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Abstract. After an earthquake, efficiently and accurately acquiring information about damaged buildings can help reduce 

casualties. Earth observation data have been widely used to map affected areas after earthquakes. However, we can obtain 

different modes of remote sensing data from different sensors after an earthquake to assess the damage, manage rescue 10 

operations and to estimate economic losses. In this work, for quantification and precision purposes, information on 

earthquake-induced building damage is extracted using multi-source remote sensing images collected after an earthquake. 

The multi-source remote sensing data include optical data, synthetic aperture radar (SAR) data, and digital surface model 

(DSM) data generated by interpolating light detection and ranging (LiDAR) point cloud data. The proposed approach relies 

on a pre-existing urban map to identify image objects corresponding to building footprints. The image analysis is carried out 15 

according to the rough set theory to further determine the feature parameters with the objective of assessing their 

effectiveness in singling out changes associated to the building collapse. Features that describe texture, colour, as well 

geometry are included in our analysis. Logistic regression model was employed to find the optimal fitting function to 

describe the relationship between the occurrence and absence of destroyed buildings within an individual object. Seven 

feature combination models, respectively, based on the use of the texture, colour and geometry, were compared. In our 20 

experiment, we considered the whole Beichuan old country comparing classification results with the reference map, which is 

be regarded as the ground truth for accuracy verification. In our experiment, old Beichuan County, China, the area most 

devastated by the Wenchuan earthquake on May 12, 2008, is used to test the proposed hypothesis. Through comparison with 

a ground survey, the experimental results show that the detection accuracy of the proposed method is 94.2%; the area under 

the receiver operating characteristic (ROC) curve is 0.827. The efficiency of the proposed method is demonstrated using 6 25 

modes of data combination acquired from the same area. The approach is one of the first attempts to extract damaged 

buildings through the fusion of three types of data with different features. It addresses multivariate regression methodologies 

and compares the potentials of different features for application in the field of damage detection. 
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1 Introduction 

Earthquake disasters are a type of major natural disaster, and severe earthquakes can cause serious casualties and economic 

losses through the destruction of a local area. After an earthquake, quickly and accurately obtaining information about the 

distribution of the disaster is an effective way to reduce losses by improving the rescue work efficiency. Building damage 

can reflect the intensity of the ground motion and the economic losses to a certain extent. Quantitative evaluations and high-5 

quality building assessments can also provide important information regarding economic loss, which can be used to allocate 

resources during restoration and reconstruction. Therefore, quantitatively evaluating building damage due to earthquakes is 

vital.  

Remote sensing technology is an important way to obtain information in the early stage of earthquake relief because of its 

objective and efficient access to a wide range of disaster information, which can provide information to support earthquake 10 

damage assessment and emergency rescue. There are many works in the literature on this topic that consider both optical and 

radar data (Voigt et al., 2007; Ehrlich et al., 2009; Corbane et al., 2011). Notably, with the continuous development of 

satellite technology, the number of satellites operating in orbit and sensors are increasing, and a large amount of remote 

sensing data can be acquired after a disaster. Most remote sensing data used after a disaster can be classified into three 

categories: (1) optical data, (2) synthetic aperture radar (SAR) data, and (3) light detection and ranging (LiDAR) data. 15 

The extraction of information on building damage is the main task of investigations of earthquake damage. Early information 

extraction mainly used a single data source. However, seismic damage to buildings is complex and variable, and 

comprehensively identifying seismic information by relying on a single data source is difficult. With the rapid development 

of space and airborne remote sensing technology, obtaining different types of remote sensing data within a short period after 

an earthquake is possible. The effective combination of multi-source data can make full use of the respective advantages of 20 

these data to achieve complementary advantages and redundant control. Many researchers have studied building damage 

information extraction using multi-source remote sensing data. Butenuth et al. (2011) used multi-source remote sensing data 

to extract road damage information and achieved good results, which indicates its validity in earthquake damage information 

identification. Chini et al. (2012) investigated the inundation and liquefaction resulting from the 2011 Tohoku tsunami 

through a combination of optical data, thematic maps, and SAR data. Stramondo et al. (2006) extracted the distribution of 25 

seismic damage from the Izmit and Bam Earthquakes using high-resolution optical images and SAR images. Wang and Jin 

(2012) proposed a method for identifying seismic damage through a combination of IKONOS, COSMO-SkyMed, and 

