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Abstract. Quantifying the potential exposure of property to damages associated with storm surges, 

extreme weather, and hurricanes is fundamental to developing frameworks that can be used to conceive 15 

and implement mitigation plans as well as support urban development that accounts for such events. In 

this study, we aim at quantifying the total value and area of properties exposed to the flooding 

associated with Hurricane Florence that occurred in September 2018. To this aim, we implement an 

approach for the identification of affected areas by generating a map of the maximum flood extent 

obtained from a combination of the flood extent produced by the Federal Emergency Management 20 

Agency’s (FEMA) water marks with those obtained from spaceborne radar remote sensing data. The 

use of radar in the creation of the flood extent allows for those properties commonly missed by FEMA’s 

interpolation methods, especially from pluvial/non-fluvial sources, and can be used in more accurately 

estimating the exposure and market-value of properties to event-specific flooding. Lastly, we study and 

quantify how the urban development over the past decades in the regions flooded by Hurricane Florence 25 

might have impacted the exposure of properties to present-day storms and floods.  This approach is 

conceptually similar to what experts are addressing as the “expanding bull’s-eye effect” in which 

‘‘targets” of geophysical hazards, such as people and their built environments, are enlarging as 

populations grow and spread. Our results indicate that the total value of property exposed to flood 

during Hurricane Florence was $52B (in 2018 USD), with this value increasing from ~ $10B at the 30 

beginning of the past century to the final amount based on the expansion of number of properties 
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exposed. We also found that, despite the decrease in the number of properties built during the decade 

before Florence, much of the new construction was in proximity to permanent water bodies, hence 

increasing exposure to flooding. Ultimately, the results of this paper provide a new tool for shedding 

light on the relationships between urban development in coastal areas and the flooding of those areas, 

which is estimated to increase in view of projected increasing sea level rise, storm surges and strength 5 

of storms.  

1 Introduction and rationale 

  

 The projected rise in sea level, increased floods and storm surge and associated consequences 

over the 21st century has the potential to do immense economic harm. The economic impact is 10 

particularly worrisome in the U.S. because the most valuable real estate, densest communities, and most 

productive economic engines are situated disproportionately in coastal regions (Fu et. al., 2016; NOAA, 

2013; Kildow et. al., 2014).  Recent research has highlighted an ongoing economic signal associated 

with high-probability flooding events and real estate transactions in coastal communities that can be 

observed with historical data (see McAlpine and Porter, 2018; Keenan et. al. 2018; and Bernstein et. al. 15 

2019), suggesting that sea level rise (SLR) is already producing negative economic consequences on 

coastal communities.  Furthermore, there is abundant evidence indicating that we are only seeing the 

first signs of a much more problematic issue both in terms of the flooding scale and the magnitude of 

associated economic losses (see Fu et al, 2016; Hallegatte et al., 2011; Bin et al., 2011; Bin et al. 2008; 

Parsons and Powell 2008; Michael 2007).  In this regard, a SLR of ~ 2 meters (e.g., six feet) would 20 

flood roughly 100,000 homes only in New York City, with a total value of $39 billion (note that we use 

2018 as a reference for the dollar year throughout this manuscript unless otherwise mentioned); a 3 

meters (ten-foot) rise would flood 300,000 homes and property with a value of almost $100 billion 

(Union of Concerned Scientists, UCSUSA, Accessed 29 June, 2019). The equivalent figures for Miami 

are 54,000 homes and property valued at $14 billion at risk with a ~ 2 meters rise and 130,000 homes 25 

and property valued at $32 billion for a ~ 3 meters rise. 
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 Recent events such as hurricanes Katrina, Irma and Florence have been highlighting even more 

the issues related to floods and extreme events. In particular, Florence was one of the most devastating 

hurricanes in history as it combined storm surge, strong winds and extreme precipitation. It began as a 

tropical storm on 1 September, 2018 over the Cabo Verde Islands off the coast of West Africa and 

peaked as a Category 4 hurricane with winds up to 225 Km/hour before making landfall as a Category 1 5 

hurricane on 14 September, 2018 over Wrightsville Beach, North Carolina. By 5 p.m. on Friday, 14 

September, 2018 Florence was downgraded to a tropical storm and early on Sunday, 16 September it 

became a tropical depression, with winds of about 360 Km/hour.  At least 51 people died as a 

consequence of flooding associated with rain records (up to 3 feet of rain in some areas according to the 

Weather Service), with more than 400,000 houses without power and a total damage of $24 billion 10 

(https://www.ncdc.noaa.gov/billions/events.pdf).  

