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Abstract: Land use and land cover change can increase or decrease landslide susceptibility (LS) in the mountainous 12 

areas. In the hilly and mountainous part of southwestern China, land use and land cover change (LUCC) has been taking 13 

place in the last decades due to infrastructure development and rapid economic activities. This development and activities 14 

can worsen the slope susceptible to sliding due to mostly the cutting of slopes. This study, taking Zhushan Town, Xuanen 15 

County as the study area, aims at evaluating the influence of land use and land cover change on landslide susceptibility at 16 

a regional scale. Spatial distribution of landslides was determined in terms of visual interpretation of aerial photographs 17 

and remote sensing images, supported by field surveys. Two types of land use/land cover (LUC) maps, with a time 18 

interval covering 21 years (1992-2013), were prepared: the first was obtained by the neural net classification of images 19 

acquired in 1992, the second by the object-oriented classification of images in 2002 and 2013. Landslide susceptible 20 

areas were analyzed using the logistic regression model in which six influencing factors were chosen as the landslide 21 

susceptibility indices. In addition, the hydrologic analysis method was applied to optimize the partitioning of the terrain. 22 

The results indicated that the LUCC in the region was mainly the transformation from the grassland and arable land to 23 

the forest land, which is increased by 34.3%. An increase of 1.9% is shown in the area where human engineering 24 

activities concentrate. The comparison of landslide susceptibility maps among different periods revealed that human 25 

engineering activities were the most important factor in increasing LS in this region. Such results emphasize the 26 

requirement of a reasonable land-use planning activity process .   27 
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1 Introduction 30 

Landslide constitutes one of the most hazardous geomorphic processes in the mountainous areas (Karsli et al., 2009), 31 

which can result in serious injuries, human casualties and cause environmental and economic damages every year (Fell et 32 

al., 2008; García-Ruiz et al., 2010). It is, therefore, necessary to take landslide hazard into account for public safety and 33 

the realization of safe engineering projects (Fell et al., 2008; Gioia et al., 2015). Because landslide is the results of the 34 

complex spatial-temporal interaction of many factors (Pisano et al., 2017), numerous environmental factors (e.g., 35 

topography, lithology and hydrology) have been defined as the main criteria in the literatures (Guzzetti et al., 2006a; 36 

Nandi and Shakoor, 2009; Pourghasemi and Rossi, 2017). Moreover, some studies have indicated that human-induced 37 

land use and land cover change (LUCC) contributes significantly to the initiation and reactivation of landslides (Guillard 38 

and Zêzere, 2012; Galve et al., 2015; Meneses et al., 2019), especially in populated regions, where landslides represent a 39 

major risk to infrastructure, human settlements and people, (Pinyol et al., 2012; Abancó and Hürlimann, 2014). So this 40 

factor should not be ignored in the landslide risk reduction process, particularly against the background of adaptation to 41 

sustainable natural hazard risk management (Promper et al., 2015; Wang et al., 2018).        42 

LUCC often implies both modifications in the natural and social systems (Promper et al., 2015; Lopez-Saez et al., 43 

2016), in particular to changes in vegetation cover (Tasser et al., 2003; Schmaltz et al., 2017), undercutting of slopes 44 

(Scalenghe and Marsan, 2009), surface sealing or changes of drainage system (Ghestem et al., 2011, 2014), all of which 45 

can potentially influence landslide hazard processes. For example, the phenomenon that mountainous areas with forest 46 

cover typically appear to be less susceptible to shallow landslides than unforested mountain slopes as described in many 47 

studies such as Curden and Miller (2001), Beguería (2006) and Galve et al. (2015). Similarly, deforestation as a result of 48 

human activities, e.g., road and/or railway construction, undercutting of slopes, development of settlement areas, etc. in 49 

steep mountainous areas increases the vulnerability to landslide hazards (Glade, 2003; Bruschi et al., 2013). All these 50 

modifications may lead to an increase in landslide events (Cervi et al., 2010; Piacentini et al., 2012; Reichenbach et al., 51 

2014). Thus, it is of utmost important to link land-use planning activity with landslide risk assessment (Glade, 2003; van 52 

Westen et al., 2006; Fell et al., 2008). For single slopes and at local scales, the impact of the plant root or the spatial 53 

distribution of LUC on landslides have been evaluated using various methods, including digital photogrammetric 54 

techniques (Karsli et al., 2009), microstructure analysis (Ghestem et al., 2011), laboratory shear tests (Ghestem et al., 55 

2011), numerical modelling approaches (Mao et al., 2014) and so on. From the perspective of the regional scale, within 56 

an effective hazard mitigation planning, the landslide susceptibility (LS) is usually considered as the initial work (Chen et 57 
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al., 2016; Zhou et al., 2018) which can be used to reflect the degree to which a terrain unit can be affected by future slope 58 

movements (van Westen et al., 2008; Lombardo and Mai, 2018). The importance of the influence of LUCC in landslide 59 

susceptibility analysis at a regional scale has been noted by several authors (Reichenbach et al., 2014; Pisano et al., 2017; 60 

Meneses et al., 2019).     61 

During the past decades, various techniques incorporating geographical information system (GIS) along with remote 62 

sensing (RS) technologies have been widely used to map slope stability, e.g., quantifying landslide hazards in relation to 63 

LUCC (Meneses et al., 2019), use of spatial statistical analysis (Kayastha, 2015), aerial photogrammetry (Karsli et al., 64 

2009; Bruschi et al., 2013), using space-borne optical sensors data (Taubenböck et al., 2011; Li et al., 2019) and 65 

time-lapse photography for soil aggregate stability (Ymeti et al., 2017). For such studies, in general, the selection of 66 

meaningful mapping units is a basic step because it is of great importance for susceptibility zonation. A mapping unit 67 

refers to a portion of land surface with analogous geologic and/or geomorphic properties (Guzzetti et al., 2006b), which 68 

can broadly be summarized into four categories: grid cells, slope units (SU), terrain units (TU) and unique condition units, 69 

of which grid cells and SU are the most widely used (Van Den Eeckhaut et al., 2009; Rotigliano et al., 2012; Chen et al., 70 

2016). Each category of mapping units presents advantages and disadvantages. Despite the long-term efforts by 71 

researchers, the adoption of the best mapping unit still remains a conceptual problem and an operational challenge 72 

(Guzzetti et al., 2000; Alvioli et al., 2016). In addition to the extensive discussions about this subject (Guzzetti et al., 73 

1999; Aleotti and Chowdhury, 1999; Brenning, 2005), several authors have provided examples where different mapping 74 

units were tested for the same area (Van Den Eeckhaut et al., 2009; Rotigliano et al., 2012). We can see that mostly the 75 

current trend of using grid cells is unjustified (Schlögel et al., 2018), especially considering single-cell values are less 76 

representative for phenomena involving portion or whole slopes (Camilo et al., 2017); rather, slope unit considers the 77 

totality of the slopes where the landslides occurred which can forecast the locations of future independent landslides.  78 