Radarsat-2 images after an earthquake. First, the SAR image before the earthquake was simulated using the geometric 

information extracted from the optical image. Then, the simulated image was compared with the real image after the 

earthquake to extract the building damage information; the extraction accuracy reached 85%. Dell'Acqua et al. (2008) 30 

extracted the building damage information of the L'Aquila Earthquake by fusing the optical image and the SAR image; the 

extraction accuracy was 81%. Based on the GIS information extracted from the optical image and the TerraSAR image after 

the earthquake, Dong et al. (2011) extracted the Wenchuan earthquake damage information. These authors believed that the 
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combination of optical and SAR images can effectively improve the extraction accuracy and found that the optical image can 

be used to identify destroyed buildings. SAR image texture features can be used to identify seismic damage information in 

blocks. The complexity of the image-forming mechanisms within an earthquake region, especially for radar images, makes 

the interpretation and analysis of images a challenging task. In particular, discrimination of geometric features is extremely 

difficult in the detailed identification of earthquake-damaged buildings. 5 

In addition to the combination of optical and SAR images, the combination of optical and LiDAR images has also made 

some progress. The integration is mainly based on the texture features of optical data and the elevation information of 

LiDAR data. Rehor and Voegtle (2008) improved the previous method of extracting buildings by the fusion of optical and 

LiDAR images. In addition, optimal texture features are used in the calculation. Compared with the use of single optical 

images and LiDAR images, the accuracy is improved when these images are combined. Based on the object-oriented support 10 

vector machine method, Yu et al. (2011) extracted the information on damaged buildings through the combination of the 

digital surface model (DSM) obtained from aerial and LiDAR data. LiDAR data and high-resolution images were used to 

reconstruct a 3D building model; then, the roof of the building model was compared with the pre- and post-earthquake roof 

patches to quantify the degree of damage to the building. Hussain et al. (2011) detected the ruins of collapsed houses in the 

Port-au-Prince area using GeoEye-1 and LiDAR data after the Haiti Earthquake. Through this method, the volume of rubble 15 

and debris can be estimated, and the cleaning process can be planned effectively. The features of two types of data are not 

sufficient to identify different types of buildings. However, there are no data fusion approaches for multi-source remote 

sensing data in the existing literature. 

This paper presents a quantitative evaluation method for seismic damage to buildings based on multi-source remote sensing 

data, including optical images, SAR images, and LiDAR images. Different types of images can reflect the different 20 

characteristics of intact buildings and collapsed buildings, and the features of seismic damage can be extracted from remote 

sensing images. Then, the features are reduced according to the selected sample data through rough set theory. Subsequently, 

the relationship between the degree of damage and the image features is established by the logistic regression method, and a 

rapid quantitative assessment of the damage degree of buildings is performed.  

The main purpose of this paper is to combine multi-source remote sensing data to establish a mathematical model for 25 

quantitative evaluation using the logistic statistical analysis method and to achieve a quantitative assessment of earthquake-

damaged buildings. Two specific aspects of this work are deemed important for satisfying the final needs of complete and 

detailed inventories and for ensuring that this work can provide a reliable product (i.e., the damage map, in our case). The 

first important aspect is a detailed comparison with the rapid assessment of single-image data, which provides a well-known 

and reliable decision-making reference. The second aspect is that the work is not just an exercise in collapse detection 30 

focused on a few buildings, but rather an evaluation of the capability of multi-source remote sensing in the quantitative 

assessment of earthquake-damaged buildings, which is important for assessing the role of Earth observations in earthquake 

damage management with respect to methodological testing on a limited test set. 
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Specifically, we take old Beichuan County as the study area to demonstrate the effectiveness of the method. Old Beichuan 

County is one of the areas that was most affected by the Wenchuan earthquake, which led to the relocation of the entire 

community. Many buildings have been preserved in the form of earthquake memorials. The experiment is based on three 

different datasets, including Terra-SAR data, post-event airborne optical images, and LiDAR data. The work provides 

several steps for addressing the problem, including image processing, feature performance evaluation, and the determination 5 

of the advantages of multi-source remote sensing in the damage extraction field. Moreover, this work defines the possible 

weights and roles of different features for earthquake damage identification, which raises some difficulties when the features 

are applied to image classification. 

This paper introduces the work using multi-source remote sensing images, and the paper is structured as follows. Section 2 

introduces the study area and three different datasets. Section 3 describes the characteristics of buildings with different types 10 

of earthquake damage in multi-source remote sensing images. The proposed methodologies regarding feature selection, 

attribute reduction, element determination, and logistic regression model (LRM) are introduced in Section 4. Section 5 

presents the results of the experiment and discusses the feasibility of the method. Finally, Section 6 presents the main 

conclusions. 