 The human cost of Hurricane Florence was a reminder of the power of such storms and 

these storms are likely becoming more impactful as their surge reaches further inland due to changing 

tracks, increased strength, and rising seas.  The increasing exposure of the public and properties to 

events similar to Hurricane Florence has unintended consequences of raising the awareness and concern 15 

to all types of climate related events (Borenstien and Fingerhut, 2019).  Such is likely the case in much 

of the recent research on real-estate market responses to higher-probability flooding associated with 

nuisance tidal flooding events (McAlpine and Porter, 2018). In their study, MacAlpine and Porter 

(2018) found that properties in Miami-Dade County at risk of frequent tidal flooding had lost over $430 

million in property value relative to homes that were not a risk of repeated tidal flooding events.  20 

Likewise, and also centered in the Miami-Dade region, Keenan et al. (2018) found that homes at lower 

elevations were being penalized on the market relative to homes at higher elevations.  Moreover, in 

another analysis, Bernstein et al. (2018) found a similar penalty for homes at risk of flooding from 

increase in SLR, but found that this penalty was primarily driven by investors and an uneven access to 

information associated with risk.  All of these studies identify an increase in awareness of SLR related 25 

flooding events and all document the fact that this trend is relatively new (since about the middle of the 

last decade). Of particular importance to the recent market response is the fact that increased probability 

is an important driving force. In the work undertaken by Bernstein et al. (2019), for example, the price 
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penalty for homes at risk of flooding is explicitly driven by the sophistication of investors and their 

access to risk tools aimed at helping them to make decisions about property value, and long-term 

appreciation over time. McAlpine and Porter (2018) also found, in this regard, that risk associated with 

being impacted by a Category 1 hurricane is correlated with potential loss property value, but not the 

probability of being impacted by a higher Category storm.  In each of these cases, the research suggests 5 

that the real-estate market is becoming more sensitive to the probability of damage associated with 

inundation from flooding events due to rising seas, storm surges, nuisance flooding and consequences 

of a changing climate.  On the other hand, research out of University of Pennsylvania’s Wharton Risk 

Center by Kunreuther et al. (2019) found that the elasticity concerning the housing market tends to 

show quick recoveries in areas where the experience of climate catastrophes is characterized as a market 10 

shock.  Market shocks are generally thought of a one-time (or contiguous time period) events that 

negatively impact the housing market.  Due to the nature of market shocks being lower probability and 

harder to predict, the housing market tends to see them as unlikely and related to collective 

internalizations associated with myopia, amnesia, optimism, inertia, simplification, and herding 

(Kunreuther et.al., 2019).  However, market stressors are ubiquitous, high-probability, events that are 15 

generally predictable and have historical certainty.  In the context in which we are working, increased 

and unmanageable tidal flooding could be considered a market stressor, while the impact of a single 

hurricane event could constitute a market shock.  Historically, market shocks (such as hurricanes) are 

much more expensive, in terms of actual economic impacts, and consume more media attention, in 

terms of the coverage of the events. 20 

Several studies have recently focused on assessing damages from hurricane Florence. Roberson 

et al. (2019) use overhead imagery, including synthetic aperture radar (SAR) and optical data, to study 

the impact of Florence on livestock wastewaters and crop health. Srikanto et al. (2019) study the spatial 

distribution of fatalities and associated demographics, indicating that 93 % of the affected buildings 

were residential structures. The proper quantification of the impact of Hurricane Florence (or more in 25 

general of extreme events) is not only helpful for addressing the recovery of the communities impacted 

by the event but also to provide tools to policy makers, urban planners and city managers that will 

ultimately guide them through the decision process of reducing the impacts of future events. If it is true, 
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indeed, that climate change is and will be influencing the frequency and strength of storms and floods, it 

is also true that the exposure of anthropogenic structures and lives is a function of urbanization factors 

such as, for example, the building of new properties in proximity of the coast and of body waters. In this 

context, it becomes crucial to understand and quantify how urban development has impacted the 

exposure of properties and population to present-day storms and floods. For example, one of the most 5 

devastating hurricanes over the same region before Florence was Hurricane Hugo, reaching the 

Carolinas on 10 September 1989, with winds up to 260 Km/hour and a total estimated damage of $9.45 

billion (in 1989 USD, equivalent to ~ $19B of 2018 USD) and 60 fatalities. Unlike 1989, we have today 

improved observational and modeling tools that allow us to better estimate the maximum flood extent, a 

key parameter needed to estimate the potential exposure to damage of properties and other 10 

infrastructures. From a modeling point of view, hydrological and hydrodynamic models, in conjunction 

with improved digital elevation models and the ingestion of gage observation or observation of high 

water marks, offer the opportunity to generate estimates of maximum flood extent (FEMA, 2019).     

