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Abstract: Emergency medical services (EMS) response is extremely critical for pre-hospital lifesaving when disaster events occur. 14 

However, disasters increase the difficulty of rescue and may significantly increase the total travel time between dispatch and arrival, 15 

thereby increasing the pressure on emergency facilities. Hence, facility location decisions play a crucial role in improving the efficiency 16 

of rescue and service capacity. In order to avoid the failure of EMS facilities during disasters and meet the multiple requirements of 17 

demand points, we propose a multi-coverage optimal location model for EMS facilities based on the results of disaster impact simulation 18 

and prediction. To verify this model, we explicitly simulated the impacts of fluvial flooding events using the 1D/2D coupled flood 19 

inundation model FloodMap. The simulation results suggested that even low-magnitude fluvial flood events resulted in a decrease in the 20 

EMS response area. The integration of the model results with a Geographical Information System (GIS) analysis indicated that the 21 

optimization of the EMS locations reduced the delay in emergency responses caused by disasters and significantly increased the number 22 

of rescued people and the coverage of demand points. 23 

Keywords: Disaster events; Emergency Medical Services; Multi-coverage Location model; Scenario simulation 24 

 25 

1. Introduction 26 

 27 

Urban disasters represent a serious and growing challenge. Against the backdrop of urbanization, demographic 28 

growth, and climate change, the causes of disasters are changing and their impacts are increasing. Both natural 29 

hazards such as flash flooding and human-caused accidents such as fires threaten and induce panic in people and 30 

cause casualties and property loss(Kates et al., 2001; Makowski and Nakayama, 2001). In order to deal with 31 

emergencies effectively, a large number of emergency service facilities may be called upon simultaneously. The 32 

demands being placed upon emergency services often exceed the resources made available by governments(Liu et 33 

al., 2017). Furthermore, disasters always require a longer response time than regular incidents due to high traffic 34 

flows. A crash on the rescue route may block one or several lanes, resulting in congestion, significant delays of the 35 

emergency vehicles, and potential additional casualties (Dulebenets et al., 2019). Therefore, the maintenance of 36 

efficiency and quality of emergency services during disasters is the key to emergency management. A scientific and 37 
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pragmatic approach to the choice of locations and allocations of emergency service facilities reduces traffic 38 

congestion and the risk of secondary incidents during an emergency, which, in turn, reduces transport costs and 39 

greatly improves the efficiency of rescue services. 40 

 41 

Over the last few decades, research into traditional location theory has resulted in a number of models to determine 42 

the optimal location of emergency services; the most commonly used models are the P-center model (Hakimi, 1964), 43 

the P-median model (Hakimi, 1965), and the covering model (Brandeau and Chiu, 1989). Among these models, the 44 

covering model is the most widely investigated and applied model; the objective of the model is to improve the 45 

coverage of facilities within a limited time or distance to meet the service requirements (Ge and Wang et al., 2011). 46 

The most common covering models are the Location Set Covering Model (LSCM) (Toregas and Revelle, 1972) and 47 

the Maximum Covering Location Problem (MCLP) model (Church and Revelle, 1974). The focus of the LSCM is to 48 

minimize the number of facilities needed to cover all demand points but it has been shown to lead to an unequal 49 

allocation of facilities or a large increase in costs. Due to these limitations, the MCLP model was developed to ensure 50 

that existing emergency facilities were used to obtain the maximum coverage of the demand points. Drawing upon 51 

the LSCM and MCLP model, a number of researchers have optimized the associated algorithms in terms of facility 52 

workload limits(Pirkul and Schilling, 1991), cost(Su et al., 2015), and the level of coverage(Gendreau and Laporte, 53 

1997) to solve various practical problems or achieve rescue objectives. Other types of models are suitable for location 54 

decision problems that do not include time or distance restrictions, such as the P-center model and the P-median 55 

model, where P refers to the number of facilities that need to be built. The P-center model mainly considers equitable 56 

service; it selects P facilities by minimizing the maximum distance between the demand points and the facilities. The 57 

P-median model not only takes into account the efficiency of the emergency facilities but it also minimizes the sum 58 

of the weighted distance between the demand points and the P facilities (Chen and You, 2006). 59 

 60 

All of the above models are static in the sense that they do not consider uncertainties in the emergency service process. 61 

For example, large-scale emergencies are likely to require high levels of healthcare to the extent that emergency 62 

service facilities would need to provide transportation to other facilities that are beyond the immediate area. 63 

Furthermore, the limited ambulance resources at any one emergency station would restrict the capacity of the 64 

emergency medical service (EMS) when multiple demand points make simultaneous requests. Any further demands 65 

placed upon the emergency services would cause them to fail, resulting in potential loss of life. To minimize these 66 

fluctuations in an EMS system, approaches have been proposed that involve multi-coverage models (Moeini and 67 

Jemai, 2015). In 1981, Daskin and Stern(1981) put forward their hierarchical objective set covering model (HOSC), 68 

in which they introduced the concept of ‘multiple coverage of zones’; the objective was to minimize the number of 69 

necessary facilities such that the demand was still met and to maximize the coverage of the demand points. However, 70 