2. Study case and datasets 15 

Old Beichuan County is regarded as the study area in this paper. The Wenchuan earthquake on May 12, 2008, caused a large 

number of casualties and damage to facilities. Old Beichuan County is one of the areas that was most affected by the 

Wenchuan earthquake, which led to the relocation of the entire community. Many buildings have been preserved in the form 

of earthquake memorials. The buildings in the Memorial Park have retained their damaged post-earthquake appearance; thus, 

they can be used as the research object of this paper. 20 

The datasets applied in this work include optical multispectral image, LiDAR, and SAR images. In July 2013, the Institute of 

Crustal Dynamics, China Earthquake Administration, collected a series of unmanned aerial vehicle (UAV) multispectral 

images from the Wenchuan earthquake site, including old Beichuan County. The resolution of the images is approximately 

0.5 m. The optical image we obtained was then rectified. In the same year, we performed an omni-directional scan on the site 

of the old town in Beichuan using a ground-based laser scanner. A total of 67 station sites were positioned in old Beichuan 25 

County. In 2014, we carried out additional measurements in old Beichuan County. In addition, field investigation data of 

earthquake damage to buildings were obtained. The SAR images were obtained from the TerraSAR-X data of the German 

Aerospace Center (DLR). The data are ascending SAR images in the VV polarization mode. The spatial resolution is 1 m.  

Combining the careful interpretation of multi-source images and field investigation data, we can obtain a reference map 

divided into intact buildings and destroyed buildings. Due to the lack of detailed field survey data, the reference map can be 30 

regarded as the ground truth for accuracy verification. The study area location, optical image, and reference map are shown 
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in Figure 1. Figure 2 presents the multi-source remote sensing images of the study area (Figure 2(a)), SAR image (Figure 

2(b)) and DSM image (Figure 2(c)). 

3. Seismic characteristics of multi-source remote sensing images 

The destruction of buildings during an earthquake is complex and diverse. Schweier and Markus (2016) divided the types of 

building damage into 10 categories, including plane tilt, multi-layer collapse, debris accumulation, and wall tilt. Different 5 

sources of remote sensing data reflect different properties. Therefore, the quality of different types of seismic damage in the 

images also varies. 

Generally, the buildings in the optical image were in perfect shape before the earthquake, and the body and shadow of a 

building are shown as morphological rules and boundaries; the SAR images contain an overlapping area, a reflection area, a 

roof area, and a shadow area. From the perspective of the characteristics of radar images, intact buildings show a relatively 10 

regular arrangement; the spatial relationship between each characteristic is in accordance with the characteristics of the 

building complex. Due to the characteristics of SAR side-view imaging, in close range, the first characteristic is the overlay 

area of the wall, which is higher than the surface in the image; hereafter, the wall and surface reflection effect and the 

dihedral angle of the backscattering intensity on one side of the building are high and show 1- or L-shaped strong echo 

characteristics. Moreover, the strong echo location is still consistent with the arrangement of the buildings. In the direction 15 

from back to incident, a clear rectangular shadow area can be seen. In the LiDAR images, the three-dimensional structure of 

a building is clear and complete, and the columns and walls are not missing or tilted, the walls, columns, and ground are at 

right angles, the wall is smooth and complete, and the point cloud echo is dense. 

After a building is destroyed, the square nature of the structure is damaged or disappeared based on the optical images. The 

boundaries of the building are blurred, or the buildings are level with the surrounding surface. The roof of the building 20 

collapsed and broke into pieces. The shadow cannot be clearly identified because of the rubble. The whole building is 

destroyed, collapsed, or slumped. The original geometric structure in the SAR imagery is blurred or even absent, and the 

backscattering pattern is changed to multiple scattering in all directions. The main rule of image recognition is that the image 

brightness is high, and no regular bright spot occurs in a certain position. In the LiDAR image, the three-dimensional shape 

of a building is completely absent and in ruins. A large number of peeling walls and reinforcements are present in the middle 25 

of and surrounding the building. 

Figure 3 illustrates the same intact building obtained from different sensors after the Wenchuan earthquake. In the optical 

image, the shape is regular, the colour is even, and no abrupt changes occur. From Figure 3(c), we can distinguish the 

double-bounce line, layover area, and shadow area. The lateral and horizontal roof of the building results in the formation of 

black areas. In the LiDAR image, the three-dimensional structure is clear, and the wall is smooth and complete. 30 

 Figure 4 illustrates the same fully destroyed building obtained from different sensors after the earthquake. In the optical 

image, the geometry is completely absent, the ground is covered with rubble from the building, and differences in brightness 
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are present. In the SAR image, the area of the building where the echo signal is poor contains dark colours, overlapping 

objects, bright lines formed by angle reflections, and shadows and missing features. A small corner reflector is formed 

locally by the rubble, so there are many highlights. In the LiDAR image, the three-dimensional shape of the building is 

completely missing and in ruins. A large number of peeling walls and steel can be found in the middle of and surrounding 

the building. 5 

Figure 3 and Figure 4 show that intact buildings and destroyed buildings have unique features in the optical images, SAR 

images, and LiDAR images. However, in the optical images, the characteristics of the construction ruins and the ruins of 

destroyed buildings are similar; additionally, phenomena of “same object with different spectra, different objects with the 

same spectrum or different optical image spectra, and objects with the same spectrum” occur. The characteristics of large 

amounts of vegetation in the SAR images appear similar to those of completely destroyed buildings. The method of 10 

information extraction based on a single data source can easily cause false alarms. Using traditional methods to achieve 

high-precision extraction of buildings with different types of seismic damage is difficult. Therefore, the motivation of this 

paper is to make full use of the characteristics of multi-source remote sensing data and establish a quantitative evaluation 

model. 