In Zhushan Town, land use and land cover change have been taking place in the last decades due to infrastructure 79 

development and rapid economic activities. These processes have also caused changes of the geological environment, 80 

mainly in three aspects: (i) Steepening of slopes by undercutting and backfilling during  constructions of infrastructures 81 

and residential structures  on the hill slopes; (ii) Destruction of cultivated and forest lands due to local mining activities; 82 

(iii) Construction of hydropower facility near the urban area (the Shuanglonghu Reservoir built in 1992)The change inthe 83 

seepage conditions along the reservoir bank slopes water level fluctuations has a great impact on the stability of the 84 

slopes on both sides of the reservoir. The aim of this study is thus to explore the relationship between LUCC and regional 85 
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landslide susceptibility. It is of utmost importance to know the land cover and land use processes, which is responsible 86 

for landslide susceptibility so that preventive measures can be implemented from the beginning. Landslide inventory was 87 

carried out, and influencing factors were determined. Different LUC maps for three periods with a time interval covering 88 

21 years (1992-2013) were prepared using remote sensing techniques. Finally, landslide susceptibility assessment was 89 

carried out in GIS and subsequently compared to evaluate the impact of the LUCC during this period. 90 

2 Materials          91 

2.1 Study area 92 

2.1.1 General description 93 

Xuanen County in the southwest of Hubei Province (China) was selected as the study area, which is about 45 km away 94 

from the Enshi city (Fig. 1). The study area lies within longitude 109°11′-109°55′ east and latitude 29°33′-30°12′ north. 95 

Zhushan Town is located in northwestern Xuanen County with an area covering approximately 49 km2. The region 96 

belongs to the extension of the Wuling and Qiyue Mountains and surrounded by middle and low mountains. The 97 

elevation ranges between 350 m and 2015 m above sea level which is characterized as higher in the northwest and lower 98 

in the southeast. The region is situated at the end of the syncline core, which extends along the NE-SW direction. The 99 

geological formation presents the sedimentary rocks from Cambrian to Cretaceous and the loose Quaternary deposits. 100 

The outcrop of the strata in Xuanen County largely consists of the Badong formation of middle Triassic (T2b), sandstone, 101 

claystone and limestone, and the Quaternary deposits. As this geological structure, there is a joints system of NE and NW 102 

direction which affected the integrity of the rock mass.                  103 

The climate of the study area is a subtropical monsoon. Precipitation varies locally due to elevation differences. In 104 

the town with an elevation below 800 m, the average annual rainfall is about 1500 mm, which gradually increases with 105 

an increase in altitude. When the elevation is above 1200 m, the average annual rainfall exceeds 1800 mm. The Gongshui 106 

River is the mainstream which drains the area, with the Shuanglong Lake Reservoir built across the river.  107 



5 

 

 108 

Fig. 1 The location of the study area: (a) The location of Hubei Province in China. (b) The location of Xuanen County in Hubei 109 

Province. (c) The digital elevation model (DEM) showing the basic terrain conditions   110 

2.1.2 Urbanization and human engineering activities 111 

Before the 1980s, there were small numbers of settlements in Xuanen County.With the rapid development of the 112 

economy in the last two decades, expansion of settlement areas took place very quickly, such as the construction of 113 

highways, nearly doubled number of industrial and civil structures. By the earlier 1990s, Zhushan Town had increased 114 

significantly, of which the urban area mainly concentrated on the northern side of the Gongshui River valley. Most parts 115 

of the area surrounding settlements were deforested, bare or cultivated. With the constructions of infrastructures, 116 

especially along the No. 209 national highroad, the traffic condition has been significantly improved. Tourism has 117 

gradually become an important economy. Currently, Zhushan Town has become the political and economic center of the 118 

county, and the settlement area has expanded not only on both the sides of the river but also on the mountainous areas 119 

outside the valley. The urban area has grown from the initial 0.5 km2 to nearly 7 km2 where recently populated 75000 120 

residents, making it the most densely populated center.  121 

During the process of urbanization in recent decades, many engineering activities carried out in the area have 122 
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changed the original topography. Although the urbanization process has improved the local economy, the LUCC caused 123 

by construction activities has also become one of the main factors influencing slope deformation and failure.  124 

2.2 Data sources 125 

The data used in the study mainly include (i) topographic map, (ii) geological map; (iii) landslide reports, (iv) aerial 126 

photographs and (v) remote sensing images. Details of data sources are shown in Table 1.   127 

Table 1 The sources and characteristics of the data used in the paper 128 

No. Data  Scale Resolution  Source Purpose 

1 Topographic map 1:50000 10 m 

China Geological Survey (Wuhan Center) 

Landslide influencing 

factor maps 2 Geological map 1:100000 20 m 

3 Landslide reports  / / China Geological Survey (Wuhan Center) 

Landslide inventory 

map 

4 Aerial photographs / 2048*1536 dpi DJI drone 

5 Google Earth images / 30 m Google 

(https://google-earth.en.softonic.com/)  

6 RS images / 30 m Landsat4-5TM (28 August 1992) 

LUC maps 

7 RS images / 2 m 

Superview-1 (25 September 2002 

 And 20 September 2013) 

3 Methodology 129 

3.1 Land use and land cover mapping  130 

Satellite remote sensing techniques are generally used to obtain land use and land cover information. The key step in this 131 

process is image classification (Shrestha et al., 2019). For land cover change analysis, it is more logical to use the same 132 

analysis method for processing the images from different years. However, the quality of the RS data, which is mainly 133 

associated with the spatial resolution of the data, should also be taken into account to have better results. In the 1990s 134 

highest spatial resolution of multispectral images was 30 m (Landsat TM), which allows optimal pixel-based 135 

classification. With the development of high-resolution RS images, object-oriented techniques, using a polygon entity as 136 

the basic unit, provide a widely-used method for information processing (Blaschke, 2010; Bayramov et al., 2016; Ymeti 137 

et al., 2017). Therefore, for the present study, both pixel-based, as well as the object-oriented methods, were chosen for 138 
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the classifications of images obtained in 1992, 2002 and 2013. 139 

Three sets of RS images were prepared to obtain the LUC maps of different years: Landsat4-5TM images from 1992, 140 

superview-1 images from 2002 and 2013. For the Landsat4-5TM images, normalized difference vegetation index (NDVI) 141 

(Huang et al., 2018) and normalized difference water index (NDWI) (Li et al., 2019) were obtained using ENVI software. 142 

After this, the first five spectral bands (wavelength ranges of 0.45~0.52μm, 0.52~0.60μm, 0.63~0.69μm, 0.76~0.90μm, 143 

and 1.55~1.75μm, respectively) , as well as the NDVI and NDWI, were used for neural net classification. For 144 

classification, the training samples were taken using the regions of interest determined by visual interpretation. The 145 

logistic function was determined as the activation. The number of hidden layers was set to 1, and the training rate was set 146 

to 0.5. The termination condition was set to 10-4, and the number of training iterations was set to 500. For the 147 

superview-1 images, the multiscale segmentation was performed based on eCognition software 148 