HOSC had one major shortcoming; it potentially led to the congestion of emergency vehicles. To solve these problems, 71 

Hogan and ReVelle (1986) proposed an alternative approach to coverage in their maximal backup coverage models 72 

BACOP1 & BACOP2. These models cover each demand point at least once but the multiple coverage of different 73 

demand points with the same coverage level resulted in a waste of vehicles resources (Ge and Wang et al., 2011). 74 

Considering that there is usually a limited financial budget for the provision of emergency services, it is not feasible 75 

to cover all demand points multiple times. 76 

 77 

The aforementioned traditional location models ignored the impacts of specific disasters but we suggest that these 78 

impacts must be part of any decision regarding the location of emergency services. Apart from causing casualties, a 79 

disaster may also damage emergency facilities; furthermore, damage to buildings and roads will lead to traffic 80 

congestion and render emergency rescue more difficult than usual. To avoid these problems, research has been 81 
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conducted on choosing the location of emergency service facilities in response to large-scale emergencies. Jia et al. 82 

(2007) defined the main characteristics of ideal locations of emergency service facilities as "timeliness", "fairness", 83 

and "resistance to failure". Chen and You (2006) established a multi-objective decision model for the location of 84 

emergency rescue facilities by integrating the MCLP model, the P-median model, and the P-center model. In this 85 

integrated model (which focused on large-scale disasters), emergency facilities were allocated using different 86 

strategies. Jia et al. (2007) investigated models for EMS facility location in response to disasters and compared three 87 

heuristic algorithms (genetic algorithm, location-allocation algorithm, and Lagrange relaxation algorithm) applicable 88 

to emergency scenarios and location models. 89 

 90 

After taking account the results of previous studies, here we describe a novel approach for the optimization of EMS 91 

efficiency under various disaster scenarios. We propose a multi-coverage optimal location model, whose output 92 

depends on the impact of a disaster and the levels of demand made on the EMSs. We use a scenario-based method 93 

and Geographical Information System (GIS)-based network analysis to quantify the impacts of a disaster on the urban 94 

EMS response. The coverage level of the demand points is determined by the population, the EMS calls for help, and 95 

other factors that reflect the demand level of the demand points; these factors determine how often the demand point 96 

needs to be covered by emergency facilities within a predefined time. The higher the demand coverage level, the 97 

more often a demand point needs to be covered by the service area of the emergency facilities in a given time period. 98 

The main purpose of our location model is to reduce the probability of delays in the emergency response caused by 99 

insufficient emergency facilities and resources. The proposed model represents a point of reference for the planning 100 

and location of urban emergency facilities. In the following sections, we provide descriptions of the problems and 101 

the design of the optimal location model. We also conduct a case study of urban fluvial floods in the Minhang District 102 

of Shanghai, China to validate this model. 103 

 104 

2. Multi-coverage Optimal Location Model Design 105 

 106 

2.1 Problem description 107 

 108 

Limited EMS resources face increasing demands as the risk of wide-scale and complex urban disasters increases. 109 

Previous models have not considered the probability of failure of EMS facilities, in particular those housing 110 

ambulances, nor have they taken into account possible limited access by EMS to vulnerable demand points. Hence, 111 

two problems need to be addressed: (1) the need for quick response times suggests that EMSs should be located close 112 

to potential disaster points so that a high-risk area can be served simultaneously by many EMSs; (2) the closer to the 113 

potential disaster points, the higher the possibility of EMSs are affected by the disaster and the lower the service 114 

capacity, the greater the distance should be (Fig.1). Based on these problems, in this study, we propose and formulate 115 

a disaster scenario-based planning and optimal location model that considers multi-coverage of zones. The coverage 116 

is dependent on the demand level of the demand points (high demand with high coverage requires more ambulances 117 

at the same time). In our work, we specifically consider flooding; the location plan should result in improvements in 118 

the efficiency of the response and reduce the risk to EMS of flash-flood disasters. 119 

 120 
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 121 

Figure 1 Qualitative description of model problems 122 

 123 

We present the objective of the proposed model and describe the problems encountered during the development of 124 

the model. The objective of the model is to serve the largest number of people in a region with EMSs. Let J be the 125 

set of potential emergency facilities, let I be the set of the demand points in the study area, and let F (0<F<J) be the 126 

number of optimal facilities. We consider the risk of a disaster at the potential emergency points and the demand 127 

points separately and arrange the station locations according to the coverage level and disaster risk level of each 128 

demand point 𝑖. In simple terms, the model solves the following problems. 129 

Q1: How do we calculate the coverage level 𝑄𝑖 at each demand point 𝑖? 130 

Q2: How do we evaluate the risk of disasters for each potential point j and demand point 𝑖? 131 

Q3: What are the objectives and constraints for developing an optimized location model based on Q1 and Q2 ? 132 

Q4: How do we evaluate the applicability of the model? 133 

 134 

2.2 Assumptions 135 

 136 

To solve the above problems and simplify the model, we use the following assumptions: 137 

