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Reviewer 1 comments Response comments Changes 

I understand that this model was motivated by TC risk over Australia. 

But this is a globally applicable model. I suggest broadening the 

introduction a little to also discuss global TC risk. Then focus down 

on Australia to motivate the case study demonstration of capability. 

  

It’s not clear to me the value of running the wind field model vs. 

simply running more synthetic years to build up enough tracks in 

each analysis grid cell. For example, what is the difference in the 

500-year wind speed based on 100 tracks in each grid cell (no 

windfield module) and 100 wind field values in each grid cell 

(associated with tracks within and just outside each grid box)? 

Firstly, we use the pressure deficit as the modelled 

intensity parameter in the track generation module. The 

wind fields are calculated in a subsequent step.  

Secondly, the zone of strongest winds is displaced to the 

left of the track (in the southern hemisphere). Using vmax 

at the track location will give a different result to simulating 

the full wind field for a given grid cell where the maximum 

winds will be simulated several grid cells (using a 0.02-

degree grid cell) away from the track. Given the desired 

resolution of the resulting ARI wind speed data, it is more 

efficient to calculate wind fields.  

This approach also offers the opportunity to deliver wind 

field data to end users from individual events. 

Added text at Section 5:  

Parametric wind fields are calculated for each 

event in the synthetic catalogue to enable a high 

spatial resolution understanding of the ARI wind 

speeds. The additional benefit of this calculation 

is that users can select individual synthetic 

events from the catalogue and obtain a wind field 

for use in scenario simulations.  
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I think it’s important to state more clearly the limitations of the 

approach in assessing TC risk. The track generator, for example, is 

not adding new information. It’s my understanding that since it 

samples from the input track parameter distributions it cannot 

generate tracks far outside the input track distributions (unlike a free 

running dynamical model). Am I correct? This is important when it 

comes to interpreting the ARI uncertainty bounds. These uncertainty 

estimates are uncertainty in the model fit to the observations. These 

are not uncertainty bounds on the actual TC risk. The actual TC risk 

would need to account for uncertainty due to the short historical 

record. Perhaps one other limitation is that the TCRM as currently 

developed does not account for trends in TC frequency or TC 

intensity. It therefore assumes stationary statistics. It could certainly 

be modified in future releases to account for temporal effects. 

I agree on the leading point here - we are restricted by the 

input track distributions. The uncertainty in ARI wind 

speeds beyond, say 100 years,  using point observations 

is becomes very large, as the observations are often less 

than 50 years (in the Australian region at least). Using this 

track model produces a larger synthetic record that is in 

line with the observed record, but also extends it. For 

example, the model allows intensity to exceed the 

observed record of intensity. 

We note that the short term record (35 years) is a 

restriction on the actual TC hazard. It does assume 

stationary statistics, and further validation against 

statistics such as palaeotempestology to place the ARI 

wind speeds in a broader context should be considered. 

Our current intent in this paper is to describe the model 

and initial validation exercises. 

Added the following to section 2: 

Further, the absolute accuracy of the input data 

is viewed as a source of uncertainty in the hazard 

values presented here. For example, Courtney 

and Burton (2019) reported on progress to 

improve the best track archive in Australia, noting 

the reassessment of intensity due to improved 

reanalysis methods. Such changes in the 

intensity values will flow through the hazard 

model to produce changes in the likelihood of 

extreme wind speeds. A thorough treatment of 

the accuracies arising from changes in the best 

track is warranted (Harper et al., 2008), and the 

hazard values herein should be considered as 

only one view of the true wind hazard arising from 

TC events. Yet another aspect that remains to be 

explored is the effect of centennial and longer 

variability in TC activity (Haig et al., 2014; Nott et 

al., 2007).  

Please explain why the time rate-of-change of central pressure is 

used rather than the absolute value of central pressure? 

Pressure tendency is preferred to absolute pressure due 

to the lower lag-1 autocorrelation in the tendency values. 

Using absolute values leads to rapid and almost one-way 

variation (i.e. constant increase or decrease) in the 

intensity. There remains a strong autocorrelation beyond 

lag-1 for absolute pressure values, but not for pressure 

tendency values.  