(http://www.ecognition.com/). The parameters were set as: (i) scale parameter: 200, (ii) band weight: blue 1, Green 1 and 149 

red 1, (iii) shape: 0.6, and (iv) compactness: 0.4. Then, considering the average brightness, length-width-height ratio, and 150 

shape index of the object as the features, nearest neighbor classification was carried out, where the way to obtain the ROI 151 

was similar to that used for the classification of Landsat images. 152 

3.1.1 Pixel-based analysis: neural network (NN) classification 153 

The neural network algorithm compares pixels to one another and those of known identity and then assigns groups of 154 

identical pixels into classes that match the informational categories of user interest (Abdul-Qadir, 2014). Among 155 

numerous NN models developed for pattern recognition (Berberoglu et al., 2000; Aitkenhead et al., 2008), BP neural 156 

network (BPNN) is the most commonly used. The basic element of a BPNN is the processing node and the 157 

interconnections between each node, which has an associated weight (Lee et al., 2004). These nodes are organized into 158 

layers, and each layer is fully interconnected to the following layer in general. Each BPNN consists of three or more 159 

interconnected layers: input layer (i.e., the first layer), output layer (i.e., the final processing layer) and hidden layer 160 

(between the input layer and output layer). The user defines the number of hidden layers as well as the nodes within each 161 

layer. 162 

Each pixel in the image has its own specific LUC information. Although it is impossible to state the clear LUC 163 

characteristics of all pixels, we can still determine the LUC properties using statistics or fieldwork data which is used in 164 

defining the region of interest (ROI) and their LUC information are extracted directly from the image as the training 165 

dataset of the BPNN. This dataset is input into the nodes of the first layer, and each processing node sums the values of 166 
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its weighted inputs. The summed input signals are then transformed and passed to the nodes in the next layer in a 167 

feed-forward manner. After each training process, the output results are compared with the actual LUC values, and the 168 

errors are returned to the input layer for correction. Therefore, with the constant iteration of the training process, the final 169 

classification accuracy is improved gradually. 170 

3.1.2 Object-oriented analysis: multiscale segmentation and nearest neighbor classification 171 

The high-resolution satellite imagery has a higher spatial resolution, but with less spectrum number, so the phenomena  172 

“some objects with different spectra and different objects with same spectrum” exist (Zhang and Tang, 2019). In such 173 

images, pixels are smaller than the object, so the grouping of pixels is possible to obtain real-world homogeneous 174 

features (Blaschke, 2010; Ymeti et al., 2017). After the grouping, the smallest unit of the image in the classification 175 

process is not a pixel but the image object. It should be noted that spectral information, as well as the geometric and 176 

structural information, should be all considered for subsequent analysis and processing.  177 

Multiscale segmentation is a bottom-up image segmentation method based on two-two region merging techniques. It 178 

can perform multiple and continuous merging of pixels and ensure good homogeneity of all pixels in the same object in 179 

the image. Three important parameters are influencing the segmentation results: scale, band weight, and shape. The scale 180 

factor can determine the size of the object after the segmentation, as well as the final accuracy of the extracted 181 

information. The band weight can determine whether a specific band in the image is considered in the segmentation and 182 

the degree of the influence of this band. The shape factor can ensure the shape integrity of the object. 183 

The eCognition software was selected as the tool for multiscale segmentation in this study, and the supervised 184 

classification based on the nearest neighbor method was used. Similar to pixel-based analysis, this method allows 185 

selecting the region of interest (ROI) for taking training samples. In addition, it allows the description of samples in terms 186 

of the shape and texture of the objects in the feature space. The classification of the test object is determined by the 187 

nearest neighbor. The distance between the test and sample objects can be calculated as follows: 188 
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( )t

fv  is the feature values of the test object, 
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fv  is the feature values of the sample 190 

object, and f  is the standard deviation of the feature. 191 
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3.2 Logistic regression model 192 

Numerous models have been developed to perform landslide susceptibility assessment, including heuristic, deterministic, 193 

statistical, and machine learning models (Huang et al., 2017). Considering the objective of the study is to observe the 194 

impact of LUCC in terms of their propensity to landslide initiation, a single multivariate  statistical classification model 195 

is suitable. Therefore, we prepared the logistic regression model to link the dependent variable expressing landslide 196 

probability with the independent variables (landslide influencing factors).  197 

For landslide susceptibility assessment, the logistic regression model is a commonly used statistical technique that 198 

involves one or more independent explanatory variables to extract the empirical relationships from observations (Zhou et 199 

al., 2018). In particular, through the addition of a suitable link function to the usual linear regression model, variables in 200 

the model may be either continuous or discrete, or any combination of both types and that they do not necessarily have 201 

normal distributions (Lee, 2005), which gives it an advantage over linear and log-linear regressions. Ozdemir et al (2013) 202 

and Lee (2005) have explained the detailed formula in the case of landslide susceptibility studies, which is denoted as 203 

follows: 204 

      
1 1 2 2 3 3 m mY a b X b X b X b X= + + + + +                             (2) 205 

log it ( ) ln( )
1

P
Y P

P
= =

−
                                   (3) 206 

1

Y

Y

e
p

e
=

+
                                         (4) 207 

where X1, X2,…, Xm are predictor variables, and Y is a linear combination function of these variables that represent a 208 

linear relationship. If Y is used as a binary variable (0 or 1), then the value 0 or 1 represents the absence or presence of a 209 

landslide, respectively; The parameters a, b1, b2,…, bm are the regression coefficients that must be estimated, among 210 

which is the intercept, and b1, b2,…, bm are the coefficients that measure the contribution of the independent variables (X1, 211 

X2,…, Xm) to the variations in Y; P is the probability that the target variable (Y) is 1; P/(1-P) is the so-called odd or 212 

frequency ratio. Through this process, the model can establish a functional relationship between binary-coded landslide 213 

events and the different factors used for landslide susceptibility assessment (Yalcin et al., 2011). 214 

After the analysis of the relationship between the landslide and the predictor variables, the value of P can be 215 

considered as the landslide susceptibility index (LSI). In this study, the LSIs were divided into four classes, e.g., very high, 216 

high, moderate, and low, according to the reasonable thresholds of LSI determined by natural breaks method. 217 
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3.3 Receiver operating characteristic (ROC) curve 218 

Although the statistical methods can evaluate the model performance effectively such as the frequency ratio (FR) index, 219 

they require reclassification of landslide susceptibility index (LSI) values, and the change of the different breakpoint 220 

values can result in different evaluation results. To remedy this, the receiver operating characteristic curve (ROC)  is 221 

more commonly used to evaluate landslide susceptibility results due to the cutoff-independence of it.     222 

Several indices can be used to evaluate landslide-prone area classification in the ROC method, including true 223 

positive (TP) rate, true negative (TN) rate, false positive (FP) rate, false negative (FN) rate, sensitivity and 224 

specificity(Fig.2(a)). In simple terms, if a model predicts a positive value of a given variable (event forecast) and the 225 

value of the variable is actually positive (event), a false positive prediction is obtained. On the opposite, if the value of 226 

the variable is actually negative (no event), a FP prediction is obtained (Corsini and Mulas, 2017). TN and FN predictions 227 

are classified following similar logical combinations. Based on this, the sensitivity (Sen), i.e., the percentage of correctly 228 

classified landslide cases, and the specificity (Spe) can be determined as follows: 229 