A1:All potential points have the same probability of accepting EMS calls and their ability to serve all the demand 138 

points throughout the study area is not time-limited; 139 

A2: During a disaster, each emergency facility has the same service capacity and the same number of ambulances; 140 

A3: During a disaster, the closer the EMS is to the source of the disaster, the higher the probability is that the 141 

facility will be unable to respond; 142 

A4: During a disaster, the closer the EMS is to the source of the disaster, the greater the requirements placed 143 

upon it from any demand point. 144 

 145 

2.3 Mathematical model 146 

 147 

In accordance with the aforementioned description and assumptions, a multi-coverage optimal location model is 148 

developed. In the disaster scenario used for the model, it is assumed that each emergency facility has the same number 149 

of ambulances and quality of service and we must maximize the number of people it can serve within the specified 150 

time. In order to simplify the model and optimize the algorithm, we use the 0–1 integer programming method. 151 

The model index sets are as follows. 152 

𝐼: set of demand points indexed by i ∈ I = { 1，…，i，…，m}; 153 

𝐽: set of potential emergency medical facilities indexed by j ∈ J = { 1，…，i，…，n}; 154 

𝑡𝑖𝑗: time needed for an ambulance to travel from emergency medical facilities j to demand point i; 155 
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𝑋: the number of demand points that can be covered by the service area of the emergency facilities within a 156 

specified time; 157 

𝑇: the limit of the emergency response time; 158 

𝐹: number of EMS facilities that need to be built; 159 

𝑄𝑖: the coverage level of demand point i; meaning that point i should be covered by emergency facilities at least 160 

𝑄𝑖 times within a specified time;  161 

𝑤𝑖: the number of people represented by demand point 𝑖; 162 

𝑚𝑖: the disaster risk level of demand point 𝑖; 163 

𝑝𝑗: the resistance level to the disaster of potential point j; 164 

𝑥𝑖: binary value; equal to 1 if demand point 𝑖 is covered, otherwise, it is 0; 165 

𝑦𝑗: binary value; equal to 1 if an emergency medical facility is available, otherwise, it is 0; 166 

𝑧𝑖𝑗: binary value; equal to 1 if demand point 𝑖 is covered by an eligible facility j, otherwise, it is 0. 167 

 168 

The overall objective of the model is to rescue the maximum number of people in a specified time(Question Q3), as 169 

shown by the following equation: 170 

max (z) = ∑ ∑ (𝑚𝑖
𝑛
𝑗=1

𝑚
𝑖=1 𝑤𝑖𝑧𝑖𝑗𝑝𝑗)                     (1) 171 

To keep construction costs under control, the number of emergency facilities should be limited. Emergency facilities 172 

cannot be built in areas at risk of inundation and the coverage rate should be ensured within a specified time. 173 

Therefore, the following constraints are added to the multi-objective function: 174 

∑ 𝑦𝑗 = 𝐹 (∀j ∈ J; 0 < F < J𝑛
𝑗=1 )                          (2) 175 

Constraint (2) indicates that F emergency facilities should be selected from the potential facilities for emergency 176 

services; 177 

              ∑ 𝑧𝑖𝑗 (1
𝑝𝑗

⁄ ) ≥ 𝑥𝑖
𝑛
𝑖=1 𝑄𝑖 (𝑝𝑗 ≠ 0; ∀i ∈ I; ∀j ∈ J )                  (3) 178 

Constraint (3) ensures that the multiple coverage requirements of the demand points must be met under different 179 

disaster scenarios and the resistance level 𝑝𝑗  to a disaster of potential point j cannot be 0; 180 

𝑡𝑖𝑗 ≤ 𝑇 (∀i ∈ I; ∀j ∈ J)                               (4) 181 

Constraint (4) ensures that the emergency response time of each ambulance cannot exceed T minutes; 182 

𝑥𝑖 ≥ 𝑋(∀i ∈ I)                                      (5) 183 

Constraint (5) guarantees that 𝑋 demand points will be covered within at least T minutes; 184 

𝑧𝑖𝑗 ≤ 𝑦𝑗(∀i ∈ I; ∀j ∈ J)                                (6) 185 

Constraint (6) means that the service point can be serviced only when this facility is selected. 186 

𝑧𝑖𝑗 ∈ {0,1}, 187 

𝑥𝑖 ∈ {0,1},                                       (7) 188 

𝑦𝑗 ∈ {0,1} 189 

Constraint (7) defines the domains of the decision variables. 190 

 191 

2.4 Coverage level analysis 192 

 193 

The model design indicates that the proposed model is based on a goal programming algorithm to optimize the 194 

location of the EMS facilities based on the existing data and actual situation, the coverage level 𝑄𝑖  of each demand 195 

point and the disaster risk level of the demand points(𝑚𝑖) and potential facilities(𝑝𝑗). In this section, we propose a 196 



6 
 

new method to estimate the coverage level that depends on the demand level of the demand point 𝑖 . 197 

