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Review of Manuscript submitted to NHESS

Dear Authors, first thank you for a very well-written manuscript about the role of climate 
change in the forest fires in Sweden 2018. I found the manuscript very interesting; it 
summarizes quite well the implications of your results and your conclusions are well-
defended by the analysis you present. This paper is entirely suitable for publication in 
NHESS, I have only a few minor suggestions and corrections.

We thank the reviewer for the positive feedback. We address the individual comments 
below. The mentioned line numbers relate to the updated manuscript with track 
changes.

1-1
Line 35. I would suggest to include a reference (e.g. Drobyshev et. al. 2012) after “Though 
forest fires are common in Sweden”

We have added the reference as suggested

1-2
Lines 41-54. There is a recent publication that could be acknowledged: Williams, A.P., 
Abatzoglou, J. T., Gershunov, A., Guzmanâ ̆AˇRMorales, J., Bishop, D. A., Balch, J.C1K., & 
Lettenmaier, D. P. (2019). Observed impacts of anthropogenic climate change onwildfire in 
California. Earth’s Future.

We have added the reference as by including the line: ‘Williams et al. (2019) found a 
strong influence between recent increase in forest fires in California and the positive 
trend in vapor pressure deficit cause by anthropogenic climate change.‘

1-3
Line 107. Please change “it provides” to “they provide”

We have changed the sentence as suggested

1-4
Line 108. Please change “dataset” to “datasets”

Corrected as suggested

1-5
Line 199. Please can you better explain why JRA-55 performs differently?

JMA-55 performs differently because it has a longer time record since it starts in 1955 
where the other datasets start in 1979 or 1980. The uncertainty estimates of the return
times largely depends on the length of record. All other reanalysis products cover a 
shorter time period, thus their uncertainties are larger. Importantly, the JRA-55 
uncertainty range is contained within the uncertainty range of the other reanalysis 
products, so the estimates from JRA-55 and the other products are consistent. 
To improve the wording we have changed the sentence from ‘… (except JRA-55 that 
includes more data) … ‘ to ‘...(except JRA-55 where the variability is based on a 25 year
longer timeseries)...’

We would like to sincerely thank both reviewers for many stimulating comments, which 
helped improve the quality of presentation.
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2-1
This paper deals with the analysis of model outputs and reanalyses using the FWI as an 
estimator of fire risk in Sweden.

The approach uses the standard technologies available today – climate scenarios, bias 
correction and of the like – to perform attribution studies and estimates of fire risk in 
coming decades.

We thank the reviewer for the feedback. We address the individual comments below. 
The mentioned line numbers relate to the updated manuscript with track changes.

2-2
Overall, however, the main result is that “In a future climate (a 20 C warmer climate 
relative to pre-industrial) the risk for such events to occur may increase more robustly by a
factor of∼2 (1.5 to 3) relative to pre-industrial climate”, which is a result rather similar to 
many others currently available. 

We agree that, as stated in the manuscript [lines 286-299], our research is in line with 
other research with the exception of Yang et al (2015) for northern Sweden. Note 
however that we are the first quantitative attribution study of an extreme forest fire 
event in this region. Such attribution studies have proven useful in loss and damage 
policy (James et al. 2019).

The results is of particular relevance as high-latitude European forests are considered 
to be more sensitive to past and future climate variability (Drobyshev et al 2014), yet 
quantitative assessments of potential future changes in their disturbance regimes have
been missing. The current study fills in this knowledge gap. 

2-3
In addition, the authors conclude that “The increased fire risk is mostly driven by increased
temperature”, something couls have been expected also without refined analyses.

We disagree with this statement as the existence of an expectation is not to be 
regarded as existence of empirically derived evidence. In fact, many earlier fire studies 
put the main emphasis on dynamics of precipitation, not temperature (e.g. Lafon & 
Quiring 2012). An increase in temperature under future climate is indeed expected and 
it has the potential to yield an increased fire risk. However, just as important in fire 
weather risk are possible changes in precipitation, specifically changes in consecutive 
dry days. We mention this aspect in lines 260-264. An a priori assessment of how the 
consecutive dry days will change in future climate is not possible as it requires multiple
large ensembles with climate models to be assessed robustly. For Sweden, we find no 
clear changes in consecutive dry days (line 265-267 and figure 8). This allowed us to 
conclude that temperature is the main driver of the increased fire risk. We believe our 
analyses contribute with refining our knowledge of future fire risks in Northern Europe.

2-4
In conclusion, I am not convinced this paper is a significant addition to our understanding 
of fire risk assessment in future climates. If the authors intend to re-submit a new paper, I 
urge them to develop a critical analysis of the role of the various components (e.g., bias 
correction) and use different fire indicators. 