4. Methodology 15 

Based on the above analysis, buildings with different degrees of earthquake damage can be identified through the 

comprehensive utilization of multi-source images. Therefore, if the features are selected and a mathematical evaluation 

model is constructed, then intact buildings and damaged buildings can be quantitatively evaluated. Considering this theory, 

in this paper, a new approach for detecting earthquake-damaged buildings using post-event multi-source remote sensing 

images is proposed. A technical flowchart of the proposed methodology is shown in Figure 5. 20 

4.1 Data processing 

The main inputs of the method are the optical image, SAR image, DSM image, and building sample distribution. Before the 

feature selection of SAR data, radar sigma naught values can be obtained by formula (1) using the original digital numbers 

(Infoterra, 2008): 

2
0

( ) sin
s loc

NEBNDNk = −                                                                                                                                              (1) 25 

where sk  is the calibration and processor scaling factor, DN is the pixel intensity value, and NEBN is the noise equivalent 

beta naught, and loc  is the local incidence angle. 
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The optical image is a UAV image with a resolution of approximately 0.2 m. The DSM image is generated by the nearest 

neighbour interpolation method of the ground LiDAR point cloud data collected using the VZ-1000 3D laser scanning 

system of Austria Riegle Company. 

The building distribution map is obtained by carefully interpreting the post-earthquake optical image, LiDAR data, and field 

investigation data through comparison with the Google image. To carry out this comparative analysis effectively, the optical 5 

image, SAR image, and DSM image are corrected using the manual control point selection function implemented into ENVI 

software. Subsequently, the distribution of buildings can be determined in the three types of images.  

4.2 Feature selection 

Three different types of image features are selected for our experiments, including the spectral features of optical images, the 

texture features of SAR images and the geometric features of DSM images. The spectral feature is the most intuitive 10 

representation of different objects in optical images. The features mainly include maximum, minimum, mean, standard 

deviation, and brightness. For the detailed calculation process, refer to the relevant reference (Zhao, 2010). 

The repeated occurrence of pixel intensity in the spatial position forms the texture of the image. A difference in the spatial 

arrangement of pixel intensity is expected as a consequence of damage. In particular, features based on second-order 

statistics are considered in the SAR images obtained from the grey-level co-occurrence matrix (GLCM) method using ENVI 15 

software, following the approach proposed by Haralick et al. (1973). Taking four angular directions (0°, 45°, 90°, 135°), a 

step size d=1 and a window size w=11, four different variables were calculated, and the average was obtained by summing 

them. From the results of the GLCM, eight texture features, i.e., mean (ME), variance (VA), homogeneity (HOM), contrast 

(CON), dissimilarity (DIS), entropy (ENT), angular second moment (ASM), and correlation (COR), were chosen for 

analysis. The features are as follows (Soh and Tsatsoulis, 1999; Wood et al., 2012).  20 

In addition to elevation information, the main feature of the DSM image is the geometric feature. The geometric feature is 

the spatial distribution of the pixels. The covariance matrix is used to perform statistical analysis (Chen, 2007): 

S=[
Var(X) Cov(XY)
Cov(XY) Var(Y)

]                                                                                                                                                    (2) 

In Eq. (2), X represents the x coordinates of all pixels in the image object, Y represents the y coordinates of all pixels in the 

image object, Var(X) and Var(Y) represent the variance in X and Y, respectively, and Cov(XY) represents the covariance. 25 

The aspect ratio, shape index, density, compactness, and asymmetry are adopted in our experiment. Notably, the aspect ratio 

refers to the proportion of the height and width of the segmentation object. The shape index describes the smoothness of the 

image object border. The smoother the boundary is, the lower the shape index. Density describes the distribution in the pixel 

space of an image object. The "densest" shape is a square; the more objects that resemble filaments, the less dense they are. 

Compactness describes the compactness of image objects; it is similar to the boundary index but based on area. The tighter 30 

the image object is, the smaller the border. Asymmetry describes the relative length of an image object compared with a 
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normal polygon. An ellipse is similar to a given image object, and it can be expressed by the ratio of the length of its small 

axis to that of its large axis. The eigenvalues increase with this asymmetry. 

4.3 Attribute reduction 

There are many characteristics of seismic damage in multi-source remote sensing images; thus, we should consider as many 

features as possible. However, the correlation between some factor characteristics and performances and the causal 5 

relationship of earthquakes is not large, and including these factors results in redundant data and makes the task onerous and 

meaningless. Therefore, selecting as few factors as possible is necessary while also determining the factors that best 

characterize the buildings. 