Under normal conditions, the demand for EMS in one region is mainly related to population attributes such as age 198 

distribution and population densities and areas of high population densities have a high probability of medical 199 

emergencies. The surrounding conditions also affect demand, for example, traffic conditions and the presence of 200 

regular medical services (such as hospitals). Therefore, in this study, we analyze the demand level based on these 201 

related factors (labeled as evaluation indicators (A)) and we evaluate the probability of the demand point calling for 202 

help within a predefined time. We then calculate the demand level of every point that is affected by these factors 203 

considering the results in terms of the coverage level, i.e., how many times should point 𝑖 be covered by the service 204 

area of the emergency facilities. Let A (A = { 𝐴1，𝐴2 … 𝐴𝑛}) be the set of indicators that may affect the coverage 205 

level. In order to eliminate the influence of dimension and magnitude and improve the accuracy of the model, the 206 

range normalization method is used to convert the original data into the range of [0,1]: 207 

𝐴𝑛𝑖 =
𝐴𝑛𝑖−min(𝐴𝑛)

max(𝐴𝑛)−m𝑖 𝑛(𝐴𝑛)
                             (8) 208 

where 𝐴𝑛𝑖 represents the normalized index of the indicator set 𝐴. 209 

 210 

These indicators determine the coverage level of demand and they have a certain weight： 211 

𝑄𝑖 = 𝐼𝑁𝑇(𝛼𝐴1𝑖 + 𝛽𝐴2𝑖 + ⋯ + 𝜀𝐴𝑛𝑖 + 1)                        (9) 212 

where 𝛼, 𝛽 ⋯ 𝜀 represent the weights of the different indicators, i.e., their relative contributions to the estimated 213 

demand. The coverage level 𝑄𝑖  is then determined by increasing the integers; the results represent the number of 214 

times this point needs to be covered by the emergency facilities. 215 

 216 

2.5 Disaster risk level analysis 217 

 218 

Events such as floods, earthquakes, and mudslides can adversely affect surrounding buildings and traffic and have 219 

serious impacts on EMS. Not only is there is a high probability of casualties in the disaster source area, which creates 220 

high demand for EMS but the disasters may cause road damage and traffic congestion, making rescue more difficult 221 

than usual and delaying the emergency response. In order to achieve the model goal, we analyze the disaster risk 222 

level of the demand points and potential emergency points and classify the disaster level according to the distance of 223 

the emergency services from the source of the disaster. For a disaster risk level 𝑚𝑖 of demand point 𝑖, the closer the 224 

point is to the location of the disaster, the higher the risk level and the probability of emergency calls for rescue are. 225 

For the disaster risk level of the potential facility j, the closer the facility is to the disaster source, the more serious 226 

the impact on the facility is, making its location unsuitable for an emergency facility. We express this indicator of the 227 

alternative point as the disaster resistance capacity level 𝑝𝑗; therefore, the disaster resistance of the potential facilities 228 

increases with their distance from the disaster source.  229 

 230 

3. Case Study 231 

 232 

For the case study, we choose Minhang District, Shanghai, China as the study area and apply the proposed location 233 

model to the optimization of the EMS station distribution during the fluvial flooding hazards of Huangpu River based 234 

on the data of the Shanghai Emergency Center. The logi-gram related of the methodology is shown in Fig.2. 235 
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 236 

Figure 2 logi-gram of the multi-coverage optimal location model  237 

3.1 Study area 238 

 239 

Minhang district is located in Shanghai in China, covers an area of approximately 372.56 km2, and is located near 240 

the Huangpu River. There are 9 towns and 514 communities with about 253.4 million residents in the district. The 241 

Huangpu River runs through the entire area and its river network consists of more than 200 rivers, making the study 242 

area a high-risk area for fluvial flooding. In recent years, due to sea level rise and urban land subsidence, the risk of 243 

storm surges and floods in the area surrounding to Huangpu River has increased (Yin, et al., 2013). Part of the 244 

Minhang district is in the center of Shanghai and has a complex road network and dense population, long-term human 245 

activities have caused the natural river flow to decrease and the impervious surface areas in the urban areas to increase, 246 

making the location highly vulnerable to pluvial floods and fluvial floods. In addition to causing casualties and 247 

damaging emergency facilities, flood inundation causes damage to buildings and roads, results in traffic congestion 248 

and complicates emergency rescue by delaying the emergency response. Flooding causes additional disruption to 249 

emergency responders in the city because the water may spread quickly and cover large areas (Green et al., 250 

2017).There are currently 12 emergency stations in different blocks of this district and most stations are located 251 

downtown in the densely populated areas (Fig.3). Statistical data of the 2017 Shanghai Emergency Center indicates 252 

that the number of EMS calls in 2017 exceeded 40,000 and the average emergency response time was about 15 253 

minutes. When large-scale flooding occurs, the emergency response efficiency is greatly affected due to the 254 

inundation of the road network. Therefore, we considered a fluvial flood as a disaster scenario for applying the EMS 255 

location model. 256 

 257 

 258 
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 259 

Figure 3 Location of the study area 260 

3.2 Flood impact analysis 261 

 262 

In order to assess the inundation area and depth following fluvial flooding disasters in the study area, we used a 263 