We agree that a critical analysis of different bias correction methods or the use of 
multiple fire indicators would be an interesting follow-on study. However, we are under 



the impression that the manuscript in its current form provides more than enough 
valuable information for publication, including a number of novel and important 
methodological considerations.
To the best of our knowledge, we are the first to use multiple reanalysis datasets in 
such an analysis, in which we demonstrated the large differences in FWI and associated
return times. This is an important finding with ramifications for other similar research 
that only uses a single reanalysis product.
To the best of our knowledge, we are the first to use multiple large ensemble climate 
models for such an analysis. Events such as the Sweden forest fires in 2018 have been,
as demonstrated in this manuscript, rather extreme (~25 years return time). Hence, in 
order to acquire robust statistics on these events, and to extract a possible climate 
change signal, we need a large ensemble. This approach is particularly relevant in 
relation to precipitation dynamics and the resulting precipitation changes as its 
projections are highly model dependent. Thus for an adequate sampling of the model 
uncertainty we need multiple climate models. Previous research is often limited by both
or one of these factors.

2-5
I think this paper is not acceptable in its current form and I suggest major revision along 
the lines indicated above.

We regret this assessment and humbly disagree. We hold that we are providing novel 
contributions to both the assessment of fire risk over Sweden as well as novel way to 
quantify methodological uncertainties in such assessments. We agree that exploring 
different bias correction schemes would be another of many additional analyses that 
could be conducted in a follow-up study. To address this potential, we now include a 
short discussion of this in the Discussion section of our paper [lines 295-299].

We would like to sincerely thank both reviewers for many stimulating comments, which 
helped improve the quality of presentation.



Point by point response to editor comments.

We thank the editor for the constructive feedback on the manuscript. Please find below a
point by point response to the feedback. 

Point 1
- to update the state of the art that you show in the Introduction (see, for instance, the 
papers
published in the last five years in Nature Communications, Nature Climate Change, Climate
Change,..., about forest fires and climate), in order to compare your results (other papers 
show a
decreasing trend in forest fires- see for instance Turco M, Bedia J, Di Liberto F, Fiorucci P, 
von
Hardenberg J, Koutsias N, et al. (2016) Decreasing Fires in Mediterranean Europe. PLoS 
ONE
11(3): e0150663. doi:10.1371/journal.pone.0150663);

We have updated our literature section with several papers, including Turco et al 2016. 
See the 2nd paragraph of the introduction for the added literature. 

Point 2
- to avoid conclusions like the fact that the forest fires produced in Sweden in 2018 have 
been consequence of climate change, when you have obtained a decreasing trend until 
2017

Please note that we do not state that the forest fires in Sweden 2018 have been 
consequence of climate change. Neither in the abstract nor the conclusion. However, 
we can understand that the last line of the abstract can be interpreted as such, hence 
we have removed this sentence (‘In summary, ... the future’). Also, we have now added
‘(non-significant)’ to the line 23 in order to show that the results of the increased 
probability (current vs PI climate) are not significant.

Point 3
- ... to include explanations about this observed decreasing trend

We have now expanded on this in section 4.1, by including the sentence: ‘A trend 
analysis of the FWI input variables during highFor FWI events reveals a negative trend 
in wind speed, a positive trend in local noon surface temperature, and a positive trend 
in 30-day cumulative precipitation prior to high FWI events. The net effect on the FWI is
thus a small negative trend.

Point 4
- ... to explain better how do you obtain the factors of increased risk and what is the 
meaning of the expression “increased risk” (increased probability?, increased extension?, 
increased number of forest fires?)

We agree it is not entirely clear what is meant by ‘risk’. In order to clarify we have 
rephrased risk to ‘probability’ throughout the manuscript. This is explained in detail in 
the last part of section 2.2. In some instances we still use the phrase ‘fire weather risk’.
Here we mean in an increase in the FWI (which is explained in detail in section 2.1).



The line numbers refer to the manuscript with track changes.

- Changed the corresponding author to geert.jan.van.oldenborgh@knmi.nl.
- Replaced ‘risk’ with ‘probability’ where a quantified risk is meant throughout the 
manuscript.
- Replaced JMA with JRA, correction of the abbreviation
line 29-30: Removed the last line from the abstract.
Line 50-59: Added relevant references / literature.
Line 207-208: Replaced ‘that includes more data’ with ‘where the variability is based on a 
25 year longer timeseries’
Line 220-229: Improved description of why there is a slight negative trend in the FWI of the
reanalysis products
Line 294-299: Added more options for where future work could focus on.