Added plots of the autocorrelation for pressure 

and pressure rate of change to section 4.2 (pg 5.) 

as well as the following text: p  ̇ is preferred to 

absolute pressure deficit due to the lower lag-1 

autocorrelation in  the tendency values, making it 

more akin to a true Markov process than 

simulating absolute pressure deficit. Figure 6 

shows the autocorrelation for both p  ̇and p for a 

selected grid cell in the Coral Sea. In this case, 

the lag-1 autocorrelation of p  ̇is 0.3, compared to 

that of p which is 0.79.  Using absolute values 

leads to rapid and almost one-way variation (i.e. 

constant increase or decrease) in the intensity. 

There remains a strong autocorrelation beyond 
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lag-1 for absolute pressure values, but not for 

pressure tendency values (Fig. 6).  

There are a number of regression equations (Equations 8, 9, 12) that 

appear to be tuned for Australia. Are users to rederive these 

regression equations for their domain of interest, or are they globally 

applicable? 

Regression equations are based on Australian data, in line 

with the choice of case study. As the model is free and 

open source, it is possible for users to modify these 

regressions for their chosen domain. Supporting software 

demonstrates how the regression equations were derived, 

and can be used to determine those regressions for other 

regions 

Added the following text to section 4:  

Regression models are used to control specific 

sub-components of the track model – Rmax, poci 

and landfall decay rate. These regression models 

are derived from observed data in the Australian 

region, but could equally be adapted to other 

regions. The code repository provides access to 

the analysis tools used to determine these 

regression models, and can be used to re-

evaluate the regressions for other basins. The 

model is intended to be applied to regional 

basins, rather than a global domain, but the ability 

to adapt these regression models allows users to 

run in basins other than Australia. 

See also paragraph 1, page 2: “Where there are 

region-specific formulations in a component of 

the model, these can be readily adapted for 

different regions.” 

I don’t understand the need for a decay rate model (Equation 10). 

Isn’t the decay rate already included in the input best track (pmin) 

data? 

Using the autoregressive model over land led to an 

abundance of storms that reintensified, and generated 

many more unrealistically long-lived tracks. Implementing 

the decay rate model forces the TCs to decay in line with 

observed events (but does allow for very occasional over-

land intensification) 

Added the following text to the beginning of 

section 4.5: 

Initial testing using only the autoregressive model 

for intensity after landfall resulted in 

unrealistically long-lived tracks after landfall.  
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I think it would be useful to mention the option to additionally use 

local wind multiplication factors to better account for local terrain 

effects. 

Noted  Added the following to section 5.2 (p. 7): 

 For more localised wind speeds that can be used 

for detailed wind impact calculations (e.g. Krause 

and Arthur, 2018), local site conditions can be 

incorporated via an offline calculation that can 

incorporate local accelerations over topography 

and varying surface roughness conditions (Yang 

et al., 2014). 

I read that it takes a few minutes to run a single scenario. Can some 

detail be added on the computational cost of running 1000 years? 

The windfield for a single scenario takes about 10 minutes 

to run, depending on the overall extent of the track. Using 

multiprocessor systems, a hazard simulation, including 

track generation and wind fields across the Australian 

region (100-170E, 5-35S) for a 10,000 year catalogue 

requires around 3000 hours of CPU time.   

Added the following to section 3: 

Simulation times are dependent on the extent of 

the domain, and the number of simulated years. 

For the domain used in this paper, the data 

processing and statistical analysis stages take 

around 15 minutes to complete on a modern 

desktop computer. The generation of tracks for a 

10,000 year simulation takes around 5 to 6 CPU 

hours (2.6GHz clock speed), while the 

corresponding wind fields (a total of around 

160,000 separate events for this simulation) take 

around 3,000 CPU hours. The determination of 

ARI wind speeds requires a similar amount of 

CPU time, but the majority is consumed in 

reading the required data from the wind field files. 

I may have missed it, but I suggest including a statement that the 

model can also be used for single event scenario assessments? 

The model can and is regularly used for single scenario 

simulation. At Geoscience Australia, we use the model to 

provide guidance on wind field zones for Emergency 

Management Authorities based on track information 

provided by the Bureau of Meteorology. We can provide 

the wind fields to EMs on average within 30 minutes of 

publication of track forecasts from the BoM. 