    
'' Number of TP''

Sen
'' Number of TP'' '' Number of FN''

=
+

                            (5) 230 

 '' Number of FP''
Spe

'' Number of FP'' '' Number of TN''
=

+
                            (6) 231 

The Sen is also considered as the true positive rate, and the value (1 − Spe) is the rate of false positives (Melchiorre 232 

et al., 2008). Generally, High sensitivity indicates a high number of correct predictions, whereas high specificity (low 233 

1-Spe difference) indicates a low number of false positives (Mohammady et al., 2012). Hence, the Sen of the model is 234 

plotted against 1-Spe to obtain the ROC curve, and in most cases, the area under the curve (AUC) is utilized to evaluate 235 

the prediction ability of models. The model is considered better if the value of AUC is larger (Fig. 2 (b)).  236 

 237 
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Fig. 2 (a) Some indices used to evaluate the landslide susceptible area classification in ROC method; (b) The example of ROC 238 

and AUC (source: Corsini and Mulas, 2017). 239 

3.4 Slope unit 240 

Slope unit is defined as one slope part, or the left/right part of a watershed, representing the region of space-delimited 241 

between ridges and valleys under the constraint of homogeneous slope aspect and steepness distributions. It can avoid the 242 

shortcomings of low geomorphological representativeness of grid-based susceptibility mapping (Camilo et al., 2017). 243 

Hence, we adopted the slope unit as the mean of landslide susceptibility in this study.   244 

The slope unit can be drawn manually from topographic maps or can be delineated automatically using specialized 245 

software (Alvioli et al., 2016). According to the prevalent methods provided by the literatures (Xie et al., 2004; 246 

Reichenbach et al., 2014; Schlögel et al., 2018), the slope units of the study area were partitioned using ArcGIS-based 247 

hydrologic analysis method. Slope units were generated in steps as follows: (i) preparing the reverse DEM by subtracting 248 

the original DEM from the highest elevation of the study area; (ii) filling the original and the reverse DEM, respectively; 249 

(iii) extracting the surface water flow direction to distinguish areas with extremely rapid changes in surface morphology; 250 

(iv) establishing the stream link for obtaining the valley lines and ridge lines; (v) delineating the slope units based on the 251 

valley and ridgelines. One of the advantages of adopting slope units is that the computational burden is reduced due to a 252 

lower number of units compared with the grid-based method (Camilo et al., 2017). Moreover, the slope units make it 253 

possible to maximize the internal homogeneity and the external heterogeneity of the slope aspect (Mashimbye et al., 2014; 254 

Schlögel et al., 2018). 255 

3.5 Landslide mapping and analysis 256 

3.5.1 Landslide mapping  257 

In the simplest form, landslide inventory plays an essential role in its susceptibility mapping (Kayastha, 2015), especially 258 

in the initial phase because it provides its spatial distribution (Tian et al., 2019). It can be done in a region using different 259 

techniques such as field surveys, satellite image/air photo interpretation, and literature search for historical landslide 260 

records (Yalcin et al., 2011). The inventory was carried out from a combination (i) detailed reports obtained from 261 

management institutes, (ii) visual interpretation of aerial photographs and remote sensing images, and (iii) field surveys 262 

carried out in the period during April and May 2013. To clarify their detailed information, we link the landslide property 263 

database to the map, which includes the descriptions of some data that cannot be digitized, e.g., the amount, area and 264 

occurrence time of landslides. 265 
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3.5.2 Factors influencing landslides 266 

The spatial distribution of landslide hazards is the combined effect of different factors, including not only internal 267 

geological structures but also their external environmental settings. In this study, six influencing factors were determined, 268 

i.e., slope gradient, aspect, slope shape, lithology, distance to the reservoir, and LUC. The thematic data were collected 269 

from different sources. For example, topographic factors were generated from elevation contour lines (1:50000 scale), 270 

and lithology information was derived from the geological map (1:100000 scale) obtained from the China Geological 271 

Survey. The urban planning map, which indicates the location of the Shuanglonghu Reservoir, was collected from the 272 

administration department of Zhushan Town. The LUC maps were obtained from RS images.        273 

The study of the relationship between landslide events and their triggering factors is a key step in landslide 274 

susceptibility assessment. In this study, this relationship was determined by calculating the ratio of the number of units 275 

with landslide occurrence to the total amount of units in each class, namely the distribution curve of ratio. However, it 276 

should be noted that the continuous variables (e.g., slope, aspect, etc.) cannot be used directly as input data into the 277 

applied model in this study. It is necessary to classify the continuous variables into discrete classes to understand the 278 

effects of each variable on landslide occurrence. This was done according to the distribution curve of the frequency ratios 279 

(Huang et al., 2017). After the selection and preliminary analysis of these factors, their independency test was performed. 280 

The results showed that all the variables were highly uncorrelated to each other (correlation coefficient of less than 0.2) 281 

and thus they were considered very appropriate to take into account for landslide susceptibility assessment.      282 

Topographic factors 283 

A digital elevation model (DEM) was prepared by interpolating contour lines at 10 m intervals from which topographic 284 

factors including slope gradient, aspect, and slope shape were obtained.  285 

Slope angle (Fig. 3 a), defined as the steepness of a surface, is the major parameter of slope stability analysis which 286 

can help us in understanding the characteristics of a basin for runoff and erosion processes (Vasu and Lee, 2016). The 287 

slope gradient of the study area varies in the range of 0°~73.6° and an average value of 21.3°. The slope gradients were 288 

divided into four categories: (i) flat to gentle (<15°), (ii) moderate (15-25°), (iii) steep (25-40°), and (iv)very steep (>40°). 289 

From the perspective of spatial distribution, the flat to gentle slope class mainly situates along the banks of the Gongshui 290 

River, while the surrounding mountainous areas have steep to very steep slopes (slope gradients of 20° to 45°). Based on 291 

the statistical results of LRM, the locations where landslides generally occurred are in the moderate slope class. This can 292 

be explained that steeply sloping areas are generally in high elevation areas where human activities are minimal and 293 



13 

 

nearly no landslide activities have been detected in the inventory (Cervi et al., 2010; Zhou et al., 2018).  294 

Aspect (Fig. 3 b) is considered an important factor in landslide susceptibility assessment because of the role it plays 295 

in micro-climate and hydrology due to differences in exposure to sunlight, winds, rainfall (degree of saturation), and 296 

discontinuities (Yalcin et al., 2011). The slope aspect was divided into eight categories. Statistical results using three 297 

years of data in the study area revealed that landslides generally occur on the slope aspect within the range of 40-100°.            298 

Defined along the line of maximum slope, profile curvature (Fig. 3 (c)) affects the acceleration and deceleration of 299 

flow and, therefore, influences subsequent erosion and deposition (Regmi et al., 2010).  However, the geological 300 

meaning of the profile curvature is not clear. To remedy this, this study classified the profile curvature map into three 301 

categories according to the values of the slope profile curvature: (i) convex; (ii) concave; (iii) straight (planar). These 302 

categories represent different slope shapes. In general, concave slopes are considered as potentially landslide-prone areas 303 

as they concentrate water at the lowest point that can generate adverse hydrostatic pressure whereas convex slopes are 304 

more stable than concave slopes because they disperse the runoff more equally down the slope (Kayastha, 2015). This 305 

point can be confirmed by the model used in this study.     306 

Lithology 307 

The landslide event has a close relationship with lithological characteristics because different rock types have different 308 

mechanical and hydrological properties (Van Westen et al., 2008). The lithology map (Fig. 3 (d)) of the study area was 309 

extracted from the geological map (1:100000 scale), which indicated that the main strata consist of Jianglingjiang 310 