References:
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738-748.
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damage policy and practice?. https://link.springer.com/chapter/10.1007/978-3-319-72026-
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Abstract. In this study we analyse the role of climate change in the forest fires that raged through large parts of Sweden in 

the summer of 2018 from a meteorological perspective.  This is done by studying the Canadian Fire Weather Index (FWI) 15 

based on sub-daily data, both in reanalysis datasets (ERA-Interim, ERA5, JMA55 JRA-55 and MERRA2) and three large 

ensemble climate models (EC-Earth, W@H and CESM) simulations. The FWI based on reanalysis correlates well with  

observed area burned in summer (r=0.6 to 0.8). We find that the maximum forest fire riskFWI in July 2018 had return times 

of ∼24 years for Southern and Northern Sweden. Further, we find a negative trend of the FWI for Southern Sweden over the 

1979 to 2017 time period, yielding a decreasing probabilityrisk of such an event solely based on reanalysis data. However, 20 

given the short observational record, large uncertainty between the reanalysis products and large natural variability of the 

FWI we cannot draw robust conclusions from reanalysis data. 

The 3 large-ensembles with climate models on the other hand point to a roughly 1.1 times increased riskprobability (non-

significant) for such events in the current climate relative to pre-industrial climate. For a future climate (2C warming) we 

find a roughly 2 times increased riskprobability for such events relative to pre-industrial climate. The increased fire weather 25 

risk is mainly attributed to the increase in temperature. The other main factor, precipitation during summer months, is 

projected to increase for Northern Sweden, and decrease for Southern Sweden. We however do not find a clear change of 

prolonged dry periods in summer months that could explain the increased fire weather risk.  

In summary, we find a small but positive role of global warming up to now in the 2018 forest fires in Sweden, but a more 

robust increase in the risk for such events in the future. 30 
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1 Introduction 

The summer of 2018 in Sweden was characterized by numerous large forest fires spread over large parts of the country. 

Though forest fires are common in Sweden (Drobyshev et al., 2012), the number of fires and total area burned in 2018 were 35 

much higher than observed over recent years (2008-2017; Figure 1). Spring and summer weather conditions in 2018 were 

anomalously dry and warm. This was caused by very persistent atmospheric blocking, especially in May and July. In July the 

high surface pressure (Figure 2a) caused high temperature (Figure 2b) and anomalously little precipitation (Figure 2c) over 

northwestern Europe. The high temperature and lack of precipitation resulted in high forest fire risk over the whole of 

Scandinavia. Especially in Sweden, this gave rise to numerous forest fires with a total burned area of more than 20.000 ha.  40 

 

An often-raised question during and after such extreme events concerns the possible influence of climate change, i.e., has 

climate change made such an event more or less likely? Hence, climate attribution studies of extreme weather events is a 

rapidly increasing field of research, with analysis on e.g. extreme precipitation events (Oldenborgh et al., 2017), heat waves ( 

Sippel et al., 2016), droughts (Hauser et al., 2017) and storms (Vautard et al., 2019), where in many cases there was indeed 45 

evidence of increased risk of extreme weather due to climate change (Schiermeier, 2018). For forest fires, the first attribution 

of climate change on forest fires in Canada was already found by Gillett et al. (2004) based on the CGCM2 model. 

Abatzoglou and Williams (2016) found that for the western United States human-caused climate change more than halved 

humidity of forest fuels since the 1970s and doubled the cumulative area of forest fires since 1984. A recent study by 

Kirchmeier-Young et al., (2018) found a strong influence of climate change on the 2017 British Columbia wildfires, with 50 

such events being 2-4 times more likely with climate change in the CanESM2 model. Williams et al. (2019) found a strong 

influence between the recent increase in forest fires in California and the positive trend in vapor pressure deficit caused by 

anthropogenic climate change. Abatzoglou et al. (2018) found that increases in extreme fire weather days due to 

anthropogenic climate change are evident on 22% of burnable land area globally. Taufik et al. (2017) found a strong link 

between a substantial hydrological drying trend since the early 20th century and increased burnt area in humid tropics. For 55 

the severe 2018 forest fires in Queensland, Australia, Lewis et al. (2019) found an anthropogenic influence on the recorded 

high temperatures. Over the Mediterranean region however, Turco et al. (2016) found a decreasing trend in forest fires 

(except for Portugal) using observational data. 

 

For Sweden specifically, Yang et al. (2015) found that in a future climate there is an increased risk of forest fires in Southern 60 

Sweden but a decreased risk in Northern Sweden using the downscaled and bias corrected ECHAM5 climate model. Also, 

for the neighbouring country of Finland, climate model projections point to an increased risk of forest fires (Lehtonen et al., 

2016). 
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Here we analyse the connection between the 2018 extreme forest fire season and climate change using large ensembles of 65 

multiple climate models. As characteristics of regional precipitation and droughts can be highly model dependent (Hauser et 

al., 2017), it is crucial to use multiple climate models for this analysis. To the best of our knowledge, this is the first such 

multi-model framework applied to an attribution study of an extreme forest fire event. 