See paragraph 2, page 2 
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I suggest adding that the model can be run with any input track data, 

not just historical best track data. This broadens the applications of 

the model to be used in conjunction with, for example, TC track data 

from global climate models to study climate variability and change 

effects on wind exceedances. 

Noted - we are presently working on using other input 

sources to demonstrate this capability 

Added the following to section 2:  

It is possible to use data sources other than 

observational best track archives as input to 

TCRM. For example, Siqueira et al. (2014) used 

tropical cyclone like vortices (TCLVs) extracted 

from global circulation models as a source of 

track data for evaluating TC wind hazard in the 

South West Pacific. After correcting the intensity 

distribution of the TCLV data, the resulting hazard 

assessment provided quantitative estimates of 

the projected change in TC wind hazard.  

Section 4.5: It is stated that there are differences in the inland decay 

rates between the East and West coasts. But then a single decay 

rate model is used. Please justify this decision. 

The driver of different decay rates in the east and west is 

topography. To minimise the data demands (especially 

with a view to global application), we did not include 

topography in the regression such that we do not have to 

source suitable topographic data for all potential basins. 

This is an area for future development. 

Added the following to section 4.5: 

Initial testing using only the autoregressive model 

for intensity after landfall resulted in 

unrealistically long-lived tracks after landfall. 

Further, to explain the decision not to include 

topography in the model: 

 In the interest of minimising the data demands 

(especially with a view to application in other 

basins), topography was not included in the 

regression such that we do not have to source 

suitable topographic data for all potential basins. 

However this is an area for future development. 

Section 7.1: The somewhat poor performance of the model over 

Northwest Australia is explained by the lower genesis probabilities. 

How is it possible for the model to miss these local genesis patterns 

if it is sampling from the genesis probability surface? 

Are track events being removed because of age or 

intensity issues? 

Added Figure 6, plus the following text in section 

4.1: 

The resulting genesis distribution of simulated 

events does not exactly match the historical 

distribution for a number of reasons (Fig. 6). 

Firstly, the stochastic sampling of the distribution 

for each simulated year will produce a different 

spatial pattern. In the case of simulating a large 

number of years, this would intuitively converge 

to the observed distribution. However, the 
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subsequent track behaviour determines if the 

track is retained – for example the simulated 

genesis density may be reduced in regions where 

tracks are excluded due to rapid weakening or 

exiting the domain.  

Conclusion: The introduction mentions the high cost of riverine and 

coastal surge flooding. Can a brief discussion be added on whether 

a TCRM-like approach could be used for TC rainfall and/or flooding? 

Noted.  Added the following to section 8 (Conclusion): 

The model provides information that can readily 

be used to guide other hazard assessments, 

such as wave climate modelling and coastal 

storm surge, and there is potential to include 

other perils such as rainfall through appropriate 

parametric models (Lonfat et al., 2007; Mudd et 

al., 2015).  

Figure 5: Please add the units of the genesis probability. Figure and caption updated Figure and caption updated 

Figure 13: What do the colors of the lines represent? Caption updated  Caption updated  

 

Reviewer 2 comments Response comments Changes 

P2L30: “L is the bandwidth matrix.” This sounds as if L varies 
through the domain. Is that right? If so, more detail is warranted, 
perhaps a sentence or two stating the range and typical values of L. 

The bandwidth matrix is a 2x1 array that defines the 
bandwidth for x- and y-variation of the kernel function 

Changed text at P4, paragraph 2 to:  
"L is a 2-by-2 bandwidth matrix determined 
automatically from the covariance of observed 
genesis points using a cross-validated 
maximum likelihood approach and is held 
constant over the entire simulation domain" 
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Section 4.1. Genesis: Is there seasonality in the genesis? Or in the 
other model components? 

Seasonality is considered in the genesis of events and 
the environmental pressure, but is not considered in 
other model components. To do so would detrimentally 
affect the sample sizes for the gridded statistical values 
applied in the track generation component. 

Sentence added on P4, paragraph 3: 
"The annual cycle of genesis is included in 
determining the start time of TC events" 

P6L39-P7L1: The assumption that Vtang » Vtran is often not good 
even for purely tropical systems, if they’re not high intensity. 

We have also noted this, and remain cautious of the 
resulting implications for ARI wind speeds at low 
intensity.  