Formation (T1j) of lower Triassic (northwest of the urban area), Badong Formation (T2b) of middle Triassic (most areas 311 

of the region) and the Quaternary deposits (banks of the Gongshui River). From the perspective of the material types, the 312 

T2b is a kind of clastic rock composed of marine-terrigenous interdepositional mudstone, siltstone, and marl (Deng et al., 313 

2017), and the T1j is a kind of carbonate rock composed of marine depositional dolomite, dolomitic limestone, and 314 

microcrystalline limestone. Similarly, the Quaternary deposits also have several components, such as alluvium, 315 

proluvium, and so on. According to the characteristics of engineering geological properties, these strata were 316 

differentiated into three lithological units: (i) the Quaternary deposits; (ii) layered clastic rocks; (iii) layered carbonate 317 

and clastic rocks. The layered clastic rock types show the strongest positive impact on the occurrence of landslides. More 318 

than 80% of the total landslides occurred in the stratum of layered clastic rock, although the amount of units of this 319 

category only accounts for 38.3% of the total units, which indicates that Badong Formation is a landslide-prone stratum.          320 

Distance to reservoir 321 
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The large-scale engineering infrastructures can change the initial geological conditions, which can influence slope 322 

stability. In areas with abundant runoff, reservoir construction is the most common infrastructure development activity to 323 

utilize water resources, which significantly affects landslides (Iqbal et al., 2018), such as in the case of the Three Gorges 324 

Reservoir in China (Huang et al., 2017; Wang et al., 2018; Zhou et al., 2018). To see the effect of the Shuanglonghu 325 

Reservoir construction on landslides, we prepared the distance to the reservoir (Fig. 3 (e)), with a buffer distance of 200 326 

m. The study area was divided into three categories of distances to reservoir: (i) < 200 m; (ii) 200-400 m; (iii) > 400 m. 327 

Although the area belonging to the category of (i) and (ii) only accounts for about 5% of the whole region, the ratio of the 328 

units with landslide occurrences is larger than the category of (iii).      329 

 330 
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Fig. 3 Influencing factors used in the landslide susceptibility modelling: (a) slope angle; (b) aspect; (c) profile curvature; (d) 331 

lithology; (e) distance to reservoir.               332 

Land use and land cover 333 

Different LUC types may affect the stability of slopes because LUC can change the hydrological functioning of hillslopes, 334 

rainfall partitioning, infiltration characteristics, and runoff production, and furthermore the shear strength of the soil 335 

(García-Ruiz et al., 2010). Meanwhile, the difference from several environmental factors such as geological structure and 336 

lithology, the LUC can be affected by major modifications seasonally or over decades because it can be natural or 337 

induced and controlled by human actions (Reichenbach et al., 2014). Hence, for a region where the LUC types can 338 

change quickly over a short period, the correlation between LUC type and landslides should be defined to assess the 339 

effect of LUC on the occurrence of landslides. For the LUC maps, the evolution must be extracted through the 340 

comparison from at least two different periods (Pisano et al., 2017). In this study, a time interval covering 21 years 341 

(1992-2013) was considered, which were divided into two ranges: 1992-2002 and 2002-2013. It should be noted that the 342 

maps before 1992 were not provided because of the availability of the RS images needed for the mapping procedure and 343 

the undeveloped urbanization at that time.        344 

4. Results 345 

4.1 Land use and land cover maps 346 

Classification results show various LUC types, but some of the land cover types had to be combined for statistical 347 

analysis. For example, settlement areas, roads, and mining areas were combined and named as the human engineering 348 

activities land (HEAL). Since the land cover types, e.g., grassland and arable land (GAL) are covered by vegetation types 349 

with a shallow root system, they were grouped into the same LUC type. The area covered by trees was considered as 350 

forest land. The remaining areas are classified as barren land. Hence, the final LUC map of the study area has four 351 

classified into four classes: (i) land with human engineering activities, (ii) forest land, (iii) grassland and arable land, and 352 

(iv) barren land (Fig, 4). The data were then integrated into an ArcGIS environment where 2870 slope units have been 353 

delineated according to the method described in section 3.4. Finally, the characteristics of the spatial distribution of 354 

different LUC types were indicated based on slope units (Fig. 4 d, 4e, and 4f). The classification results show an overall 355 

accuracy of more than 89% for the LUC classification of in all the years (Table 2). The highest overall classification 356 

accuracy of 96% was obtained for 1992 and the lowest (89%) being in 2013. The LUC classification results provided a 357 
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solid base for landslide susceptibility assessment.  358 

 359 

Fig. 4 (a) The LUC map of 1992; (b) The LUC map of 2002; (c) The LUC map of 2013; (d) The LUC map of 1992 based on SU; (e) 360 

The LUC map of 2002 based on SU; (f) The LUC map of 2013 based on SU. 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 
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 369 

Table 2 The classification accuracies of LUC maps corresponding to different years 370 

Year LUC PA/% UA/% OA/% Kappa/% 

1992 

HEAL 98.4 99.5 

95.6 93.9 

Forest land 95.8 97.2 

GAL 91.5 85.2 

Barren land 94.5 97.5 

2002 

HEAL 87.8 90 

92.3 88.8 

Forest land 88.1 94.9 

GAL 100 96.4 

Barren land 83.3 62.5 

2013 

HEAL 87.5 87.5 

89.3 83.4 

Forest land 100 100 

GAL 89.2 97.1 

Barren land 91.7 73.3 

As shown in Fig. 5, barren land has decreased from 1992 to 2013, mainly because of the continued urbanization 371 

process, leading to the conversion of barren land into construction activities, e.g., buildings, roads, and so on. Similarly, 372 

the area covered by grassland and arable land also shows a rapid reduction. On the contrary, the areas by the category of 373 

(i) and (ii) increased in this period, especially the forest land from 34% in 1992 to 68.3% in 2013. Even though most 374 

studies have revealed that regional forest degradation was more likely to occur in the past decades (Karsli et al., 2009; 375 

García-Ruiz et al., 2010; Galve et al., 2015), this was not the case in this area. However, some studies show the increase 376 

of forest land mainly due to migration of people and land abandonment (Beguería, 2006) or due to strict management 377 

(Pisano et al., 2017) and so on. Our study shows that deforestation was severe before 1992, causing the disappearance of 378 

a large number of natural forestlands. Because of the awareness of environmental protection in the area since 2000, the 379 

environmental problems have gradually been the focus point by the decision-makers in China. The national policy of 380 

"returning farmland to forest land", which started in1999, has resulted in very positive outcomes. Besides, the 381 

development of the tourism industry in the area also calls for better environmental management.        382 
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 383 