  

Note that we only analyse the meteorological aspect of this event, and not other aspects relevant for such extreme events 70 

such as the sources of ignition and the influence of fire mitigation strategies. Hence, in our analysis we take forest fire risk to 

be equivalent to fire weather risk. We do investigate to what extent the fire risk corresponds to actual area burnt. 

 

2 Data and Methods 

2.1 Fire weather risk 75 

The metric used to quantify forest fire risk is the Canadian Fire Weather Index (FWI; Van Wagner, 1987). This is a weather-

based system that models soil moisture at 3 different depths, and, based on the upper soil moisture content and wind speed, 

creates an estimate for the initial spread rate of fire. It is based on four meteorological variables, namely local noon 

temperature (T2M), relative humidity (RH), surface wind speed and 24 hour cumulative precipitation. Though this metric 

was developed and tuned for the Canadian boreal region, it also performs well over Sweden (Gardelin, 1997; Yang et al., 80 

2015). 

 

2.2 Statistical methods 

In event attribution studies, the first step is to define the event in such a way that is best reflects the impact of the event. In 

section 3 we will discuss how we define this event in more detail. The second step, in order to assess the rarity of this event, 85 

is to fit a Generalized Extreme Value Distribution (GEV) function on a sample of block (yearly) maxima extracted from a 

FWI time series. The GEV function is described by three parameters: the position parameter μ, the scale parameter σ and the 

shape parameter ξ. 

 

In order to assess the riskprobabilitiess of certain events during previous climate based on the trend in  observations and 90 

reanalysis products, we fit the observed FWI to a GEV that depends on the smoothed (4th order polynomial) global mean 

surface temperature (GMST). Here, GMST is taken from the National Aeronautics and Space Administration (NASA) 

Goddard Institute for Space Science (GISS) surface temperature analysis (GISTEMP, (Hansen et al., 2010). This results in a 

distribution that varies continuously with GMST. This distribution can be evaluated for a GMST in the past (e.g., 1950 or 
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1900) and for the current GMST. A 1000-member non-parametric bootstrap procedure is used to estimate confidence 95 

intervals for the fit. 

 

For the FWI we choose the dependence of the FWI the same way as for precipitation (described fully in Wiel et al., 2017): 

the position and scale parameters (μ,σ) have the same dependence on GMST so that their ratio (also called the dispersion 

parameter) is constant. The dependence is exponential for precipitation, μ(T) = μ₀exp(ɑT/μ₀), σ(T) = σ₀exp(ɑT/μ₀), we use 100 

the same here. 

 

We use the riskprobability ratio to quantify the impact of climate change on the FWI. This ratio, calculated as the 

riskprobability of an event occurring during the current or future climate divided by the riskprobability of an event occurring 

during pre-industrial climate conditions, indicates how much more or less likely a certain event will be relative to pre-105 

industrial climate. Thus, a riskprobability ratio of 2 means an event will be 2 times more likely relative to pre-industrial 

climate.  

 

2.3 Reanalysis 

We use multiple reanalysis dataset as an estimate of the observed state, namely ERA-Interim (ERA-I, Dee et al., 2011), 110 

ERA5 (Copernicus Climate Change Service, 2017), the Japanese 55-year Reanalysis (JRA-55, Kobayashi et al., 2015) and 

the Modern-Era retrospective analysis for Research and Application, Version 2 (MERRA2, Global Modeling and 

Assimilation Office, 2015). The advantage of using reanalysis datasets compared to in-situ observations is that it they 

provides an observationally constrained continuous gridded datasets, enabling direct comparison to climate model output. 

The orography of Sweden is such that the relatively low-resolution models used to generate the reanalysis can represent the 115 

weather well in this area. We use multiple reanalysis products in order to sample the uncertainty in these products. All 

products provide a continuous dataset from 1979/1980 to current, with the exception of JRA-55 which spans the period from 

1955 to current. 

  

2.4 Models 120 

We use climate model simulations from three different coupled climate models with large ensembles: EC-Earth v2.3 

(Hazeleger et al., 2010; 2011), the Community Earth System Model version 1 (CESM1, (Kay et al., 2014) and 

Weather@Home (W@H, Guillod et al., 2017; Massey et al., 2015) (Table 1). The EC-Earth and CESM are large ensembles 

of transient climate simulations with historical forcing prior to 2006 and the RCP85 forcing (Riahi et al., 2011) from 2006 

onwards. The W@H climate simulations are two different simulation, one with the actual observed forcing to represent 125 

current climate, and one with natural forcing only (i.e. no anthropogenic forcing) to represent pre-industrial climate. From 
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EC-EARTH and CESM  we select three periods that (1) describe the unperturbed climate (i.e., pre-industrial climate), (2) the 

current climate and (3) the 2°C warming threshold (future climate).The pre-industrial, current and future climate states are 

hereafter referred to as respectively PI, 1C and 2C. Note that ‘current climate’, or ‘1C’, is chosen in a way to best compare to 

reanalysis (which covers the years 1979-2018) as described below.  130 

 

First, we select the time periods from EC-Earth and CESM1 that represent the same incremental global warming from ‘PI’ to 

‘1C’ as in observations: in GISTEMP, GMST increases by 0.67°C between 1900-1950 and 1979-2018. Finding the same 

warming increment in EC-EARTH and CESM results in the time periods listed in Table 1 for the two models. For the ‘2C’ 

climate we select a 30 year window with a 2°C warming relative to PI (Table 1). For the W@H simulations the GMST 135 

increase between the ‘natural forcing’ simulations and the ‘actual forcing’ simulations is 0.650C, which is very close to the 

observed warming. 