Rough set theory is used to reduce the features in our experiment. Rough set theory was put forward in the early 1980s by 

Pawlak, who is an expert at the University of Warsaw, Poland, and is mainly used to study the learning, expression, and 10 

induction of incomplete data and imprecise knowledge (Pawlak, 1991; Ramanna et al., 2002; Chen and Qian, 2006; Zheng 

and Jin, 2010). A rough set is used to delete irrelevant or unimportant redundant data, and then knowledge discovery and 

mining is carried out on the premise of maintaining the ability to generalize the knowledge base. The most important feature 

of a rough set is that it can provide core knowledge of the data and reduce the complexity of the spatial cognition of a 

complex system. 15 

4.4 Model element determination 

An appropriate model element is the basis of the spatial assessment of earthquake damage to buildings and has an important 

influence on the evaluation results. In our experiment, multi-resolution segmentation is used to obtain the model element. 

Multiscale segmentation is a bottom-up approach and is achieved by merging adjacent pixels or small segmented objects 

under the premise that the average heterogeneity between the objects is the smallest and the homogeneity of the inner pixels 20 

is the largest (Definiens Image Company, 2004). Multiscale segmentation has been widely used in different types of image 

segmentation. 

To obtain image objects of the same size, we use the multi-data joint segmentation strategy. The image segmentation scale is 

set to 60. Due to interference factors, there are some differences between the object range and the range of the building, and 

a method of comparing the building area with the image object is proposed in this paper. When 2/3 of the area of an image 25 

object is located in the position of a building, the object is considered a building; when the area is less than 2/3, the image 

object is excluded. 

4.5 LRM 

Logistic regression analysis is a statistical analysis method for the two categorical dependent variables (the dependent 

variable y takes only two values: 1 and 0 or yes and no) (Hosmer and Lemeshow, 1989; Wang and Guo, 2001). We assume 30 

that P represents the probability of destroyed buildings and Q represents the probability of intact buildings. x1, x2......., xn 
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represents the N features of multi-source remote sensing images. The probability formula of destroyed buildings and intact 

buildings using logistic regression is as follows: 

1 1 2 2

1 1 2 2

.......

.......
1

n n

n n

a

a

b x b x b x
P

b x b x b x
e
e

+ + + +

+ + + +
=

+
                                                                                                                        (3) 

1 1 2 2
.......

1

1 n n
a

Q
b x b x b xe
+ + + +

=
+

                                                                                                                 (4) 

The relationship between the probability of occurrence of an event and the influencing factors is obtained via comparison 5 

between Eq. (3) and Eq. (4). Eq. (3) is divided by Eq. (4) and then taken as the natural logarithm: 

1 1 2 2
ln ( ) .......

n n

P
f x a

Q
b x b x b x

 
= = + + + + 

                                                                                                     (5) 

In Eq. (5), A is a constant, and 1 2
, ,......

nb b b  are the logistic regression coefficients. Therefore, the logistic regression analysis 

method can be used to establish the quantitative evaluation model. The probability P is used as the earthquake damage 

assessment index (EDAI) to evaluate the ability of a feature factor 1 2
, ,......

nx x x  to represent whether buildings are destroyed. 10 

Then, the spatial distribution of seismic damage in buildings is evaluated. The Statistical Package of Social Sciences (SPSS) 

is used to determine the relationship between calculated factors and buildings with different damage degrees. 

5. Results and discussion 

5.1 Features statistics and analysis 

To construct the regression analysis model, 18 feature factors are selected. The feature factors are calculated using 15 

eCognition software. Prior to the calculation, the spatial resolution of the three types of remote sensing images in the study 

area is resampled to 1 m. The image of the study area contains 548 columns and 889 rows, and the number of pixels is 

487172. 

The spectral features are mainly derived from the optical imagery, including maximum, minimum, mean, brightness, and 

standard deviation. Each eigenvalue is divided into 6 categories to calculate the percentage of destroyed building pixels in 20 

each category. Figure 6 illustrates the distribution of destroyed building pixels in each of the features. In the maximum value 

distribution, more than 15% of the destroyed buildings are mainly distributed between 91 and 150. In the minimum value 

distribution, the destroyed buildings are evenly distributed. In the mean value distribution, 12% of the buildings are mainly 

distributed between 110 and 140; in the brightness value distribution, the destroyed buildings are mainly distributed in the 

range from 80–160. The value of the brightness is low, which is consistent with the presence of destroyed buildings in the 25 

optical imagery. 
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The texture features are mainly derived from the SAR imagery. Considering factors such as the image resolution and the 

distribution of seismic damage to buildings, the features of this experiment include mean, covariance, homogeneity, 

dissimilarity, entropy, ASM, correlation, and contrast. 