 We aim at understanding the usefulness of remotely sensed satellite data as a method for the 

identification of impacted areas and for delineating the maximum flood extent. Specifically, we report 15 

results concerning the mapping of the flood extent associated with Hurricane Florence estimated from 

SAR data and compare such extent with the maximum flood extent provided by FEMA. From that 

exposure, we are able to quantify the property value and total area exposed to Hurricane Florence by 

combining the flood extent coverage with a database containing publicly available property value 

attributes. Despite recent studies have started to focus on the spatio-temporal variability of property 20 

values and human settlements in hurricane-prone areas (e.g., Huang et al., 2019) and on the market 

responses to increases in observed flooding events (e.g., McAlpine and Porter, 2019; Keenan et. al, 

2018), no study, to our knowledge, has focused on the impact of urban growth on the property exposed 

to Hurricane Florence. Addressing this point is crucial to account for those impacts related to the 

choices that our society makes to continue the expansion of urban areas and that have been addressed by 25 

experts as the “bull’s-eye expanding effect” (Ashley and Strader, 2018), in which ‘‘targets” of 

geophysical hazards, such as people and their built environments, are enlarging as populations grow and 

spread. The term “bull’s-eye” is here used to define the eye or center of a storm. Our approach is 
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complementary to those approaches focusing on the bull’s eye effect and to those calculating the impact 

of floods under future climate scenarios (e.g., sea level rise or storm surge is changing but the properties 

distribution remains the same). Specifically, we assess the potential exposure of properties using a 

dataset containing, among other things, when each property was built and use that information to 

estimate the potential exposure of buildings to  5 

Hurricane Florence should have occurred in the past decades. 

2 Data and Methods 

2.1 Sentinel-1 radar data and identification of inundated areas  
 

 From an observational point of view, spaceborne and airborne remote sensing (e.g., Schumann 10 

et al., 2011), as well as UAV-based approaches (e.g., Gebrehiwot et al., 2019) offer powerful tools to 

monitor flood extent (e.g., Domeneghetti et al., 2019; Kordelas et al., 2018; Shumann et al., 2018a, 

2018b, Giordan et al., 2018). Optical data can map the presence of surface water at relatively high 

spatial resolution and accuracy (e.g., Kordelas et al., 2018) but it is limited by the presence of clouds 

(Shumann et al., 2018). On the other hand, datasets collected in the microwave region, such as those 15 

collected by Synthetic Aperture Radar (SAR), are not limited by the presence of clouds (Shumann et al., 

2018, Manavalan, 2017; Huang et al., 2018). The recent launch of Sentinel-1 ESA sensors in September 

2014 (Sentinel-1A) and April 2016 (Sentinel-1B, https://sentinel.esa.int/web/sentinel/missions/sentinel-

1) allows mapping of flood extent at unprecedented temporal and spatial resolutions. The combination 

of the two sensors provides a nominal 6-day repeat cycle over the equator and 12-day repeat cycle over 20 

North America (Torres et al., 2012) at a horizontal spatial resolution of the SAR data is 10 m. For the 

purpose of this study, we obtained Sentinel-1 data from the National Aeronautics and Space 

Administration Alaska Satellite Facility (NASA/ASF, https://earthdata.nasa.gov/about/daacs/daac-asf). 

More information on the Sentinel-1 sensors can be found at 

https://sentinel.esa.int/web/sentinel/missions/sentinel-1. Specific details on the SAR-based approach 25 

used in this study are reported in the supplementary material.  
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2.2 FEMA Maximum water extent during Florence 
 

We supplement the radar-derived flood extent with the FEMA's High Water Mark-based Depth 

Grids and Inundation Polygons from observed and collected Hurricane Florence data. High Water 

Marks (HWM) are point data collected using high resolution Real Time Kinematic (RTK) GPS systems 5 

or other methods. HWM points represent the highest extent of riverine flood or coastal storm surge 

inundation. The raw data is available at the FEMA Natural Hazard Risk Assessment Program (NHRAP) 

site and were downloaded for all basins available per FEMAs collection efforts following the hurricane 

event (https://data.femadata.com/FIMA/NHRAP/Florence/).    