Fig. 5 The change of area of different land use and land cover types. 384 

4.2 Landslide inventory  385 

The landslide inventory of the area (Fig. 6) revealed 53 landslides, among which one occurred in the period 1992-2002, 386 

and 10 occurred from 2002 to 2013. The total area occupied by these landslides is 201.6×104 m2, with a volume of 387 

approximately 1000×104 m3. The depths of landslides range from 1 m to 15 m, among which more than 30 landslides 388 

have a depth of less than 5 m, and only 5 landslides have a depth of larger than 10 m. Hence, shallow landslides are the 389 

most important in the area. According to the type of movement, material, and estimated depth, most of the landslides are 390 

shallow earth slides, and composite soil slides and debris flow. The deformation of many landslides is characterized by 391 

cracks (Fig. 7), including tensional ground cracks and bulging cracking. In the urban area, the front undercutting of 392 

slopes caused the small-scale sliding on the toe of landslides. For example, the Huanghexiang landslide, located 500 m 393 

on the northwest side of the Qingshui River, is a shallow earth slide, which occurred on the slide-prone strata of the 394 

Badong Formation (Deng et al., 2017). Under the combined effects of strata and slope cutting, the landslide was partially 395 

reactivated, causing cracks and becoming a severe threat to residents. 396 

 397 
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 398 

Fig. 6 The spatial locations of the landslides and the photos of different types of landslides in the study area: (a)The spatial 399 

locations of the landslides. (b)The photo of the rock slide. (c) The photo of the composite soil slide–debris flows. (d) The photo of 400 

the shallow earth slide.    401 

 402 
Fig. 7 The deformation of the landslides in the study area: (a) The topography of landslide (see Fig. 6 (a) for location). (b)The 403 

cracks on the road. (c) The uplift of the ground. (d) The topography of landslide (see Fig. 6 (a) for location). (e) The tension 404 

cranks on the ground. (f) The cracks on the building.                   405 

4.3 Landslide susceptibility zonation 406 

Results of the landslide susceptibility assessment are shown in Fig. 8. The maps obtained by the logistic regression model 407 

are shown in Fig.8a,8c, and 8e, and the results of the weight of evidence model (Regmi et al., 2014; Razavizadeh et al., 408 
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2017) utilized as the comparative model are shown in Fig.8b, 8d, and 8f. The ROC curves were applied to show the 409 

accuracies of different models quantitatively, by plotting the cumulative percentage of observed landslide occurrence 410 

against the cumulative percentage from very high to low susceptibility with decreasing LSI values. As shown in Fig. 9 411 

and Table 3, in all six cases, the AUC values are larger than 80% (except for the result of 2002), showing high accuracies 412 

of the landslide susceptibility assessment. By comparing the results of different models in the same year, the logistic 413 

regression model is better than the weight of evidence model in our study. Especially, the change of ROC curves, 414 

sensitivity and specificity values of weight of evidence model in different periods are significant, e.g., the sensitivity 415 

values are 83.0%, 70.8%, and 79.9% for the years 1992, 2002, and 2013 respectively, while that of logistic regression 416 

model, the sensitivity values are 74.6%, 75.0% and 78.4%, which indicates that the performance of logistic regression 417 

model is more stable than weight of evidence model.   418 
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 419 
Fig. 8 The results of landslide susceptibility zonation: (a) LRM for 1992; (b) WEM for 1992; (c) LRM for 2002; (d) WEM for 420 

2002; (e) LRM for 2013; (f) WEM for 2013. 421 

 422 
Fig. 9 The ROC curves of (a) WEM, and (b) LRM  423 
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Table 3 The accuracies of different models 424 

Model Year 

True positive  

rate/% 

True negative  

rate/% 

False positive  

rate/% 

False negative  

rate/% 

Sensitivity 

/% 

Specificity 

 /% 

AUC 

/% 

Weight of 

evidence model 

1992 1.4 66.2 32.1 0.3 83.0 67.3 81.3 

2002 1.2 76.7 21.6 0.5 70.8 78.0 78.8 

2013 1.7 73.9 24.0 0.4 79.9 75.5 82.0 

Logistic 

regression model 

1992 1.2 74.1 24.3 0.4 74.6 75.3 81.8 

2002 1.3 75.9 22.4 0.4 75.0 77.2 84.0 

2013 1.6 72.8 25.1 0.5 78.5 74.7 81.8 

4.4 Evolutions of LUC and landslide susceptibility  425 

Maps of the LUC and landslide susceptibility in different periods were placed together to compare and clarify the 426 

temporal evolutions of LUC and LS during the 21 years. It should be noted that the logistic regression model shows a 427 

better performance for landslide susceptibility assessment in this study, so the subsequent analysis was carried out in the 428 

framework of this model.     429 

As seen in Fig. 10, during the period 1992 - 2002, the main trend of LUCC is the arable land becoming forest land 430 

and the barren land becoming arable land and forest land, especially the area of barren land decreased, from 19.8% in 431 

1992 to 0.2% in 2002. In contrast, forest land increased by 33.6%. Except for the reasons stated in section 5.1, data 432 

quality should also be considered: the low-resolution images of Landsat TM4-5resulting in poor classification between 433 

barren land and grassland covered by sparse vegetation. On the contrary, the land with human engineering activities did 434 

not change obviously in terms of surface area and the number of units. This is mainly because the urbanization process 435 

during this period had concentrated mainly on the plain areas on the banks of the river, which always belonged to one 436 

slope unit class (flat terrain). Compared to 1992, the landslide susceptibility in 2002 did change 632 units increased their 437 

susceptibility while 595 units show the decreased, accounting for 22.0% and 20.7%, respectively (Fig.11). Further, if the 438 

magnitude of the landslide susceptibility changes are subdivided into five classes: visible increase (LS has increased by at 439 

least two levels, e.g., from low to high), increase, constant, decrease and obvious decrease (LS has decreased by at least 440 

two levels), it is clear that the number of the units of obvious increase is also larger than that of obvious decrease, similar 441 

to overall change of landslide susceptibility. Such characteristics of LS change indicate that the LUCC from 1992-2002 442 
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made Zhushan Town a more landslide-prone area. The LUCC with obvious increase condition can be grouped into three 443 

cases: (i) constant, (ii) areas with human engineering activities, and (iii) grassland and arable land. The corresponding 444 

numbers of units are 24, 36, and 40, respectively. Two important LUC types for increasing LS in this period would be: 445 

increase of human engineering activities, and the transformation from forest land to grassland and arable land. Moreover, 446 

it should be mentioned that these units with obvious increase LS, none unit transfers from the human engineering 447 

activities to other types, which indicates the impact of human engineering activities on the LUC. 448 

 449 

Fig. 10 (a) The transformation of LUC from 1992 to 2002; (b)The transformation of LS from 1992 to 2002; (c)The 450 

transformation of LUC from 2002 to 2013; (d)The transformation of LS from 2002 to 2013. 451 
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 452 

Fig. 11 (a) The change of the landslide susceptibility of each slope unit between 1992 and 2002; (b) The scatter plot showing the 453 

change of the landslide susceptibility between 1992 and 2002; (c) The change of the landslide susceptibility of each slope unit 454 

between 2002 and 2013; (d) The scatter plot showing the change of the landslide susceptibility between 2002 and 2013.    455 