 

A second bias correction step is performed on the basis of return times of the specific event and can be seen as a local bias 

correction in contrast to the first step, which aimed at aligning simulations and observations with regard to the level of global 140 

warming. We first calculate the return time of the event from observations or reanalysis (Figure 3). In the ‘1C’ model 

simulations we then select the FWI that corresponds to that specific return time. This FWI value is used to estimate return 

times in the other simulated climate states (PI and 2C). The advantage of this approach is that it preserves the spatiotemporal 

consistency of the simulated fields, the relation among the meteorological variables, and it makes no assumptions on non-

stationarity in bias correction, which are typical issues in (multi-variate) bias correction methods (Ho et al. 2011; Ehret et al. 145 

2012). Note that this bias correction is only a viable method if the riskprobability ratio is not too sensitive to the event return 

time, which is the case here (not shown). 

 

We calculate the FWI on the original grid of the models. Since Southern Sweden has a different fire climate than Northern 

Sweden (Drobyshev et al., 2012), we calculate spatial averages for northern (Norrland), middle (Svealand) and southern 150 

(Götaland) Sweden (Figure 4a). Since high fire weather risk events are mainly associated with large high pressure systems, it 

is important to validate the persistence of high pressure systems in the climate models by comparing it to reanalysis data. 

Following the method of Pfleiderer and Coumou (2018), which represents persistence as the number of consecutive warm 

days, we find that the models are in good agreement with reanalysis in respect to persistence of high pressure systems (not 

shown).  155 

 

For EC-Earth we compute the FWI based on local noon data (12 UTC), but for the CESM-LE and W@H sub-daily data is 

not available. Hence, for these models we compute the FWI based on daily average wind speed and humidity, daily 

maximum temperature and daily cumulative precipitation. While this approach is common (Abatzoglou et al., 2019), results 

can differ between both methods especially for fire danger extremes (Herrera et al., 2013). In order to assess whether this has 160 



6 

 

an effect on our analysis we tested the influence of using local noon data, or daily average combined with maximum 

temperature for EC-Earth. Though the values of the FWI do differ, there are no significant differences for both methods on 

the calculated riskprobability ratios. Hence, we assume that using daily maximum temperature and daily average values for 

the other variables for the calculation of the FWI in CESM-LENS and W@H does not affect the calculated riskprobability 

ratios significantly. 165 

3 Event definition 

We first investigate whether the FWI is a good proxy for actual fires in Sweden. For the event definition we use ERA-

Interim as the observational estimate. The FWI is a physical approximation of climatological fire risk and it has been found 

to be a robust proxy for actual fires (Wotton, 2009). However, there can be a strong seasonal dependence on the correlation 

between the FWI and actual fires (Lehtonen et al., 2016). We test this for Sweden by studying the correlation between the 170 

FWI and observed area burned (MSB, 2016) for the period 1996 to 2012 (Figure 4b). Note that, here we leave out Svealand 

because there are insufficient fires to compute the relevant statistics. The results show that there is indeed a strong seasonal 

dependence on the relation between monthly averaged FWI and area burned, with generally high correlations from July 

onwards, but lower correlations for April to June for Norrland and May for Götaland. These findings correspond to the 

findings from Lehtonen et al. (2016), who relate the low correlation in spring to the influence of more human-caused fires, 175 

whilst in summer natural ignitions is a more important ignition source thus yielding a stronger relation with weather 

variables.  

 

Next, we analyse the FWI for all three regions, using ERA-Interim (Figure 5) and the observed area burned (Figure 1). There 

were two distinct periods of high FWI (above the 95% quantile), namely in late May to early June and in July. Interestingly, 180 

the values in May were even higher than those observed in July, although the actual area burned was much higher in July. 