Figure 7 illustrates the density distribution of destroyed buildings with different textures. When the mean value of the two-

order moment is 0.1–0.2, the density of the destroyed building is larges, reaching 15%. The density distribution of seismic 5 

damage to buildings can reach 12% when the covariance is located in the range from 6000–8000. In the homogeneous image, 

the destroyed buildings are mainly distributed in the range from 35–50. In the dissimilarity image, all buildings are 

distributed in the range from 0.01–0.15, and the highest proportion is located in the range from 0.05–0.1; the proportion is 

approximately 11%. In the ASM image, destroyed buildings are mainly distributed in the range from 100–140. In the 

contrast image, destroyed buildings are mainly distributed in the range from 20–30. In the correlation image, the density 10 

distribution of destroyed buildings increases with increasing correlation and reaches the highest value at 0.3–0.36. 

Subsequently, the density decreases gradually. 

The geometric features are mainly derived from the DSM imagery. The features include elevation, length-width ratio, shape 

index, density, asymmetry, and rectangularity. Figure 8 illustrates the density distribution of buildings with different 

geometric features. Figure 8(a) shows that the density distribution of seismic damage to buildings decreases with an 15 

increasing length-width ratio. When the aspect ratio is 1.1–1.5, which occurs in approximately 8% of the buildings, the 

density is largest. Figure 8(b) illustrates that the destroyed building density is largest when the shape index is in the range of 

5.0–6, which is approximately 10.8%. Figure 8(c) illustrates that the density of seismic damage to buildings decreases with 

increasing density. In the range from 0.39–1.2, the density increases to 10%. Figure 8(d) illustrates that when the asymmetry 

is small (0–0.015), the density distribution of the buildings is the largest. Figure 8(e) illustrates that the density distribution 20 

of seismic damage to buildings is the largest when the rectangularity value is in the range from 0.1–0.4. Figure 8(f) 

illustrates that the buildings are mainly distributed at low elevations. At a height range from 590–600, the density of 

destroyed buildings reaches 12.3%, which is consistent with the change in the height after the building is destroyed. 

After segmentation, the study area is divided into 1032 object units. The corresponding attribute of the 18 feature factors and 

the decision attribute corresponding to the building damage (1 represents a destroyed building, and 0 represents an intact 25 

building) form a two-dimensional table. In the table, each row describes an object and corresponds to the features of the 

corresponding object. The two-dimensional table contains 1032 rows and 19 columns. The initial decision table is formed by 

the random sampling of 10% of the table. The reduced set of spatial variations in earthquake-damaged buildings is calculated 

using a random sample. Figure 9 illustrates the number of different factors in the reduction. The more times the factor 

appears, the greater the correlation between the factor attribute and the observed earthquake damage. We remove the 11 30 

attributes that appear least often in the reduction set and obtain a feature set consisting of 7 feature factors in our experiment. 

Attribute reduction is calculated using RSES software. 
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5.2 Identification model construction 

Before the main statistical analyses, the data must be normalized to eliminate the effects of different data dimensions. In this 

study, we use a standardized processing approach to convert the value of the characteristic factor to a range from −1 to 1. 

The sample size is also an important factor in model construction. Generally, using similar proportions of 1 (“destroyed 

building”) and 0 (“intact building”) cells is recommended. Hence, we took 56 random samples consisting of 26 destroyed 5 

building cells and 30 intact building cells (Figure 10). 

To avoid the multicollinearity problem between explanatory variables, the selected stepwise method is based on the Wald 

statistic. Entry testing is performed based on the significance of the score statistics. The logistic regression mathematical 

equations are formulated using all factors. The following equation is obtained: 

( ) 1.093 0.419 0.027 0.076 0.183 0.960 0.868 5.291f x BR CON ASM ELE ASY HOM SPI=  +  +  +  +  +  +  −  10 

where ( )f x  represents the degree of earthquake damage for each object. The statistical significance of each coefficient in 

the model is listed in Table 1. 

5.3 Results and verification 

To verify the validity of the method proposed in this paper, we analyse different data combinations in accordance with the 

technological process. The compound modes are as follows: (1) optical image, (2) SAR image, (3) DSM image, (4) optical 15 

image + SAR image, (5) optical image + DSM image, and (6) SAR image + DSM image. 

The overall statistics of these models are shown in Table 2. The Hosmer-Lemeshow chi-square index, which is an important 

index for evaluating the goodness of fit of the model, is obtained by calculating the difference between the observed and 

predicted values of the dependent variable (Menard, 1995; Clark and Hosking, 1986). The smaller the value is, the better the 

model fit. The greater the value of the −2 log-likelihood is, the better the correlation between the selected feature factors and 20 

the assessment events. The greater the value is, the higher the Cox-Snell R-square value, and the better the performance of 

the model. 

