 611-620. 

Neal, R., Dankers, R., Saulter, A., Lane, A., Millard, J., Robbins, G. and Price, D. (2018) 'Use of probabilistic medium- to 
long-range weather-pattern forecasts for identifying periods with an increased likelihood of coastal flooding around 505 
the UK', Meteorological Applications, 25(4), pp. 534-547. 

Neal, R., Fereday, D., Crocker, R. and Comer, R.E. (2016) 'A flexible approach to defining weather patterns and their 
application in weather forecasting over Europe', Meteorological Applications, 23(3), pp. 389-400. 

Nigro, M., A. , Cassano, J., J.  and Seefeldt, M., W. (2011) 'A Weather-Pattern-Based Approach to Evaluate the Antarctic 
Mesoscale Prediction System (AMPS) Forecasts: Comparison to Automatic Weather Station Observations', Weather 510 
and Forecasting, 26(2), pp. 184-198. 

Richardson, D., Fowler, H.J., Kilsby, C.G. and Neal, R. (2018a) 'A new precipitation and drought climatology based on 
weather patterns', International Journal of Climatology, 38(2), pp. 630-648. 

Richardson, D., Kilsby, C.G., Fowler, H.J. and Bárdossy, A. (2018b) 'Weekly to multi-month persistence in sets of daily 
weather patterns over Europe and the North Atlantic Ocean', International Journal of Climatology. 515 

Richardson, D., Neal, R. and Dankers, R. (in review) 'Early warning of potential extreme precipitation events: a weather pattern 
approach', Submitted for review to Meteorological Applications. 

Rodda, J.C. and Marsh, T.J. (2011) The 1975-76 Drought - a contemporary and retrospective review. [Online]. Available at: 
http://www.ceh.ac.uk/data/nrfa/nhmp/other_reports/CEH_1975-76_Drought_Report_Rodda_and_Marsh.pdf. 

Roulston, M., S. and Smith, L., A. (2002) 'Evaluating Probabilistic Forecasts Using Information Theory', Monthly Weather 520 
Review, 130(6), pp. 1653-1660. 

Saha, S., Shrinivas, M., Xingren, W., Jiande, W., Sudhir, N., Patrick, T., David, B., Yu-Tai, H., Hui-ya, C., Mark, I., Michael, 
E., Jesse, M., Rongqian, Y., Malaquías Peña, M., Huug van den, D., Qin, Z., Wanqiu, W., Mingyue, C. and Emily, 
B. (2014) 'The NCEP Climate Forecast System Version 2', Journal of Climate, 27(6), pp. 2185-2208. 

Scaife, A.A., Arribas, A., Blockley, E., Brookshaw, A., Clark, R.T., Dunstone, N., Eade, R., Fereday, D., Folland, C.K., 525 
Gordon, M., Hermanson, L., Knight, J.R., Lea, D.J., MacLachlan, C., Maidens, A., Martin, M., Peterson, A.K., Smith, 
D., Vellinga, M., Wallace, E., Waters, J. and Williams, A. (2014) 'Skillful long-range prediction of European and 
North American winters', Geophysical Research Letters, 41(7), pp. 2514-2519. 

Smith, D.M., Scaife, A.A. and Kirtman, B.P. (2012) 'What is the current state of scientific knowledge with regard to seasonal 
and decadal forecasting?', Environmental Research Letters, 7(1). 530 

Staël von Holstein, C.-A., S. (1970) 'A Family of Strictly Proper Scoring Rules Which Are Sensitive to Distance', Journal of 
Applied Meteorology, 9(3), pp. 360-364. 

Svensson, C., Brookshaw, A., Scaife, A.A., Bell, V.A., Mackay, J.D., Jackson, C.R., Hannaford, J., Davies, H.N., Arribas, A. 
and Stanley, S. (2015) 'Long-range forecasts of UK winter hydrology', Environmental Research Letters, 10(6), p. 
064006. 535 

van Oldenborgh, G.J., Stephenson, D.B., Sterl, A., Vautard, R., Yiou, P., Drijfhout, S.S., von Storch, H. and van den Dool, H. 
(2015) 'Drivers of the 2013/14 winter floods in the UK', Nature Climate Change, 5, p. 490. 

13

https://doi.org/10.5194/nhess-2019-221
Preprint. Discussion started: 16 July 2019
c© Author(s) 2019. CC BY 4.0 License.



Vitart, F. (2014) 'Evolution of ECMWF sub-seasonal forecast skill scores', Quarterly Journal of the Royal Meteorological 
Society, 140(683), pp. 1889-1899. 

Vitart, F., Ardilouze, C., Bonet, A., Brookshaw, A., Chen, M., Codorean, C., Déqué, M., Ferranti, L., Fucile, E., Fuentes, M., 540 
Hendon, H., Hodgson, J., Kang, H.-S., Kumar, A., Lin, H., Liu, G., Liu, X., Malguzzi, P., Mallas, I., Manoussakis, 
M., Mastrangelo, D., MacLachlan, C., McLean, P., Minami, A., Mladek, R., Nakazawa, T., Najm, S., Nie, Y., Rixen, 
M., Robertson, A.W., Ruti, P., Sun, C., Takaya, Y., Tolstykh, M., Venuti, F., Waliser, D., Woolnough, S., Wu, T., 
Won, D.-J., Xiao, H., Zaripov, R. and Zhang, L. (2017) 'The Subseasonal to Seasonal (S2S) Prediction Project 
Database', Bulletin of the American Meteorological Society, 98(1), pp. 163-173. 545 

Vitart, F., Buizza, R., Alonso Balmaseda, M., Balsamo, G., Bidlot, J.-R., Bonet, A., Fuentes, M., Hofstadler, A., Molteni, F. 
and Palmer, T.N. (2008) 'The new VarEPS-monthly forecasting system: A first step towards seamless prediction', 
Quarterly Journal of the Royal Meteorological Society, 134(636), pp. 1789-1799. 