1D/2D coupled flood inundation model named FloodMap (Yu and Lane, 2006a; Yu and Lane, 2006b), to simulate 264 

the inundation scenarios of fluvial flooding in various return periods; this model combines the 1D solution of the 265 

Saint-Venant equations of river flow with a 2D flood inundation model based on raster data to solve the inertial form 266 

of the 2D shallow water equations. The model is tightly coupled by considering the mass and momentum exchange 267 

between the river flow and floodplain inundation and it is used to simulate the flood process and extract flood 268 

potential maps. Floodmap has been applied in several different environments and is the mainstream numerical 269 

simulation model used for flood scenarios (Yin and Yu et al., 2013; Yin and Yu et al., 2015). We used the FloodMap 270 

model to simulate the inundation area and depth following fluvial flooding for various return periods (100-year and 271 

1000-year) in the Huangpu River Basin in the 2010s, 2030s, and 2050s (Fig. 4). The research data sources include 272 

the Shanghai 2013 Transportation (Gaode) navigation GIS dataset, Shanghai public service facility data, a Shanghai 273 

50-meter resolution digital elevation model (DEM) and basic GIS data. 274 

 275 

After obtaining the flood scenario simulation results, we used various (GIS) tools (e.g., the Spatial Analysis function 276 

in combination with the Network Analysis function) to assess the impacts of flooding on the EMS response of the 277 

existing emergency stations. We used the Shanghai Gaode GIS road network data and the 2017 EMS calls for help 278 

data in the Minhang District obtained from the Shanghai Emergency Center. We used five levels for the road speed 279 

limit based on the People's Republic of China Technical Standard of Highway Engineering (JTG B01-2003). Our 280 
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assessment includes a network-based spatial analysis method using the road network data to derive areas that can be 281 

reached from an EMS station within a certain timeframe. This method is widely used in route planning (e.g., via 282 

Google Maps navigation) and considers speed limits, road hierarchy, one-way traffic, and other restrictions in the 283 

road networks; this method is used by network analysis function in the ArcGIS10.2 software (New Service Area). 284 

Given that the response time is the usual standard by which the efficiency of emergency rescue is assessed, we divided 285 

the service area by using the ambulance travel time. In terms of the response time limit for ambulances, 8 min is 286 

usually regarded as the standard for a medical emergency (Pons and Markovchick, 2002). However, the EMS calls 287 

and rescue data from the Minhang District in Shanghai in 2017 indicated that the average medical emergency 288 

response time was about 15 min, although the goal is to reduce this to 12 min by 2020. We have therefore used 289 

response times of 8, 12, and 15 minutes to divide the EMS service area (Yin and Jing et al., 2019). In terms of 290 

emergency management, when fluvial flood disasters occur, roads near rivers become inundated, leading to traffic 291 

congestion and road closures, which affect ambulance response times; The failure part of the transport infrastructure 292 

would have the most significant effects on access to specific locations and the EMS system performance(Albano et 293 

al., 2014). Studies have shown that when road inundation reaches a depth of 30 cm, the roads become impassable to 294 

vehicles (Yin and Yu et al., 2016; Green et al., 2017). We have, therefore, used an inundation depth of 30 cm as the 295 

road closure restriction for vehicles; we used the same depth to define the area that cannot be accessed by vehicles 296 

(the ‘barrier area’) in our GIS service area analysis. We used FloodMap to simulate flood scenarios in 2010, 2030, 297 

and 2050 for two return periods (100-year and 1000-year). We then used the ArcGIS 10.2 network analysis toolbar 298 

to simulate the emergency facility service areas for the different scenarios (Fig. 4). 299 
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 300 

Figure 4 Emergency station service areas in the Minhang District under different flood scenario simulations  301 

 302 

Figure 4 shows that during a 100-y flooding occurs, one emergency station (Wujing Station) will lose capacity due 303 

to inundation, whereas a 1000-y flooding will affect two stations(Wujing Station and Jiangchuan Station), both of 304 

which are located near the middle and lower drainage basin of the Huangpu River and serve a large population. If 305 

these two stations are incapacitated, it will greatly affect the efficiency of medical emergency rescue in the 306 

surrounding areas. Figure 5 shows the impact on the area serviced by each station for the different flood scenarios. 307 

The y-axis is the ratio of the service area before and after the disaster, the lower the ratio, the greater the decrease is 308 

in the service area due to fluvial flooding. About half of the stations are affected by the disaster and their service 309 

areas have decreased by more than 10%. The starting point for our simulations is the distribution of the existing 310 

Minhang District emergency stations. We find that the existing EMS distribution is inadequate for any of the flood 311 

scenarios used in our model. We, therefore, seek to optimize the location of the emergency stations in conjunction 312 

with the flood scenarios to ensure that the emergency service facilities can handle the disasters. 313 

 314 
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 315 
Figure 5 Ratio of the service area of emergency stations before and after the disaster under different flood scenarios 316 