During the period from 2002 to 2013, the trend of LUCC may be concluded as two aspects (Fig. 10): the first is the 456 

slight increase of the human engineering activities, mainly from the transformation of the grassland and arable land. 457 

Different from the previous period, the human engineering activities during this period were no longer confined to the 458 

plain areas, but also to the other areas, e.g., the northwestern and southeast part of the county, which was mainly covered 459 

by forest land, or grassland or arable land before. The second is the increase in forest land. Interestingly, the mutual 460 

transformation between the category (ii)(forest land) and the category (iii) (grassland and arable land) also can be seen in 461 

the northeast of the region. This indicates that reasonable land-use planning gradually developed in this region. In other 462 

words, the residents were not interested in the increase of the forest land anymore, but more on the location where 463 

reforestation should take place. This shows the increase in people's awareness of environmental protection. As a result, 464 
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the increase of forest area can be seen around the town in 2013, unlike in 2002 when the area covered by arable land was 465 

more. Such land-use planning can effectively protect the town from harsh environment problems (e.g., sandstorm, flood). 466 

As a result, the landslide susceptibility of 441 units increased (15.4%), and that of 506 units decreased (17.6%) in 2013. 467 

Compared with 2002, these numbers are smaller, indicating that the influence of the LUCC during this period was lower 468 

than that during 1992-2002. The units of obvious increase and obvious decrease for landslide susceptibility in 2013 were 469 

59 and 23, respectively, also smaller than that in 2002. The LS of most units was constant during this period. This is 470 

mainly because of the increase of the human engineering activities being smaller, and the limited impact of forest land, 471 

grassland and arable land on the slope stability. Despite this, the change of landslide susceptibility influenced by the 472 

human engineering activities land still existed. During that period, a total of 195 units were transformed from other types 473 

of LUCC to the human engineering activities land, of which the landslide susceptibility of 161 units increased. Among 474 

the total 59 units with an obvious increase of LS, the LUC of 46 units were transformed into the human engineering 475 

activities land, accounting for 78.0 % of the total units. Therefore, the transformation to this type of LUCC played an 476 

important role in the increase of the landslide susceptibility in the region.   477 

4.5 Typical landslide events influenced by LUCC  478 

During the period of 2002~2013, 9 landslide events occurred in the study area, among which 2 were located on the bank 479 

of the river, mainly triggered by the fluctuating reservoir water level. The remaining landslides were taken as examples to 480 

study the impact of the engineering activities. A 25 m buffer of each landslide was established, and the change of the 481 

engineering activities in the buffer zone was counted. The area of the engineering activities around all landslides has 482 

expanded since 2002. On average, the area of engineering activities around the landslides has increased by about 20%, 483 

and the change mainly closed to the toe of the landslides resulting from under cutting of slope for buildings.             484 

4.5.1 The Qili Bridge Landslide 485 

The landslide (QLQL) is located at Qili Bridge Village of Zhushan County, on the right slope of the No. 209 national 486 

high way (Fig. 12). The elevation of landslide ranges from 520 m to 762 m above the sea level and a gulley with a strike 487 

direction of 340° along the front of the slope. The landslide occurred on the lower part of the slope, covering an area of 488 

9000 m2 with a volume of 0.27×104 m3. The landslide materials mainly composed of cataclastic marl rock of Triassic 489 

and Quaternary deposits including silty clay and rubble soil.  490 

In 2007, at the lower part of the slope, where the elevation was approximately 520 m, a platform began to be 491 
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constructed, and then 6 brick-and-concrete buildings with 3~4 stories were built on the platform without any protective 492 

measures. The slope was a consequent bedding rock slope steeper than 30°of dip angle. 3 m high cut slope was 493 

artificially excavated which worsened the stability of the slope. Rainfall infiltrated rapidly into the sliding body along 494 

many fissures, which softened the strength of the materials. In July 2011, a continuous heavy rain initiated the landslide. 495 

The back walls of the buildings were destroyed by the rock mass, causing some injuries to people and severe economic 496 

losses. As shown in Fig. 12, the natural slope was mainly covered by the forest land, grassland, and arable land before the 497 

construction of the buildings. However, the subsequent engineering activities disrupted the original geological conditions, 498 

causing the instability of the slope. During field visit, some sliding materials still remaining on the slope were noticed, 499 

being a big potential danger for the residents.    500 

 501 

 502 

Fig. 12 The LUCC around the landslide: (a) The RS image of landslide in 2002 (obtained from Superview-1 RS data); (b) The 503 

RS image of landslide in 2013 (obtained from DJI drone); (c) The LUC type of landslide in 2002; (d) The LUC type of landslide 504 

in 2013. 505 

4.5.2 The Liangshuigou Landslide 506 

The Liangshuigou landslide (LSGL) is located at Lianhuaba village, on the left bank of the Gongshui River (Fig. 13). The 507 

natural slope had a dip angle ranging from 25°~35°. The landslide initiated at the lower part of the slope, with an area of 508 

6300 m2 and a volume of 0.1×104 m3. The landslide materials mainly composed of the Quaternary deposits, including 509 

silty clay and rubble soil. The bedrock was argillaceous siltstone of Badong Formation in Triassic formation. Joints and 510 

fissures cut the rock mass which formed the flow way for rainfall infiltration. 511 

https://www.baidu.com/link?url=uDWB3WPOSN_Lq68BlMuMko_b_onnyVhLiNvp2lLZQby8cbEXE2-kt2DMUMTXHbHFIi5euaPndB_6zDo6BbR1n-oZT7OdzV1KIV41IbSfXbGGIuZ33U5-7WXaf_BdWuue&wd=&eqid=861b54fe00010c4c000000035ce00b03
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Before 2010, the slope was covered by field crops and citrus trees (arable land). But, the urbanization process led to 512 

many human engineering activities, including the construction of the building and the roads. The under cutting of slopes 513 

caused a free surface with a height of about 10 m. In June 2012, the landslide was triggered by heavy rainfall.     514 

 515 
Fig. 13 The LUCC around the landslide: (a) The RS image of landslide in 2002 (obtained from Superview-1 RS data); (b) The 516 

RS image of landslide in 2013 (obtained from DJI drone); (c) The LUC type of landslidein 2002; (d) The LUC type of landslide in 517 

2013.  518 

5. Discussion 519 

Although the results highlight the significance of LUCC in the susceptibility assessment of shallow landslides, it is 520 

obvious that LUCC is not the only factor that can influence the landslide occurrence in the region. In most cases, the 521 

impact of LUC on landslides is about the internal geological conditions, such as topography features, drainage conditions. 522 

Such impacts can worsen or improve the stability of natural slopes resulting in increasing or decreasing the frequency of 523 

landslide events (Schmaltz et al., 2017; Galve et al., 2015). For instance, Beguería (2006) reported in a case study in the 524 