The FEMA Maximum Water Extent is distributed as a GIS raster file created to represent the 10 

extent of riverine or coastal storm inundation following larger flooding events. The file is created as a 

derived product following the creation of the Maximum Depth Grids raster file, which is obtained using 

FEMA HWM data and FEMA’s Digital Flood Insurance Rate Map (DRIRM) Base Flood Elevations 

(LIDAR based elevation data). Using those datasets, a grid is obtained to estimate the height of water at 

any given point between HWM based on base elevation.  From this, we extracted a secondary file 15 

measuring only the extent of inundation from the storm surge. The FEMA dataset is distributed as an 

ARCGIS® geodatabase (.gdb format) and we rasterized it at a spatial resolution of 10 m to match the 

spatial resolution of the SAR data. More information on the FEMA approach for estimating maximum 

flood extent can be found at https://data.femadata.com/FIMA/NHRAP/Florence.      

2.3 Property database 20 
      

Property value data is compiled from each individual property's county assessor in the form of 

the property tax assessed value. The data were obtained from a third party provider, ATTOMTM Data 

Solutions, which provides high quality parcel level information on all properties in the United States 

and in a value added format (https://www.attomdata.com). The process by which the data are compiled 25 

relies solely on publicly available data and the processing, cleansing, standardizing of that data in order 

to make it available in a user-friendly format. The data used in this analysis include the property's last 

recorded assessment value for all properties within the states of North and South Carolina as well as the 

year when the property was built.  Each county's assessment process varies and, as such, the data are 
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subject to known potential limitations associated with the timing and frequency of home assessments 

undertaken by local county officials in which the property is located. However, the data also give us the 

best available comprehensive look at tax base value in a geo-located format for comparison to our storm 

surge coverage file. 

3 Results and discussion 5 

3.1 Assessment of remote-sensing derived areas vs. FEMA maximum water extent 

 Inundated areas (including permanent water bodies) obtained from Sentinel-1 data and FEMA 

are reported, respectively, as blue (radar) and red (FEMA) regions in Figure 1a. We used a total of 12 

Sentinel-1 images collected between 14 September and 19 September, 2018 and whose footprints are 

shown in the inset in the top left corner of Figure 1b. Specific names and acquisition times of the radar 10 

images are reported in the Supplementary material. We used the 12 images in order to maximize the 

covered area and to account for the temporal evolution of surface water after the landfall of Hurricane 

Florence associated with heavy, persistent rainfall.  

The comparison between the maximum water extent estimated by FEMA and the water extent 

mask obtained from Sentinel-1 indicates a matching score (defined here as the percentage of flooded 15 

pixels identified by Sentinel-1 with respect to the total number of flooded pixels identified by FEMA) 

of 11.3 % and a commission error (defined as the relative percentage number of pixels when Sentinel-1 

detects flooded areas but FEMA does not with respect to the total number of FEMA flooded pixels) of 

9.2 %.  We remind here that the FEMA map is based on a combination of modeled and measured 

quantities and might miss flooding associated with heavy rains, as in the case of Hurricane Florence.  20 

Consequently, it is possible that some areas that were flooded according to the radar images were not 

included in the FEMA maps. As an example, Figure 2 shows the maximum water extent from FEMA 

(red) together with the one derived from Sentinel-1 data (blue) nearby the town of Bennettsville, SC 

(34.6174° N, 79.6848° W). Green dots show the location of the properties within our database. We note 

that the radar sensor is detecting water over agricultural fields that are not marked by the FEMA maps 25 

as flooded, showing a potential improvement over the FEMA maps. Our analysis of the Sentinel-1 
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backscattering coefficients (not shown here) indicates that the backscattering values recorded for those 

regions where flood was identified by the radar were relatively low (e.g., well below the threshold value 

and on the order of ~ -20 dB or below), indicating that those were, indeed, inundated areas.  