 317 

3.3 Model parameter calculation 318 

 319 

We calculated the two major model parameters (coverage level and disaster risk level) as proposed in Sect 2 based 320 

on the flooding scenario results described in Sect 3.2 and used actual data for population, EMS calls for help, etc. We 321 

first determined the demand points and number of potential emergency stations by dividing the study area into units 322 

of representative blocks or grids. We used data on the location of the communities in the Minhang District to 323 

determine the smallest block unit suitable for modeling demand (each community represents a demand unit). We 324 

used the ArcGIS 10.2 software Geometry Calculation function to calculate the geometric center of each community 325 

demand unit as a model demand point. To determine the location of potential EMS stations, we covered the entire 326 

study area. We divided the area into grids of a certain length and assumed that every grid center point was a potential 327 

emergency station. Considering the actual conditions in the research area, we divided the area into a grid with a cell 328 

size of 2 km * 2 km using the ArcGIS 10.2 fishnet analysis tool (create fishnet). In addition, we added the original 329 

12 emergency stations in the Minhang District to these potential stations for comparison. There were 514 demand 330 

points and 106 potential stations in the study area (Fig. 6). 331 

 332 

3.3.1 Coverage level calculation 333 

 334 

The coverage level 𝑄𝑖 of the demand points (Question Q1) depends on the properties of each point. For example, 335 

the larger the population, the more EMS stations are required and these should be located nearby. By considering the 336 

existing data and the general conditions in the study area, we regarded the population density and the historical EMS 337 

calls for help at each demand point as the influencing factors 𝐴1 and 𝐴2, respectively of the demand coverage level 338 

(using Eq. (9)) and used equal weights for the two factors as for a special case (𝛼 = 𝛽 = 0.5 ∗ 10). The resulting 𝑄𝑖 339 

is the coverage level, i.e., the number of times that each demand point i should be covered by the emergency stations 340 

in the service area within a specified time. The optimization objectives are to prevent delays in the emergency 341 

response caused by busy emergency stations during a disaster and we constrained these objectives using 𝑄𝑖. The 342 
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results of the demand level calculation are shown in Table 1. 343 

Table 1 Demand point coverage level (sub-sample of the demand point data) 344 

Point ID Area(km2) Population  EMS calls 

Population 

density(A1) 

EMS calls 

density(A2) 

Coverage level(𝑄𝑖 ) 

1 0.1624119 5225 74 32,171.28 455.6315 4 

2 0.06345485 3217 44 50,697.46 693.4064 6 

3 0.09560105 3137 59 32,813.45 617.148 4 

4 0.2068276 5955 89 28,792.10 430.3101 4 

5 0.2035748 6451 150 31,688.60 736.8299 5 

6 0.1510978 4728 173 31,290.99 1,144.95 6 

7 1.463531 11332 273 7,742.92 186.5352 2 

8 0.6317168 3317 76 5,250.77 120.3071 1 

9 3.198358 8736 27 2,731.40 8.441831 1 

10 0.1303969 3970 61 30,445.52 467.8027 4 

11 0.1299455 5082 57 39,108.70 438.6454 4 

12 0.3076447 4113 123 13,369.32 399.8118 2 

13 0.254323 3115 71 12,248.21 279.1726 2 

14 0.08798262 4396 51 49,964.41 579.6599 5 

15 0.1688578 4294 37 25,429.68 219.1193 3 

16 0.1297367 3815 69 29,405.72 531.8465 4 

17 2.101426 2801 113 1,332.90 53.773 1 

18 3.886865 6481 90 1,667.41 23.15491 1 

19 0.2178247 4066 58 18,666.38 266.2691 2 

20 0.3022524 5911 114 19,556.50 377.1681686 3 

… … … … … … … 

Max 10978496.3425 25419 608 76608.25 1870.493324 8 

Min 20271.96894 86 0 25.7722 0 1 

 345 

3.3.2 Disaster risk level 346 

 347 

The results of the disaster scenario analysis indicate that some existing emergency stations are themselves 348 

highly vulnerable to fluvial flooding, which would delay or even prevent their EMS response. At this stage, we must 349 

assess the disaster risk at all points before optimizing the locations of the emergency stations. We have considered 350 

both the disaster risk level of the demand points and potential stations (Question Q2); a high risk level not only means 351 

that this location is unsuitable for the location of EMS but it also indicates a high need for EMS. 352 

 353 

We used the disaster risk analysis method proposed in Sect 2.5. For the demand point risk level 𝑚𝑖, the disaster risk 354 

level assessment of the potential stations and the demand points are classified by inundation depth. Point i in the 355 

inundation area (depth of more than 30 cm) is regarded as completely inundated at the highest flooding risk level; 356 

therefore, we use the area with the inundation depth greater than 30 cm as the center and create three 1 km wide 357 
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buffer zones (𝑚𝑖 ∈ {1,2,3}). The closer a point is to the inundation center, the higher the risk level of the demand 358 

points (Fig. 7). In contrast, the risk level of the potential stations 𝑝𝑗 can be regarded as the resistance capacity to a 359 

disaster; it increases with the distance to the inundated area. Therefore, we use the center of the inundation area with 360 

a depth of greater than 30 cm and divide the disaster resistance level into four 1-km wide buffer zones (𝑝𝑗 ∈361 