This indicates a possible pre-conditioning (drying out the soil) of summer FWI by the occurrence of a dry spring. Note that 

the pre-conditioning by the dry spring is still included in this event definition because the FWI calculation includes an 

estimate of the moisture content in the deeper soil layer. This moisture content, estimated by the Drought Code within the 

FWI calculation, includes memory of ~52 days (Van Wagner, 1987).  185 

 

Based on the findings from Figure 1, 4 and 5, we define our event as the maximum 7-day running mean FWI in the months 

of July and August, disregarding the FWI peak in May due to much lower correlations with area burned, probably due to 

lower ignition rates. The 7-day running mean is applied as fires are more likely to happen during prolonged period of high 

fire weather risk, whilst still holding enough independent samples per year for a robust GEV fit. Though June also shows 190 

relative high correlation with observed area burned, the strong fires were mainly in the summer months.  
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4. Results 

4.1 Reanalysis 

As previously stated, July 2018 was characterized by a large persistent high pressure area over Northern Europe (Figure 2), 

yielding high temperatures, little precipitation and moderate winds. The meteorological conditions for fire weather were thus 195 

quite extreme. This is quantified by the high return times of such conditions for July 2018 (Figure 6). These values are based 

on a GEV-fit, based on the maximum value of FWI in July and August for every year, with a 7-day running mean applied. 

This fit assumes that the climate does not change over time. 

 

It is striking to see that, although all reanalysis products are constrained by observations, there are still quite large differences 200 

in the FWI value for the 2018 event and the associated return times. For Norrland, we find large significant differences 

between JMAJRA-55, with a return time of ~5 yr, and ERA-I, ERA5 and MERRA-2 with return times of ~30 yr. Also for 

Svealand there are rather large differences in return times, with ~10 years for JMAJRA-55 and ~20 yr for ERA-I and ERA5 

and ~50 yr for MERRA-2. In Götaland we also find differences between the products, but now JMAJRA-55 closely matches 

ERA5 with return times of ~8-10 yr, and ERA-I has a higher return times of ~20 yr and MERRA-2 even higher at ~60 yr. 205 

Note that the uncertainties on these return times (denoted by the horizontal bars) are large but almost completely correlated 

across datasets as they derive from the same natural variability (except JRA-5555 that includes more data where the 

variability is based on a 25 year longer timeseries). An analysis on the meteorological variables used in the FWI reveals that 

it is mainly precipitation that causes the differences in FWI and return times across products. For MERRA2, it is also related 

to a generally lower temperature (not shown). 210 

 

These results stress the importance of using multiple reanalysis products in order to get a better estimate of the observed 

event and its associated uncertainty. For bias correction of the climate model data, we use the average of all four return times 

from the different reanalysis products. 

 215 

In order to analyse whether such an event has become more or less likely relative to a climate without anthropogenic 

emissions ("pre-industrial", PI), we fit the yearly maximum FWI to a GEV that scales with the smoothed GMST (as 

described in the methods section). We can then evaluate the probability of such an event conditional on different climate 

states as defined by GMST. Figure 7a shows the risk probability ratios for the reanalysis products. Note that, as stated 

before, the risk probability ratio tells us how much more or less likely such an event has become today (‘1C’ climate) 220 

relative to PI climate. The reanalysis data shows a slightly decreased probabilityrisk of high FWI events for all three regions 

for the 1C climate. This is due to a negative trend of July and August FWI over recent decades for these regions. A trend 

analysis of the FWI input variables during high FWI events reveals a negative trend in wind speed, a positive trend in local 

noon surface temperature, and a positive trend in 30-day cumulative precipitation prior to high FWI events (not shown). The 
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net effect on the FWI is thus a small negative trend. However, the very large uncertainties easily encompass one (no change), 225 

indicating that this can also be is most likely a spurious trend caused by natural variability. This The trend in July and 

August FWI is largely absent in JMAJRA-55 which has a 25 year longer time span than the other reanalysis datasets. Hence, 

it is difficult towe cannot draw any robust conclusions from the trends of the reanalysis dataset alone. 

 

4.2 Models 230 

With large ensemble climate model data we can circumvent the problems of undersampled natural variability, allowing us to 

get more robust estimates of whether the likelihood of such an event changes with time. Figure 7b shows the probabilityrisk 

ratios of the climate models for present climate (1C) relative to PI climate and future climate (2C) relative to PI climate. First 

we will focus on the comparison of 1C to PI. 

The model W@H shows a small, but significant increased riskprobability of approximately a factor 1.5 for such events for 235 

all three regions. EC-Earth shows no clear change in riskprobability for such an event, with riskprobability ratios close to 1, 

whereas CESM does show a small increase in riskprobability, though not significant. On average, we find a small (not 

significant) increase in riskprobability for all three regions. In the 2C climate, the riskprobability ratios increase more 

strongly relative to PI climate. CESM shows significant increased riskprobability ratios of ~3, with the largest increase in 

riskprobability in Norrland. EC-Earth also shows an increased riskprobability, though not as large as CESM. On average for 240 

all three regions we find a riskprobability ratio of ~2 

 

5 Discussion 

In general, we find a factor 1.2 1 increased riskprobability for such events for current climate relative to PI climate, and a 

significant increase in riskprobability of factor 2 to 3 for a 2°C warmer climate relative to PI climate. To better understand 245 

why there is an increased riskprobability of such events, we investigate the individual meteorological variables at the time of 

the maximum July and August FWI in models (Figure 8).  