Receiver operating characteristic (ROC) analysis is used to summarize the performance of the LRM. ROC, which is a 

comprehensive index reflecting sensitivity and specificity, is a method used to reveal the relationship between sensitivity and 

the proportion of false negatives (Zweig and Campbell, 1993). The area under the ROC curve indicates the accuracy of the 25 

model. Theoretically, the measure has a value from 0.5 to 1. When the value is 1, the evaluation precision is highest, while a 

value of 0.5 indicates that the evaluation is worthless (Lulseged and Hiromit, 2005). The area under the ROC curve that 

corresponds to our study (0.827) is shown in Figure 11. The result of the analysis that considers the multi-source remote 

sensing image is better than the results of other combinations. In addition, the evaluation of the combined SAR image and 

optical image is the best. The single DSM image evaluation results in the lowest. 30 

 (1) Classification accuracy comparison 
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Twenty-nine intact buildings and six destroyed buildings are chosen to test the accuracy of the model. The evaluation results 

of different features are compared with the results of the field survey, and then, the model accuracy is analysed. Table 3 

presents the classification results of the seismic damage assessment for different data sources. Half of the collapsed buildings 

are mistaken for intact buildings in when using the DSM image. For the combinations of the optical image with the SAR 

image and the optical image with the DSM image, the false identification of destroyed buildings is reduced, and the overall 5 

accuracy is 85.71% and 88.57%, respectively. For the combination of the SAR image with the optical image, the destroyed 

buildings are easily identified; the overall classification accuracy is 91.43%, which illustrates that the combination of texture 

features and geometric features can better identify damaged buildings. Combining the three different sources of data, only 

one destroyed building is misclassified as an intact building. In addition, one intact building is misclassified as a destroyed 

building (Figure 12); thus, the overall classification accuracy is 94.2%, which illustrates that the combination of multi-source 10 

data can effectively improve the classification accuracy of seismic damage information. 

 (2) Quantitative analysis of evaluation precision 

To analyse the potential effect of the proposed model, the calculated earthquake damage building maps are compared with 

the field investigation results. Accuracy curves are used to show the performance (Aleotti and Chowdhury, 1999; Chung and 

Fabbri, 1999). To obtain the accuracy curves, the earthquake damage assessment is sorted in descending order. The number 15 

of building cells within the period (1–100% with accumulated 1% intervals) for each class is counted. The relationship 

between the EDAI rank and the cumulative percentage of destroyed buildings is shown in Figure 13. The EDAI rank (x-axis) 

ranges from a high to low level of seismic damage (i.e., from destroyed to intact). Therefore, a low EDAI rank indicates 

higher earthquake damage to a building. For example, a 20% EDAI rank in the study area accounts for 65% cumulative 

damage. In addition, a 30% EDAI rank in the study area accounts for 79% cumulative building damage. 20 

5.4 Discussion 

In the experiment, 18 characteristics of spectral features, texture features, and shape features are selected for analysis, and 

their ability to characterize earthquake-related building is calculated based on rough set theory. Although three kinds of 

features can be extracted by optical imagery or SAR imagery, the amount of information contained by different datasets 

varies. Compared with optical imagery, SAR imagery has reduced spectral performance, although the texture information is 25 

relatively abundant, and the fusion of multi-source and multi-feature data can compensate for the deficiencies in a single data 

source. 

The logistic method proposed in our experiment is mainly used to construct a prediction model. The method is based on the 

influence of multiple factors on a certain event, and the probability of model prediction is established. In this paper, the 

model is applied for the extraction of intact buildings and destroyed buildings after an earthquake. The model establishes a 30 

quantitative relationship between the EDAI and different features. During model construction, the division of the model 

calculation unit is the basis of evaluation. The usual method of unit computation is the grid element partition of the raster 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-20
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 6 May 2019
c© Author(s) 2019. CC BY 4.0 License.



13 

 

data structure. In this study, the objects segmented by multiscale segmentation are used as evaluation units, which can better 

describe the characteristics of buildings and express them better by means of evaluation factors. 

The validity of the proposed method is verified by using the earthquake site of old Beichuan County as a research area, and 

the recognition accuracy of the three kinds of data features reaches 94.2%. In this experiment, data from the Beichuan 

earthquake site are used; additionally, the site was renovated, and the buildings were cleaned up after the earthquake. The 5 

buildings are divided into standing buildings and destroyed buildings, which are limited by the distribution of the earthquake 

site buildings in old Beichuan County. The method proposed in this paper is based on the sample, and the EDAI can classify 

seismic damage to buildings in detail if a more detailed classification system of seismic damage can be obtained. 