{0,1,2,3}). Hence  𝑝𝑗 = 0 means that the potential station j is completely inundated and cannot be used as an 362 

emergency station. 363 

 364 

Figure 6 Demand points and locations of potential stations    Figure 7 Risk level for demand points and potential stations 365 

 366 

3.4 Results 367 

 368 

Here we present the results of the proposed multi-coverage optimal location model for the assignment of the Minhang 369 

District emergency stations during fluvial flooding and discuss the performance of the optimization of the EMS 370 

services and coverage level. In order to test our model, we run this model based on the worst-case scenario (1000-y 371 

flooding in the 2050s). We have assumed that vehicles cannot travel through areas with inundation depths greater 372 

than 30 cm. We utilized origin/destination (OD) matrix in the Network Analysis function of ArcGIS to calculate the 373 

ambulance driving time 𝑡𝑖𝑗 from each potential station 𝑗 to each demand point 𝑖 during the disaster scenario. The 374 

model also included the parameters for the construction of 12 stations (F = 12) to ensure that their service area 375 

could cover at least 95% of the demand points within 8 min (X ≥ 514 ∗ 0.95, 𝑡𝑖𝑗 ≤ 8). In simple terms, the objective 376 

of this model was to determine the locations of emergency stations to rescue the largest number of people in 8 minutes. 377 

We used the demand coverage level parameters and disaster risk level parameters obtained from the above-mentioned 378 

analysis as inputs for the model and used Lingo10.0 software to solve the model. The computational results are given 379 

in Fig. 8. The central urban area of the Minhang District is less affected by flooding than other areas; therefore, the 380 

location of the EMS stations did not change significantly. However, in the region near the Huangpu River, the 381 

optimized emergency stations are located farther away from the inundation area than the current stations, indicating 382 
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that the station at the optimized location will be less liable to flooding and more likely to remain operational than the 383 

current stations. 384 

 385 

Figure 8 Computational results of the optimal location model 386 

 387 

3.4.1 Service capacity comparison 388 

 389 

In terms of emergency management, a service area is an intuitive measure for determining the service quality of 390 

emergency service facilities and usually reflects accessibility, i.e., the larger the service area, the larger the number 391 

of people who can be served by this station. In general, service areas and population are directly related to the 392 

transport infrastructure conditions around the emergency facilities, including road speed restrictions and road network 393 

density. During flooding, the transport infrastructure near the flooded area will be affected, which will change the 394 

travel time of the emergency vehicles, thus reducing the area of emergency service and accessibility of rescue. 395 

Therefore, in this context, we used the service area and population as parameters to evaluate the optimization 396 

performance of the model (Question Q4). Using the ArcGIS 10.2 Service Area Analysis tool, we divided the 397 

simulated emergency station service area into three response zones (8-, 12-, and 15-min journeys) under different 398 

scenarios; we then used the Spatial Join function to calculate the number of people in the service area. The total 399 

service area of the emergency stations for the different response times was calculated and the comparisons of the 400 

service capacity for the current stations and optimal stations are shown in Fig. 9 and Fig. 10 using the worst-case 401 

flooding scenario (1000-y fluvial flooding of the Huangpu River in the 2050s) and the no-flooding scenario. 402 
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 403 

Figure 9 Performance comparison of service areas in different scenarios 404 

 405 

Figure 10 Service capacity comparison  406 
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The percent coverage is expressed as a percentage of the total area and the total population; the results suggest that 407 

the optimized locations of the emergency stations obtained by the model provided improvements in the service 408 

capacity over that of the original stations in both the no-flooding and extreme flooding scenario based on the 8-min 409 

emergency response time. In the no-flooding scenario, the coverage of the service area increased by about 5.5% and 410 

for the worst-case flooding scenario, the increase was 8.4%. (Fig.10); the number of people with access to emergency 411 

services increased by almost 250,000 (10% increase). These results indicate that the optimization model increased 412 

the service capacity for almost all response times and the performance is best for the 8-min response time.   413 

 414 

3.4.2 Coverage level performance 415 

 416 

A combination of limited vehicle resources, vulnerable transport infrastructure, and high requirements of the demand 417 

points during a disaster inevitably places emergency services under great pressure. If one demand point is covered 418 

by only one emergency station, the limited number of ambulances would soon affect the provision of services for a 419 

large number of demand points, thereby causing delays in rescue. Therefore, a region with high demand should be 420 

covered by multiple emergency service areas that can operate simultaneously, especially for high-need demand points. 421 

The proposed model focuses on multiple coverage levels of demand points and we used the real average coverage 422 

value for each demand point in a specific time as an important indicator to validate our model results (Question Q4). 423 