Added the following to section 5.2: 
The model assumes Vtang >> Vtran, which 
may be violated for low intensity storms (e.g. 
incipient TCs). The boundary layer model is 
modified to linearly reduce the effects of 
translation speed when Vtranslation > 0.2 
Vtangential. The effects are also reduced to 
zero at distances greater than 2 Rmax, using 
an inverse square decay function.   

P7L5: Additional recent relevant work on ET transition are 
documented in two papers by Bieli et al. (2019). The second paper, 
especially, addresses statistical modeling of ET transition. The 
references are Bieli et al, 2019, A global climatology of extratropical 
transition, Part I: characteristics across basins, J. Clim, 32, 3557-
3582, and Bieli et al, 2019, A global climatology of extratropical 
transition, Part II: statistical performance of the cyclone phase 
space, J Clim, 32, 3583-35997) 

Acknowledged. Most relevant is the pathways to ET, 
and the likelihood of each in different basins and the 
implications for parametric wind fields. 

Added reference to Bieli et al, 2019 in section 
5.2 (page 8, paragraph 3)  

P8L28-31: I don’t follow this. When I look at Fig 5 I do indeed see a 
local maximum in the 120-130E, 10S region of the genesis 
probability density function. What am I missing? 

The genesis probability for simulations is not shown, 
only the observed genesis probability.  

Added Figure 6, plus the following text in 
section 4.1: 
The resulting genesis distribution of simulated 
events does not exactly match the historical 
distribution for a number of reasons (Fig. 6). 
Firstly, the stochastic sampling of the 
distribution for each simulated year will produce 
a different spatial pattern. In the case of 
simulating a large number of years, this would 
intuitively converge to the observed distribution. 
However, the subsequent track behaviour 
determines if the track is retained – for example 
the simulated genesis density may be reduced 
in regions where tracks are excluded due to 
rapid weakening or exiting the domain.  
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I’m surprised that the CP model seems to work well. One of the 
reasons that a track model like this works is that a TC’s location 
strongly influences its propagation, due to the role of large-scale 
climatological steering winds. So, it’s reasonable to estimate where 
a TC at location X goes next by analyzing where historical TCs near 
X have gone next, without any additional information. But this is 
less true for CP. Fig 11 shows essentially two zones, north a south 
of roughly 15S. North of that, the average CP tendency is negative, 
and south it’s positive. Many TCs in the region spend the bulk of 
their time in the northern negative-tendency zone. For these TCs, 
what keeps their CPs from declining without limit? I realize there’s a 
large stochastic component, but, without some cap, how is the TCs 
intensity bounded? For example, in their stochastic TC model, 
James and Mason (2005) employed an elastic cap at low CP to 
limit decline below the CP set by the local Maximum Potential 
Intensity. Perhaps here, given the proximity of landmasses in the 
region, there’s rarely an opportunity for a TC’s CP to decrease 
below plausible meteorological limits? 

To minimise the volume of ancillary data that is needed 
to support the model initial development we aimed for a 
purely statistical approach. The lower limit for the 
pressure deficit is set to μ + 5*σ for the grid cell. 
However, we note that PI is potentially a more 
instructive limit, and we are presently working on 
enhancements that will consider this.  

Added the following text to section 4.2: 
The maximum achievable central pressure of a 

TC is set to〖 μ〗_p î-5σ_p î, and is a purely 
statistical bound. However, we note that 
potential intensity (Holland, 1997) is potentially 
a more instructive limit, and we are presently 
working on enhancements that will consider 
this.  
 p  ̇is preferred to absolute pressure deficit due 
to the lower lag-1 autocorrelation in  the 
tendency values, making it more akin to a true 
Markov process than simulating absolute 
pressure deficit. Figure 7 shows the 
autocorrelation for both p  ̇and p for a selected 
grid cell in the Coral Sea. In this case, the lag-1 
autocorrelation of p  ̇is 0.3, compared to that of 
p which is 0.79.  Using absolute values leads to 
rapid and almost one-way variation (i.e. 
constant increase or decrease) in the intensity. 
There remains a strong autocorrelation beyond 
lag-1 for absolute pressure values, but not for 
pressure tendency values (Fig. 7).  