 

All models show a clear trend towards higher temperatures, which is unsurprising as present day and future climate are 

chosen as ~1ºC and 2ºC warmer climates. The increase in temperature between 1C and 2C is generally much larger than 1ºC, 250 

especially in CESM-LE under 2C, because land heats up faster than the global mean. This can partly explain the relative 

strong increase in fire risk in CESM-LE for future climate. In EC-Earth the relative humidity seems to reflect the changes in 

precipitation where it increases from PI to 1C and then decreases slightly in the 2C climate. In CESM-LE, we find no clear 

change in 1C, but a decrease of RH in 2C. W@H also show a small decrease in RH relative to PI climate. For the wind 

speed, the differences between the climate states are very small and do not affect changes in the FWI appreciably. We further 255 

subset the model values by focusing on FWI events larger than the 2018 observed event (circles in Fig. 8) to investigate 
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whether certain variables are predominantly affecting extreme FWI. We find no relationship between wind and extreme FWI 

values , indicating wind is not an important explanatory variable for extreme FWI events over Sweden.  

 

For precipitation, we generally find an increase from PI to 1C for all regions and climate models, with the exception of 260 

W@H with a small decrease in precipitation. For 2C, however, there are strong differences between the regions, where in 

Norrland precipitation further increases whilst for Svealand and Götaland it decreases towards PI values (EC-Earth) or stays 

constant with present climate values (CESM-LE). Note however, that the precipitation values associated with high FWI 

values (circles in Figure 8) do not show this upward trend for Norrland. Hence, changes in mean precipitation do not 

necessarily reflect the changes in prolonged dry periods. An analysis of the trends in the lower (dry periods) and middle 265 

quantiles of 30-day precipitation in summer shows clear changes in the median but no clear changes in the lower quantiles 

(not shown). This is also demonstrated by Pendergrass et al. ( 2017), who find that precipitation variability generally 

increases in a warmer climate.  

 

The changes in FWI between the different climates relate mostly to changes in precipitation and temperature, as RH follows 270 

the changes of these variables. The higher temperatures for present and future climate relative to PI climate yield an increase 

of FWI. However, the increase of precipitation can counteract this increase. The fact that FWI increases even in models with 

mean increases in precipitation shows that temperature increases dominate future increases in FWI. 

 

One potential reason for the non-linear model behaviour with regard to the different warming thresholds is the non-linear 275 

evolution of the radiative forcing. Global dimming associated with the release of cooling anthropogenic aerosol particles 

(Wild 2009) has effectively offset the greenhouse gas induced warming during 1950-1975. In contrast, global brightening 

has accelerated the warming thereafter, particularly over North America and Europe where sulphate aerosols emissions were 

curbed substantially. As a result, aerosols may have suppressed rainfall during the dimming phase, but invigorated 

precipitation during the subsequent warming until now, exceeding the direct temperature effect. The smaller riskprobability 280 

reduction in the longer JRMA-55 time series would support this hypothesis.  

 

Another dynamic factor that is projected to come into play over the next decades is the development of a heat low over the 

Mediterranean area. This would increase the possibility of easterly wind over northern Europe and hence dry weather, 

offsetting the trend towards wetter summer weather up to now (Haarsma et al., 2009). 285 

 

Our results mostly agree with previous research. The work of Flannigan et al. (2012) points to increased risk of forest fires 

over the whole of Sweden for multiple climate projections. Findings from Yang et al. (2015) point to an increased risk of 

forest fires in the southern part of Sweden, but not for the northern part where they point to increased precipitation which 

reduces fire risk. This difference can be caused by undersampling of extreme events, since Yang et al use a single 30 year 290 
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time slice of future (2071-2100) climate. It must also be noted that local future precipitation trends are highly uncertain 

(Lehtonen et al., 2016), implying that using only one climate model for future projection leads to highly uncertain results (as 

in Yang et al., 2016). Even the three climate models in this study will likely underestimate the model uncertainty in the 

precipitation trends.  Hence, future work should focus on using more large ensemble climate models in order to better 

sample the uncertainty in the future climate projections.Other important aspects that could impact projections of fire weather 295 

risk are the chosen bias-correction method and the specific fire weather index used. Hence, future work should should focus 

onfocus on using using more large ensemble climate models in order to better sample the uncertainty in the future climate 

projections and to test the sensitivity to different bias-correction methods and fire weather indices..  