We combined the service areas of all emergency stations and used the Spatial Join tool in ArcGIS 10.2 to calculate 424 

how many times every demand point would be covered in 8, 12, and 15 minutes during the no-flooding and the worst-425 

case flooding scenarios; We then compared the average values (Fig.11).  426 

 427 

Figure 11 Comparisons of the average coverage value 428 

 429 

Figure 11 shows that the average coverage value improved after optimization in both scenarios. Specifically, the 430 

average coverage value for the no-flooding scenario is slightly higher (about 10%). The improvement in the average 431 

coverage value for the no-flooding scenario was greatest for the 12-minute response time, i.e., an increase of 6.8%. 432 

For the worst-case flooding scenario (1000-y fluvial flooding of the Huangpu River in the 2050s), the improvements 433 

were more significant: the coverage of the 15-minute response time increased by more than one (18.4%), indicating 434 

that, on the average, each demand point can be served by one additional EMS stations within 15 min. These 435 

results indicate that using model optimization for locating emergency stations greatly improved the response time of 436 

emergency services at the demand points, even in an extreme flood disaster scenario, thereby providing strong 437 

disaster resistance. We also compared the percentage of coverage in 8, 12, and 15 minutes during the no-flooding and 438 

the worst-case flooding scenarios (Fig.12). The percent coverage is expressed as a percentage of the demand points 439 
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in different coverage levels. Figure 12 shows that the coverage level of interval 5~8 is significantly greater for the 8-440 

min response time and 12-min response time while that of interval 0-3 was significantly decreased, these results 441 

indicate that the model can improve the demand points which have low coverage level for a short response time. In 442 

addition, we also found that the optimized coverage level is almost the same for the 8-min response during the no-443 

flooding or the worst-case flooding scenarios, indicating that extreme fluvial flooding has little impact on EMS 444 

emergency response. 445 

 446 

Figure12 Comparisons of the coverage level 447 

 448 

From these results we can see that stations whose locations are determined using the proposed method will have a 449 

greater capacity to meet the requirements of the demand points. This reduces the occurrence of "failures" and 450 

"insufficiency" of emergency stations during disasters, thereby shortening emergency response times and reducing 451 

the loss of life and property.  452 

 453 

4. Conclusions 454 

 455 

This study focused on the optimization of the EMS station locations to ensure efficient emergency medical response 456 

in fluvial flood disaster scenarios and the prevention of accidents due to emergency response delays and failure of 457 

stations. After analyzing the existing location models, we discussed the reasons for using multi-coverage plans to 458 

improve disaster emergency resistance instead of traditional location models. In addition, since there are various 459 

disaster scenarios, we also considered the different damage levels in various areas using disaster scenario simulations. 460 

The proposed model is an objective programming model with the goal to serve the largest number of people in a 461 

specified time during a disaster. For the case study, we investigated the Minhang District in Shanghai, China and 462 

conducted computational experiments based on real-world data from the Shanghai Emergency Center. We used the 463 

service area and the average coverage level as parameters to evaluate the model performance. The model results 464 

showed that the optimized EMS locations had a wider service range for 8-min response time and a larger number of 465 

people were served; the coverage level was also improved. The coverage level of some of the existing stations 466 

changed greatly after the disaster whereas the optimized location results showed that the service level before and 467 

after the disaster was almost the same. Both parameters indicated that the proposed multi-coverage location 468 

optimization model is well suited to model the emergency response to flood disasters and to conduct site selection of 469 

urban emergency facilities.  470 

 471 

Some aspects of the model could be improved to obtain a more robust solution. First, in the case study, we did not 472 

conduct a quantitative assessment of the effect of the disaster risk level on the emergency response, but we evaluated 473 

the disaster risk level by using the buffer distance to the source of the disaster, which is a subjective approach. Second, 474 

since this was a theoretical analysis, our model did not consider whether the terrain or other basic conditions were 475 
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suitable for the EMS facilities. In future studies, we will consider disaster risk factors such as the vulnerability of 476 

buildings to evaluate the level of disaster risk quantitatively, and we will take into account the terrain and construction 477 

cost of the potential locations.  478 

 479 

Lastly, the location of urban emergency service facilities has always been an important focus in urban planning. 480 

Location selection should consider a variety of factors and the ability to respond to disasters should also be considered. 481 

In this study, we divided the area into grids with a cell size of 2 km * 2 km and assumed that every grid center point 482 

was a potential emergency station; the grid division will affect the efficiency of the model and the accuracy of the 483 

results. The finer the scale, the higher the accuracy is, but the greater the computational complexity. Therefore, in 484 

future research, we will consider a multi-scale division that takes into account the population density. 485 

 486 

In this study, we used a fluvial flooding disaster as an example to analyze the impact of disasters and to evaluate the 487 

model. However, the risks faced by cities are not only fluvial floods but also other major events such as earthquakes, 488 

mudslides, and pluvial floods. In addition, the evacuation plan of the population exposed to these hazards should be 489 

considered (Alaeddine, 2015). Future research should comprehensively consider a variety of these hazards, conduct 490 

risk assessments of the study area quantitatively, and select the location of urban emergency facilities according to 491 

different geographical conditions to improve the efficiency of emergency response. 492 
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