Another factor complicating the comparison between Sentinel-1 and FEMA inundated regions 

regards the acquisition time of the radar images, which are collected before or after the time of the 5 

maximum water extent. Figure 3a shows the time series of the water height (mean sea level in meters) 

for the ocean tide gauge located in Wrightsville Beach, NC (id #8658163), where Hurricane Florence 

made landfall. Maximum water height was reached on the same day around 15:00 UTC. The image also 

shows the acquisition time of the Sentinel-1B (14 September, 2018, 11:15:05, UTC) and Sentinel-1A 

(14 September, 2018, 23:05:48, UTC) as vertical, dashed lines, indicating that such images were, 10 

indeed, acquired before and after the time when the water reached the maximum extent. River gages 

data also show that, because of the heavy precipitation, the maximum water discharge and gage heights 

inland occurred a few days after hurricane Florence made landfall. In this regard, Figures 3b and 3c 

show, respectively, the daily discharge (in cubic meters per hour) and daily gage height (in meters) 

recorded at the river gauge station of Lumberton, NC (34.6182° N, 79.0086° W), located about 150 km 15 

inland. The data shows the peak discharge and water heights late in the evening of 17 September, 2018.  

For this same area the radar data were collected when the tide gage recorded peak values, confirming 

the usefulness of this tool to capture flooding that might not have been captured by FEMA. As a further 

example, we show in Figure 4 the flooded areas detected by Sentinel-1 (blue filled regions) on 19 

September, 2018 nearby Pasley, Duplin County, NC (34.7854° N, 77.9005° W) and a photograph of the 20 

same area collected on 18 September, 2018 by the NOAA Remote Sensing Division to support 

emergency response requirements (https://storms.ngs.noaa.gov/storms/florence/index.html#7/35.360/-

77.820). The figure shows that most of the flooded areas identified within the NOAA photograph are 

properly captured by Sentinel-1, with differences between the two also due to the different acquisition 

times. For this area, the FEMA map does not indicate any flooding, confirming the complementary 25 

nature of the radar dataset. 

 Given these considerations, for this study we merge the FEMA and Sentinel-1 flood extent maps 

to generate a maximum composite flood extent map that will be used to assess the property exposure to 
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Hurricane Florence flooding.  We will refer to this dataset simply as the “maximum flood extent” in the 

remaining sections of the manuscript.  
  

3.2 Exposure of property to Hurricane Florence flooding 

 Figure 5 shows the spatial distribution of the properties within our database overlaid with an 5 

image of the eye of Hurricane Florence when it made landfall. Our analysis indicates that the total area 

of properties affected by the maximum flood extent water was 70,964,700 m2 (e.g., physical footprint) 

being 17.55 % of the total area within our database. When considering only the flood extent estimated 

by Sentinel-1, the total area of properties affected by the flood reduces to 3.2 %, corresponding to 

12,939,432 m2. In order, to quantify potential biases associated with co-registration issues or resampling 10 

procedures, we also computed the number of properties exposed to the extent of our permanent body 

water dataset. Our analysis shows that less than 0.2 % of properties was overlapping with the permanent 

body waters. Consequently, we removed these properties from our analysis. 

 The total property value exposed estimated using the maximum flood extent is $52,079,520,584 

(2018 USD, corresponding to ~ 9.5 % of the total property value within our database). The exposed 15 

property value is $9,437,931,512 when considering only Sentinel-1 data. The exposed property value 

computed over the flooded regions estimated by Sentinel-1 but not by FEMA is $3,278,098,601. The 

relatively small exposure area and property values obtained with Sentinel-1 are due to the limitations 

discussed above and the difficulties of SAR data to detect flooding in urban areas (e.g., Notti et al., 

2018), where the basic assumption on the physical processes leading to the detection of flooded areas by 20 

Sentinel-1 is violated by the presence of dense vegetation or buildings. In this case, indeed, the radar 

signal will bounce on the vertical structures (e.g., buildings and trees) after being reflected by the water 

surface, increasing the amount of energy reaching the radar receivers rather than reducing it, as 

expected in the absence of vegetation or urban structures (e.g., Schumann, 2018a, 2018b). Another 

reason for the underestimation of property exposure derived from Sentinel-1 data can be seen in Figure 25 

4. Here it is evident that Sentinel-1 is detecting flooding over rural and agricultural areas, where the 

number of properties is smaller than in highly density populated areas. 
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 In Figure 6 we report the distribution of the number of properties exposed to flooding as a 

function of the corresponding property value. A power law function (as reported in Eq. 1) 

 

Y = a*xn            (Eq. 1) 

 5 

fitting the histogram is also plotted as a dashed, black line with a and n obtained from the fitting as a = 