 

Note we assume that FWI remains a skillful predictor of area burned (Figure 4), even in a future climate. This assumption is 300 

however highly uncertain due to factors not accounted for in the analysis here, such as possible changes in forest 

management (Moreira and Pe’er, 2018; Hudson, 2018), a possible increase / decrease of human-caused forest fires (Balch et 

al., 2017) and feedback mechanisms between forest fires and ecology (Balch et al., 2008) . 

 

6. Conclusions 305 

 

In our analysis of the forest fires in Sweden of 2018 we have looked at the risk of fire weather solely on the basis of the 

Canadian FWI, with the novel approach of using multiple reanalysis datasets and multiple large ensembles with climate 

models. Using the FWI we have only attributed meteorological aspects of this event, but acknowledge that there are 

additional aspects important for determining forest fire risk not considered here. 310 

 

We find that the maximum forest fire riskFWI in July 2018 had return times of ~24 years in Götaland, ~23 years in Svealand 

and ~24 years in Norrland, with large uncertainty in the reanalysis datasets (90% uncertainty estimate ± ~10 years). Due to 

the relative short observational record, large uncertainty in the reanalysis datasets and large natural variability of the FWI we 

cannot infer a robust trend from the reanalysis data alone. 315 

 

The climate models point to a small increase in risk probability for such an event at present day compared to pre-industrial 

conditions for all three regions of about a factor 1.1 (0.9 to 1.4). In a future climate (a 20C warmer climate relative to pre-

industrial) the risk probability for such events to occur may increase more robustly by a factor of ~2 (1.5 to 3) relative to pre-

industrial climate according to our model analysis. 320 

 

The increased fire risk is mostly driven by increased temperature. Though we do find clear changes in precipitation for the 

warmer climates, we do not see a clear change in prolonged dry periods during summer, which have historically and will 
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likely continue to drive high fire risk events. Our results show the importance of using multiple large ensembles with climate 

models for attribution studies in order to adequately sample the natural variability and model uncertainties in climate 325 

projections.  
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 485 

 
Table 1: Overview of the climate models and the years used to represent the different climate states. 

 

Model members Past climate (PI) Current climate (1ºC) Future climate (20C) Resolution 

EC-Earth 16 1900-1950 

800 yrs total 

1979-2019 

640 yrs total 

2029-2059 

480 yrs 

1.1° 

CESM1 40 1920-1950 

 1200 yrs total 

1987-2027 

1600 yrs total 

2028-2058 

1200 yrs  

1° 

W@H 100 Natural forcing 

1986-2015 

3000 yrs total 

Actual forcing 

1986-2015 

3000 yrs total 

Not available 0.25° 
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Figure 1: Area burned in Sweden. Cumulative values for 2018 and climatology over 2008-2017 and its individual years (source: 

EFFIS). 
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Figure 2: ERA-Interim July average anomalies of a) mean sea level pressure (MSL), b) surface temperature and c) precipitation. 

Anomalies are constructed relative to 1981-2010 climatology 
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 500 

Figure 3: Schematic of the bias correction method.  
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Figure 4: a) Map of Sweden with the three regions used in this study and b) correlation of FWI (ERA-Interim, monthly maximum 

value with a 7-day running mean applied) with observed area burned for Norrland and Gotaland from 1998 to 2017. The dotted 505 
lines represent the 5-95% bootstrapped confidence intervals and the gray line indicates the significance threshold of 5%. The 

observed area burned is from Swedish governmental data (MSB, 2016). 
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Figure 5: Area averaged FWI for the three regions (defined in Figure 3). The (thick) red line shows the (7-day running mean) FWI 510 
of 2018. The black lines represent the 5, 50 and 95% quantiles of the 1979-2017 climatology and the opaque gray lines the 

individual years, all based on ERA-Interim extended with ECMWF forecast analysis. 
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Figure 6: Return times of July–August maximum FWI values, for all four reanalysis datasets and the three regions. The dots 515 
represent the actual FWI maximum values and the lines the GEV model fit with a 5 to 95% uncertainty band in gray. The dashed 

horizontal lines represents the 2018 event, whilst the vertical line represents the associated return time with the horizontal bars 

giving the 5% to 95% uncertainty estimate (estimated with a non-parametric bootstrap). 

  



24 

 

 520 

Figure 7: RiskProbability ratios for maximum July-August FWI values as high as observed in 2018 for the different regions for a) 

reanalysis and b) climate models. All riskprobability ratios are relative to PI climate. Note the different scales on the x-axis 

between (a) and (b). 

  



25 

 

 525 

Figure 8: Meteorological values associated with the yearly maximum FWI in July and August, with a 7-day rolling average 

applied, for all three climate states, all three regions. Precipitation is calculated as 30 day cumulative value prior to the yearly 

maximum FWI. The boxplot shows the quartiles of the distribution, the whiskers the rest of the distribution and the dots are 

outliers. The round circles indicate all values in the distribution associated with FWI higher than the observed 2018 event. 
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