Spanish Pyrenees that the former arable fields on the valley slopes facilitated landsliding, even after the land was 525 

abandoned and re-vegetated by shrubs or trees. This is due to water redistribution in the slopes after prolonged rainfall 526 

periods. However, it should be noted that the shallow landslides are directly triggered by the LUC, except for some 527 

landslides which are induced by under cutting of slopes. The statistical results of the temporal distribution of landslides in 528 

this study area also support this assumption: the positive correlation between the number of landslides and monthly 529 

average rainfall (a statistical result of daily rainfall data between 1992~2013) is rather strong. The number of landslides 530 
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occurring during the months of June and July are 18 and 12, respectively, accounting for 56.6% of the total landslides, 531 

whereas only 10 landslides were initiated or reactivated in the dry season, accounting for 18.9% of the total landslides. 532 

Analysis of 21-year data shows that the change of the landslide susceptibility at a regional scale is associated with rainfall 533 

conditions. As shown in Fig. 14, annual rainfall seems to be increasing from 1992 to 1998, and then decreasing from 534 

1999 to 2013, although the magnitude of the change is relatively small. Similar patterns are also shown in the number of 535 

heavy rainfall events during this period. It should be noted that this regulation is roughly the same as the change of the 536 

high susceptibility area. Thus, more exactly, it’s not that the LUCC can change the susceptibility directly, but the natural 537 

slope conditions are influenced by various LUC and subsequently by different environmental for initiating landslide.  In 538 

general, most landslides in the area, especially the shallow ones, were triggered not by a single factor, but the combined 539 

results of external environmental factors. For example, during the period from 6t to 26 June in 2013, the area received 540 

149 mm rain although the number of rainy days was only three (6 th, 9th and 10th of June). Two landslides (i.e., 1# and 2# 541 

landslides) were triggered by this heavy rainfall event, which occurred on 16th and 26th this month.     542 

 543 

 544 

Fig. 14 The relationship between rainfall and shallow landslides in the area: (a) The curve showing monthly rainfall and 545 

temporal distribution of landslides; (b) Daily rainfall in June 2013; (c) The topography of 1# landslide; (d) The topography of 2# 546 

landslide. 547 
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In addition, reservoir operation is another important triggering factor, as shown in Fig.7. Before the construction of 548 

the reservoir (1992), the slope unit where the landslide is located has moderate susceptibility, whereas the susceptibility 549 

increased to a very high level in 2002 and 2013. Although the reservoir is also a kind of human engineering activities, the 550 

landslide was triggered by the reservoir impoundment. The seasonal and periodic fluctuation of the reservoir water level 551 

has changed the seepage and softened the geotechnical properties, both of which can gradually destabilize the landslide. 552 

During field survey, the appearance of a large number of cracks was noticed on the ground of SLHL after the 553 

construction of the reservoir. A nearly decade-monitoring of deformation also indicated the slow but continuous 554 

movement of the landslide, with a velocity of approximately 1.6m/yr. In particular, the landslide movement shows an 555 

obvious intermittent characteristic: the movement accelerates in the rainy season in which period the reservoir water level 556 

generally drop down, while the movement often stops in other periods. Obviously, the landslide is undergoing the creep 557 

deformation influenced by the reservoir water level combined with rainfall. In the final analysis, however, this kind of 558 

impact was not highlighted because the reservoir area was considered as a kind of HEAL. The change of the 559 

susceptibility of this slope unit was incorporated into the results of LUCC.   560 

In order to study the impact of LUCC on landslide occurrence, the temporally and spatially differentiated 561 

information for both the landslide inventory and LUC maps are particularly important, while the other influencing factors 562 

were considered as being static. However, they have proven to be dynamic because they change significantly in a few 563 

decades. Especially, in populated areas, the topographic factors (i.e., slope angle, aspect, and profile curvature) can be 564 

altered by frequent earth movement processes (e.g., landslides, soil erosion, under cutting of slopes, etc.) in a short time. 565 

Therefore, a more accurate susceptibility result depends on good DEM data and influencing factor maps. Moreover, in 566 

landslide susceptibility evaluation, the LUC data integrates the controlling factors group, and are generally, directed by 567 

another factor input to the evaluation model. In some cases, LUC data are used as a landslide conditioning factor 568 

(Meneses et al., 2019). For instance, the CORINE land cover (CLC) data are widely used for landslide susceptibility 569 

assessment in many regions in Europe because it is the only LUC data available (Feranec et al., 2007). A similar situation 570 

happens in the analysis of 1992 in this study. The RS data with low resolution caused the inherent uncertainties of the 571 

obtained LUC maps, which was subsequently taken into the landslide susceptibility model. Even though it has tried to 572 

reduce such uncertainties by decreasing the amount of LUC categories and using the classification method of images 573 

with better accuracy, the final LS zonation results still have to deal with a considerable amount of uncertainties. As a 574 

consequence, it seems not to be important to compare different models of improving the accuracy of landslide 575 
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susceptibility evaluation. For example, Schmaltz et al. (2017) have recommended applying easily interpretable 576 

multi-variable model or generalized additive models, which is in accordance with the model used in this study.   577 

6. Conclusion 578 

Land use and land cover change can alter the geological conditions and affect the occurrence of the landslides. This study 579 

revealed the evolution of LUC and how LUC change affected landslide susceptibility at a regional scale. Through the 580 

analysis of different LUC maps with a 21-year time interval obtained from remote sensing images, it documented the 581 

rapid growth of the afforestation as well as intense urbanization process in the region since 1990s: the areas of forest land 582 

and human engineering activities between 1992 and 2013 increased by 34.3% and 1.9%; whereas the areas of the 583 

grassland and arable land, and the barren land decreased by 15.7% and 20.5%. Combined with the other five factors 584 

(slope angle, aspect, profile curvature, lithology and distance to the reservoir), the LUC was subsequently utilized for 585 

landslide susceptibility analysis in different years based on logistic regression model and slope unit. The zonation results 586 

have shown that the urban area on both sides of the river valley is always the area with the largest landslide susceptibility. 587 

Along with the increase of engineering construction activities, the susceptibility of many areas increases. Even some 588 

small shallow landslides were directly triggered by the transformation of the LUC type (i.e., from forest land and GAL to 589 

HEAL).          590 

 In conclusion, the availability of high-resolution RS images and the selection of a suitable model for assessing 591 

landslide susceptibility are the keys to evaluate the impact of land use and land cover change on landslide susceptibility. 592 

In addition, the study concluded that human activities play an important role in the change of landslide susceptibility. 593 

Engineering activities on slopes could destabilize landslide hazard if risk assessment and mitigation measures do not take 594 

place in advance. Consequently, the method used in the study is beneficial for landslide hazard mitigations due to the 595 

combined use of GIS and RS techniques. Such results not only call for a more reasonable land use planning in the 596 

urbanization process in the future but also suggest a more systematic inclusion of LUC change in hazard assessment. 597 

Data availability. The study relied on three sets of data: (i) the data collected by the field work, (ii) remote sensing data, 598 

and (iii) the detailed landslide investigation reports provided by China Geological Survey (Wuhan Center). The 599 

categories (i) and (2) are included in Table 1 in this paper. The detailed processing workflow for these data sets can be 600 

seen in the methodology section of this paper.        601 
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