1.9544*106 and n = -1.1216. The power law function here selected was chosen after testing several 

functions (e.g., exponential decay, logarithmic, etc.) as the one showing the highest regression 

coefficient (R = 0.99). According to Zillow©, the median home values in North Carolina and South 

Carolina are, respectively, $ 184,200 (North Carolina) and $ 166,300 (South Carolina) with a median 10 

price of homes of $196,600 in the case of North Carolina and $187,800 for South Carolina. We use 

these estimates to set to $200k the median price within our database and evaluate the number of 

properties this value using Eq. 1. We find that 40 % of the properties exposed to Hurricane Florence 

flooding were below the threshold value. The properties valued between $200k and $500k account for 

another 25 % whereas the properties with values between $500k and $1M account for another 25 %. As 15 

a reference, the total number of properties valued below $200k represent ~ 50 % of our database, those 

between $200k and $500k are ~ 25 % and those between $500k and $1M roughly 15 %.  

 Distance from water bodies, especially coastal and riverine bodies, is also a useful indicator of 

properties vulnerability and potential exposure in hurricane prone areas. Consequently, we expanded 

our analysis to consider the distance of the properties that were flooded during Florence within our 20 

database from permanent water bodies (Figure 7). Values along the x-axis in the plot are obtained as the 

minimum distance from any of the closest element of the permanent water bodies mask (e.g. ocean, 

rivers, lakes) to each property within our database.  The figure also shows the exponential decay 

function fitting the histogram and the corresponding fitting parameters. From this analysis, we estimate 

that ~ 95 % of the number of properties exposed to flooding fell within 10 km from body waters. This 25 

number increases when considering only the distance from the ocean because of the inland flooding 

associated with heavy precipitation. We, therefore, use the distance of 10 km as a maximum distance for 
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studying the relationship between new properties, their distance from water bodies and the exposure to 

the Florence flood extent.  

3.3 Impact of expansion of urban areas on property exposure 

 Addressing this point is crucial to account for those impacts related to urban growth and the 

expansion of urban areas as addressed by experts when considering the so-called the “bull’s-eye 5 

expanding effect” (Ashley and Strader, 2018), in which ‘‘targets” of geophysical hazards, such as 

people and their built environments, are enlarging as populations grow and spread. In this case, the 

bull’s eye expansion does not refer to the increased storm size but rather to the area where the impact of 

the geophysical hazard is occurring, expanding because of the urbanization process over the past 

decades. This concept is well synthesized in what has been named “the expanding bull’s-eye effect” 10 

(Ashley and Strader, 2016), arguing that ‘‘targets’’—people and their built environments— of 

geophysical hazards are enlarging as populations grow and spread. We point out that, to demonstrate 

their bull's-eye effect, Ashley & Strader (2016) work with a semi-empirical spatio-temporal model of 

housing stock in tornado zones over time. A major difference between this study and Ashley and 

Strader (2016) is that in our case we have a snapshot of stock rather than a continuous record through 15 

time (i.e., annual records of all properties). This means that our dataset might be skewed toward newer 

properties as old buildings get replaced and that, despite the bull's eye expansion effect is evident from 

space, our properties dataset might only capture it indirectly. With this in mind, we calculated what 

would have been the property area and values exposed to the Florence flood should that have occurred 

10, 50 or 100 years ago by using the information contained within our database on the years when 20 

properties were built. For the purpose of this analysis, we clarify that we are assuming the same sea 

levels and topography of today.  

 Figure 8 shows the spatial distribution of the properties within our database that were built 

during the a) 1800 – 1900, b) 1900 – 1950, c) 1950 – 2000 and d) 2000 – 2018 periods. We considered 

the first period as a 100-year one (Figure 8a) because of the relatively small number of properties that 25 

were built then. Most of the urban growth between 1900 and 1950 (Figure 9b) occurred inland and 

along the coast north of Wilmington, with a relatively small number of new properties built close to 
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water bodies (either rivers or ocean). An explosion in new properties occurred between 1950 and 2000 

(Figure 8c), likely as a consequence of the economic stimulus following World War II. The period 2000 

– 2018 shows a relatively smaller number of new properties with respect to the previous periods (Figure 

8d). In this regard, our analysis performed on the 10-year period of number of properties built within 

our database (Figure 9) shows that before 2010 the number of houses built had been increasing 5 

exponentially (Y = 5e-22 * exp0.0314*X, R = 0.99, with X being the year) and that the number of new 

properties after 2010 drastically dropped, reaching values similar to those observed before the 1950s. 