6. Conclusions 

In this paper, a new method for the quantitative evaluation of earthquake damage to buildings based on multi-source remote 10 

sensing data is proposed. This method can be used to evaluate earthquake-damaged buildings by constructing a regression 

model. The effectiveness of the proposed approach is confirmed using multi-source remote sensing images of old Beichuan 

County. With this method, intact buildings and destroyed buildings can be effectively distinguished. The extraction accuracy 

is 94.2%, and the area under the ROC curve of the model is 0.827. The method is tested using optical images, SAR images, 

DSM images, and combined images to demonstrate the effectiveness of the proposed method. The results also show that the 15 

fusion of different source data can improve the classification accuracy of earthquake-damaged buildings. Model accuracy 

verification shows that the model has high reliability and accuracy and can be used for seismic damage assessment and 

analysis of buildings.  
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 10 

 

Figure 1. Study area. (a) Geographical location of the study area and the optical image acquired in 2013 using a UAV; (b) the 

building distribution acquired by the high-resolution optical image interpretation and field investigation. 
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Figure 2. Multi-source remote sensing image of the study area. (a) Airborne multispectral remote sensing image acquired in 2013; 

(b) TerraSAR-X ascending image (the azimuth direction is from bottom to top, and the range direction is from left to right); and (c) 

DSM image generated with LiDAR point cloud data interpolation.  

 5 

 

Figure 3. Intact building after the earthquake: (a) field investigation photograph; (b) optical image acquired in 2013; (c) 

TerraSAR-X ascending image (the azimuth direction is from bottom to top, and the range direction is from left to right); and (d) 

LiDAR image acquired in 2013. 

 10 
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Figure 4. Destroyed building after the earthquake: (a) field investigation photograph; (b) optical image acquired in 2013; (c) 

TerraSAR-X ascending image (the azimuth direction is from bottom to top, and the range direction is from left to right); and (d) 

LiDAR image acquired in 2013. 

 

 5 

Figure 5. Technical flow of the proposed methodology. 
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Figure 6. Density distribution of destroyed buildings with different spectral features. (a) MAX; (b) MIN; (c) mean; and (d) 

brightness. 
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Figure 7. Density distribution of destroyed buildings with different texture features: (a) ME; (b) VA; (c) HOM; (d) DI; (e) ENT; (f) 

ASM; (g) CON; and (h) COR. 
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Figure 8. Density distribution of destroyed buildings with different geometry features: (a) LWR; (b) SPI; (c) DEN; (d) ASY; (e) 

REC; and (f) ELE. 

 

 5 

Figure 9. Attribute reduction set. The number represents the frequency of the feature, and the red line represents the feature set of 

the segment selection. 
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Figure 10. Distribution of samples in the logistic regression. 
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Figure 11. Receiver operating characteristic (ROC) curve. 

 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-20
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 6 May 2019
c© Author(s) 2019. CC BY 4.0 License.



24 

 

 

Figure 12. Experimental results and field investigation results of earthquake-damaged buildings: (a) earthquake-damaged 

building map based on the logistic regression; and (b) earthquake-damaged building map based on high-resolution optical image 

interpretation and field investigation. 

 5 
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Figure 13. Cumulative frequency diagram showing the cumulative building index rank relative to the cumulative percentage of 

destroyed buildings. 

 

Table 1. Logistic regression results and coefficient values used for this study 5 
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 20 

Variable B S.E. Wald Exp(B) Sig. 

BR 1.093 0.135 64.49 2.983 0.000 

CON 0.419 0.107 14.32 1.520 0.000 

ASM 0.027 0.120 0.050 1.027 0.000 

ELE 0.076 0.031 5.98 1.078 0.000 

ASY 0.183 0.248 0.494 1.200 0.015 

HOM 0.960 0.231 17.02 2.611 0.000 

SPI 0.868 0.104 68.82 2.382 0.030 
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Table 2. Overall statistics of the LRM 

           Mode -2 Log-likelihood Cox-Snell R-Squared Hosmer-Lemeshow Chi-square 

1 6491.077 0.509 15.001 

2 6328.167 0.496 18.926 

3 6309.297 0.484 15.324 

4 6970.789 0.571 13.151 

5 6869.043 0.535 14.746 

6 6682.480 0.526 14.003 

7 7070.968 0.592 13.085 

 

 

Table 3. Assessment results with different combination modes (Pa=producer's accuracy; Ua=user's accuracy) 5 

Method 
Destroyed Building Standing Building 

Overall 
Pa Ua Pa Ua 

DSM 42.86 50 89.29 86.21 80 

SAR 46.15 100 100 75.86 80 

Optical 57.14 66.67 92.86 89.66 85.71 

SAR+DSM 57.14 66.67 92.86 89.66 85.71 

Optical+DSM 62.5 83.33 96.30 89.66 88.57 

Optical+SAR 66.67 100 100 89.66 91.43 

Optical+SAR+DSM 83.33 83.33 96.55 96.55 94.2 
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