Vuillaume, J.-F. and Herath, S. (2017) 'Improving global rainfall forecasting with a weather type approach in Japan', 
Hydrological Sciences Journal, 62(2), pp. 167-181. 550 

Walker, G.T. and Bliss, E.W. (1932) 'World Weather V', Memoirs of the Royal Meteorological Society, 4(36), pp. 53-84. 

Wedgbrow, C.S., Wilby, R. and Fox, H.R. (2005) 'Experimental seasonal forecasts of low summer flows in the River Thames, 
UK, using Expert Systems', Climate Research, 28(2), pp. 133-141. 

Wedgbrow, C.S., Wilby, R.L., Fox, H.R. and O'Hare, G. (2002) 'Prospects for seasonal forecasting of summer drought and 
low river flow anomalies in England and Wales', International Journal of Climatology, 22(2), pp. 219-236. 555 

Weijs, S., V. and Giesen, N.v.d. (2011) 'Accounting for Observational Uncertainty in Forecast Verification: An Information-
Theoretical View on Forecasts, Observations, and Truth', Monthly Weather Review, 139(7), pp. 2156-2162. 

Weijs, S., V., Nooijen, R.v. and Giesen, N.v.d. (2010) 'Kullback–Leibler Divergence as a Forecast Skill Score with Classic 
Reliability–Resolution–Uncertainty Decomposition', Monthly Weather Review, 138(9), pp. 3387-3399. 

Wilby, R.L. (1994) 'Stochastic weather type simulation for regional climate change impact assessment', Water Resources 560 
Research, 30(12), pp. 3395-3403. 

Wilby, R.L. (1998) 'Modelling low-frequency rainfall events using airflow indices, weather patterns and frontal frequencies', 
Journal of Hydrology, 212–213, pp. 380-392. 

Wilks, D.S. (1995) 'Chapter 7 Forecast verification', in Wilks, D.S. (ed.) International Geophysics. Academic Press,  pp. 233-
283. 565 

Wilks, D.S. (2011) 'Chapter 8 - Forecast Verification', in Wilks, D.S. (ed.) International Geophysics. Academic Press,  pp. 
301-394. 

Yoon, J.-H., Mo, K. and Wood, E.F. (2012) 'Dynamic-Model-Based Seasonal Prediction of Meteorological Drought over the 
Contiguous United States', Journal of Hydrometeorology, 13(2), pp. 463-482. 

Yuan, X. and Wood, E.F. (2013) 'Multimodel seasonal forecasting of global drought onset', Geophysical Research Letters, 570 
40(18), pp. 4900-4905. 

14

https://doi.org/10.5194/nhess-2019-221
Preprint. Discussion started: 16 July 2019
c© Author(s) 2019. CC BY 4.0 License.



 

Table 1: Range of daily precipitation, 𝑥, for each bin 𝑝a and of 30-day precipitations sums, 𝑦, for each bin 𝑠d . 

 

Model WP component Precipitation component 

Markov Predicted using a first-order Markov chain 
Estimated by sampling from 

conditional distributions of 

precipitation given the WPs. 

EPS-WP 
Predicted by assignment of forecast SLP fields from 

ECMWF-EPS 

Perfect-WP Observed WPs 

EPS-P - Forecast by ECMWF-EPS 

Table 2: Details of the four models. Markov, EPS-WP and EPS-P are forecast models and Perfect-WP is a perfect prognosis model 
that cannot be used for forecasting. 
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Figure 1: Weather pattern (WP) definitions according to mean sea-level pressure (MSLP) anomalies (hPa). The black contours are 
isobars showing the absolute MSLP values associated with each weather pattern, with the centres of high and low pressure also 
indicated. From Richardson et al. (2018b). 
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Figure 2: HadUKP regions: northeast England (NEE), central and east England (CEE), southeast England (SEE), southwest England 
and southern Wales (SWE), northwest England and northern Wales (NWE), Northern Ireland (NI), southwest Scotland (SS), 
northern Scotland (NS) and eastern Scotland (ES). 

 

 

 

 

 

 

 

 

Figure 3: Jensen-Shannon Divergence scores for EPS-WP and Markov models for three lead-times. 
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Figure 4: Ranked Probability Skill Scores by region and season for the three forecast models (EPS-WP, Markov and EPS-P) and 
the idealised model (Perfect-WP). Lead-time is 16 days. Scores lower than -0.5 are omitted for visual clarity. The omitted scores 
are for EPS-P in ES during spring (-0.54). 
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Figure 5: As Fig. 4 but for a lead-time of 46 days. The omitted scores are for EPS-P in ES during winter (-1.15) and spring (-1.37). 
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Figure 6: Brier Skill Score (BSS) by region and season for moderate drought for the three forecast models (EPS-WP, Markov and 
EPS-P) and the idealised model (Perfect-WP). Lead-time is 46 days. 
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Figure 7: Relative operating characteristics (ROC) curves and area under ROC curve (AUC) for mild drought with a 46-day lead-
time. Annotated values indicate drought forecast probability thresholds. 
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Figure 8: As Fig. 7 but for moderate drought. 
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Figure 9: Calibration functions (first column) and refinement distributions (second column) for mild drought with a 31-day lead-
time. For the calibration function diagrams, the solid diagonal line indicates perfect reliability and the dashed horizontal line the 
event relative frequency for mild drought (0.309). 
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Figure 10: As Fig. 9 but for moderate drought (event relative frequency of 0.159). 
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