This might be due to the 2008 “house crisis” that occurred during that period.  

 Figure 10 shows the time series of total value of exposed property (in 2018 $B). The inset 

reports the relative change of the exposed area and value between two consecutive time steps (10 years). 10 

Consistent with the results discussed above, a relatively small increase in the exposed property value 

occurs before the 1940s (from ~ $10B to ~ $12B). Urban expansion increases considerably after 1940s 

(Figure 8), reaching a maximum value of exposed property of ~ $52B in 2018. We fitted the increase in 

exposed property value after 1900 with an exponential function (Y = a*expbX) and computed the 

coefficients providing best fitting (a = 1.0627*1e-13, b = 0.167, R = 0.97). The maximum relative 15 

increase is reached around the year 2000 with an increase in properties exposed value of ~ $8B between 

two successive decades. After then, the relative change in exposed property values decreases to those 

obtained in the early 1950s.  

 As mentioned, distance from permanent water bodies can play a critical role in terms of 

exposure, with flooding due to Hurricane Florence reaching properties that were up to ~ 10 km from the 20 

closest water body. Therefore, we further studied how the property value evolved in terms of the 

distance from water bodies between 1800 and 2018. As an example, in Figure 11 we show the 

distribution of properties built during different periods in proximity of Wrightsville beach, where 

hurricane Florence made landfall. The figure clearly highlighs the expansion of urban areas along the 

coasts and water bodies, especially between 2000 and 2018. In Figure 12 we also show the total value 25 

of exposed properties within our database as a function of distance from water bodies between 1800 and 

2000 (using a 25-year time step) and for the period 2000 – 2018. We note that the curves referring to 

early decades reach a plateau within a relatively short distance than those referring to later periods, with 
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the saturation values (e.g., the value when the curve becomes flat) being of the order of 1500m in the 

case of the 1975 – 2000 period. Differently from other periods, the one spanning between 2000 and 

2018 does not show a saturation value with the distance from water bodies, with the exposed property 

values continuing to increase as the distance from water increases. This is an important aspect as it 

suggests that, despite the most recent decades were characterized by a relatively smaller number of new 5 

properties (Figure 9), the potential exposure to Florence of such properties was higher because of the 

higher number of the exposed properties close to body waters.  

4 Conclusions 
      

Increased flooding associated with sea level rise, storm surges and other extreme events has the 10 

potential to economically disrupt many areas around the world, with most of valuable real-estate, 

densest communities and most productive economic engines situated in coastal regions. The specific 

goal of our study was to quantify the exposure of properties to the flooding associated with Hurricane 

Florence that hit the Carolinas in September 2018 and to study how the spatio-temporal evolution of 

new built properties along the most recent decades has impacted the property exposure. It is important 15 

to note that much of the vulnerability associated with building development in these areas should be 

considered independent of climate change to this point.  However, moving forward, these types of 

storms are expected to increase in intensity and the link between climate change and potential exposure 

is likely to be tied more closely together.  In fact, we are already seeing these trends as they relate to 

tidal flooding events and one might expect that the low probability-larger storms are likely to become 20 

more linked to our changing climate as well.  

In order, to properly quantify the exposure of properties to Florence flooding, we developed a 

maximum flood extent map from the combination of the FEMA maximum extent map (generated 

through the merging of high water marks) and the flooded areas detected by means of spaceborne radar 

data acquired by the ESA Sentinel-1 sensors. We found that the total value of property exposed to 25 

flooding was ~ $52B and that this value has increased exponentially from ~ $10B (2018 $US) in the 

early 1900s. This is due to the increase in the number of properties that came to a halt at the beginning 



15 
 

of the 2000s, likely as a consequence of the 2008 housing crisis, when the number of new properties 

built after 2010 was almost half of those built only a decade before. Despite this, the exposure to 

Florence flooding for those properties built after 2000 continued increasing, because of the number of 

new properties built within proximity of permanent water bodies and coastlines.  