Similarly, for the few TCs that form south of 15S, in the positive-
tendency zone, what causes their CPs to decline on average (the 
storms to intensify), as opposed to just quickly attenuating to lysis? 
Is some kind of filter applied, to only accept storms that 
stochastically intensify beyond some threshold? 

Storms that do not intensify beyond a pressure deficit 
of 5 hPa, or survive for more than 12 hours are 
discarded.  

See paragraph 3 in section 4.1 (added text in 
italics): 
To allow for this in TCRM, weak lows are 
maintained if their central pressure deficit 
increases above 5 hPa within 12 hours of the 
initial time. This allows for initial formation over 
land (or in areas of positive pressure tendency), 
as long as the incipient TC intensifies 
sufficiently (through the stochastic process 
described in the next section) – usually 
associated with a move over open water. 
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Discussion about these points is warranted. In addition, it would be 
helpful to show some examples of over-ocean CP time series from 
stochastic simulations. It would also be helpful to have additional 
panels in Fig 19 that show landfall probabilities for TCs with CP 
below specified thresholds. (I assume the current version of Fig 19 
applies to all TCs, regardless of CP.) Finally, I’d like to see the 
magnitude of the CP sigma, perhaps in a second panel of Fig 11, to 
compare to the mean tendencies. 

 
Added Figure 8, plus following text to section 
4.2: 
Figure 8 shows the time history of central 
pressure of a small sample of tracks that are 
generated from a single genesis point (155°E, 
20°S) and the same initial central pressure (995 
hPa). One storm weakens rapidly over the first 
12 hours. The remaining storms take between 
30 and 200 hours to attain maximum lifetime 
intensity. 

Figs 1 and 19: It would help to have mileposts (e.g., towns) 
indicated on the landfall profile of Fig 19 and correspondingly on the 
map of Australia, perhaps the map of Fig 1. 

Noted Figure 1 updated with key locations and labels 
for gates 
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A statistical-parametric model of tropical cyclones for hazard 
assessment  
William C. Arthur1 
1Geoscience Australia, Canberra, ACT, 2601, Australia 

Correspondence to: Craig Arthur (craig.arthur@ga.gov.au) 

Abstract. We present the formulation of an open-source, statistical-parametric model of tropical cyclones (TCs) for use 

in hazard and risk assessment applications. The model derives statistical relations for TC behaviour (genesis rate and 

location, intensity, speed and direction of translation) from best-track datasets, then uses these relations to create a 

synthetic catalogue based on stochastic sampling, representing many thousands of years of activity. A parametric wind 

field, based on radial profiles and boundary layer models, is applied to each event in the catalogue that is then used to fit 

extreme value distributions for evaluation of return period wind speeds. We demonstrate the capability of the model to 

replicate observed behaviour of TCs, including coastal landfall rates which is of significant importance for risk 

assessments. 

1 Introduction 

Tropical cyclones (TCs) present a significant physical and economic threat to Australian communities. Around 20% of 

reported costs from natural disasters arise from TCs (Handmer et al., 2016), while over 30% of insured losses are caused 

by TCs (Chen, 2004), due to extreme winds and riverine and coastal storm surge flooding. Minimising the losses in the 

built environment from these events can be approached in a range of ways. In Australia, the Wind Loading Standard 

(AS/NZS 1170.2, 2011) specifies minimum design loads for buildings under the action of wind loading. Design loads 

vary across the country, depending on the sources and magnitude of winds, in an effort to minimise average annual losses 

across the country. Areas around the northern coastline have higher design loads, due to the exposure to TCs which 

generate higher wind speeds than mid-latitude storms. Design criteria are defined with reference to a likelihood of 

exceedance over the expected lifetime of residential structures – this is a 10% likelihood in 50 years, commonly described 

as a (approximately) 1-in-500 year average recurrence interval (ARI). 