 Our work cannot only provide new insights for policy makers and city planners but it also does 5 

provide a tool to better estimate how the property market will respond to future disasters. Recent work 

(e.g., McAlpine and Porter, 2018;  Keenan et al., 2018) has found that homes at lower elevations were 

being penalized on the market relative to homes at higher elevations and that houses exposed to sea 

level rise sell for approximately 7% less than observably equivalent unexposed properties equidistant 

from the beach (Bernstein et al., 2019). For our future work, we plan to expand our analysis to other 10 

modern-day (e.g. Irma, Michael, Katrina and Sandy) and historical (e.g. Hugo in 1989) hurricanes to 

address similar questions to those addressed in this study. Moreover, we plan to improve the detection 

of maximum flood extent through the implementation of machine-learning techniques combining radar 

maps with tide gage interpolated data and other ancillary information. Lastly, the combination of the 

knowledge on how property distribution changed along the years in conjunction with outputs of 15 

physical or probabilistic models that can separate the different contributions associated to flood due to 

sea level rise, storm surge and rain will allow to properly quantify what is the impact of the different 

components of the climate-economic system on the total exposure and, eventually, damage. This will 

provide a crucial tool for policy makers, governments, citizens and those who are, rightly, interested in 

quantifying the impact of climate change on the economic and house markets.  20 
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5 Figures 

 

      

 
Figure 1 Map of inundated areas estimated by FEMA (red) and by the Sentinel-1 radar images (blue). The inset in the top left 5 
corner shows the footprint of the several radar images to create the composite water extent map. Acquisition times and other 
details concerning the radar images are available in Supplementary material.  
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Figure 2 Map of inundated areas estimated by FEMA (red) and by Sentinel-1 (blue) near the town of Bennettsville, SC (34.6174° 
N, 79.6848° W). Green dots represent the locations of properties for this area.  
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(a) 

 
(b)        (c) 5 

 

Figure 3 Time series of a) tide gage mean sea level height (meters) recorded at Wrightsville Beach, NC and b) daily discharge 
(cubic feet per second) and c) daily gage height (feet) recorded at Lumber river (USGS gauge 02134170), NC between 1 September 
and 30 September 2018. In a) blue line refers to predictions where green squares to verified values. In a) data and plot was 
obtained from https://tidesandcurrents.noaa.gov/. For data plotted in b) and c) we obtained data and graphs from 10 
https://waterdata.usgs.gov/. In a) and c) we also report as dashed vertical lines the acquisition times of the available Sentinel-1 
data.  
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(a) 

 
(b) 

Figure 4 Flooded areas detected by a) Sentinel-1 data (light blue filled regions) on 19 September, 2018 nearby Pasley, 5 
Duplin County, NC (34.7854° N, 77.9005° W) and b) photograph of the same area collected on 18 September, 2018 by 
NOAA (https://storms.ngs.noaa.gov/storms/florence/index.html#7/35.360/-77.820). Here, dark blue regions show 
flooded areas.  
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Figure 5 Distribution of properties within our database used to estimate the exposed property damage to Florence Hurricane. An 
image of the Hurricane Florence making landfall is also reported as a reference (Hurricane image courtesy: Cyclocane).  
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Figure 6 Distribution of the number of properties exposed to flooding as a function of property value. Dashed line represents the 
power law curve fitting the distribution. The parameters of the fitting power law function are reported in the top right section of 
the figure.   
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Figure 7 Number of properties as a function of distance from water bodies.  Dashed line represents the power law curve fitting the 
distribution. The parameters of the fitting power law function are also reported in the top right section of the figure. 

 
  5 



29 
 

      

 
(a)      (b) 

 
(c)      (d) 5 

Figure 8 Spatial distribution of the properties within our database that were built during the a) 1800 – 1900, b) 1900 – 1950, c) 
1950 – 2000 and d) 2000 – 2018 periods.  
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Figure 9 Number of properties (in thousands) built within our data record during different decades (red bars, left axis) and 
relative change between two consecutive periods (blue line, right axis). Note that the number of properties built between 1800 and 
1900 are aggregated as a single value because of the small number of properties built during that period.  
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Figure 10 Time series of total value of exposed buildings (in 2018 USD) to the maximum flooded extent region between 1800 and 
2018. The inset shows the relative change of the exposed area and value between two consecutive time steps (10 years). 
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(a)      (b) 

 
(c)      (d) 

Figure 11 Distribution of properties (red dots) built a) before 1900, b) between 1900 and 1950, c) between 1950 and 200 and d) 5 
between 2000 and 2018 in proximity of Wrightsville Beach, NC where Hurricane Florence made landfall. Dark blue shows 
permanent body waters where light blue shows the flooded areas.  
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Figure 12 Total value within our database of properties exposed to flooding as a function of distance from water for the different 5 
periods reported in the inset.   

 

  