The historical record of TCs in the Australian region covers barely 100 years (Kuleshov et al., 2010). Of that record, only 

the last 30 years includes reasonably consistent information based on satellite data to assess the intensity of TCs. The 

short length of record makes it difficult to infer ARI wind speeds due to TCs at ARIs greater than 100 years  (Emanuel 

and Jagger, 2010; Jagger and Elsner, 2006; Sanabria and Cechet, 2007). It is a common approach to use stochastic 

simulations to estimate the wind speeds to establish building design standards and for assessing TC risk (Vickery et al., 

2009). Many of these models exploit the statistical characteristics of TC behaviour to generate catalogues of synthetic 

events (Emanuel et al., 2006; Hall and Jewson, 2007; James and Mason, 2005; Li and Hong, 2014; Nakajo et al., 2014; 

Powell et al., 2005; Rumpf et al., 2007). 

In this vein, Geoscience Australia has developed a statistical-parametric model of TC behaviour — called the Tropical 

Cyclone Risk Model (TCRM) — to generate synthetic event sets that represent many thousands of years of TC activity. 

TCRM is designed to run on desktop computers with modest computational resources available, but is scalable to large 

multi-processor systems. As such, the model forgoes the more computationally intensive dynamical approach used in 

some TC hazard models (Emanuel et al., 2006). Instead, we use an autoregressive process to model synthetic TC tracks, 

including intensity, and use a two-dimensional parametric model to describe the TC wind field.  

Deleted: average recurrence interval (

Deleted: )
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TCRM is unique in that it is freely available for use in hazard and risk assessment applications. There are a number of 

published stochastic models (noted above) however these models are as a general rule, not publically available (exceptions 

include the model of Powell et al., 2005) and at no cost. Further, the formulation of these models may preclude application 

in regions other than those demonstrated in publications. That is, they may be tailored to the region where they are applied. 

TCRM is formulated such that it is largely independent of the region being simulated, though some components are 

derived using regionally-specific data.   Where there are region-specific formulations in a component of the model, these 

can be readily adapted for different regions.  TCRM is also an open-source software package, enabling users to contribute 

to ongoing development of the model and influence the future directions of development priorities. 

While the primary purpose for developing the model is to evaluate TC severe wind hazard, it can be configured to rapidly 

evaluate the swath of destructive winds from a single TC at high temporal and spatial resolution. In this configuration, a 

2-dimensional wind field at 0.02° horizontal resolution, covering the entire track of a TC, is calculated in a matter of 

minutes. Using TCRM in this manner, we have evaluated the impact of individual TCs on Australian communities, with 

applications in emergency management and urban planning (Arthur et al., 2008; Krause and Arthur, 2018).  

In Section 2, we describe the data used to develop and evaluate TCRM. Section 3 provides details of the track generation 

component of the model, and Section 4 describes the wind field modelling process. Section 5 describes the use of extreme 

value distributions to calculate ARI wind speeds, and Section 6 presents some initial results using TCRM in the Australian 

region.  

2 Data 

The analysis of TC wind hazard is based on historical observations of TC events and their characteristics. Specifically, 

the essential fields required for running the model include the date and time of TC observations, the location (longitude 

and latitude), intensity (central pressure) and a flag identifying unique TC events. Additional fields, such as the radius to 

maximum wind (Rmax) and the pressure of the outermost closed isobar (poci) can be included, though are not essential.  

For the Australian region, we use the International Best Track Archive for Climate Stewardship (IBTrACS: Knapp et al., 

2010), which provides the most complete global set of historical TCs (Fig. 1). IBTrACS provides the date, time, position 

(longitude and latitude) and estimated central pressure of TCs in the southern hemisphere every 6 hours (or more 

frequently) for seasons between 1981 and 2016 (36 years). The data have been quality controlled and provide a 

homogeneous set of TC records from World Meteorological Organisation-sanctioned forecast agencies. This time period 

does exclude some historically significant storms, which is more so due to their impacts on the community rather than 

any physical characteristics. However, for testing and development, homogeneity of the input dataset is prioritised over 

the length of record.  

Further, the absolute accuracy of the input data is viewed as a source of uncertainty in the hazard values presented here. 

For example, Courtney and Burton (2019) reported on progress to improve the best track archive in Australia, noting the 

reassessment of intensity due to improved reanalysis methods. Such changes in the intensity values will flow through the 

hazard model to produce changes in the likelihood of extreme wind speeds. A thorough treatment of the accuracies arising 

from changes in the best track is warranted (Harper et al., 2008), and the hazard values herein should be considered as 

only one view of the true wind hazard arising from TC events. Yet another aspect that remains to be explored is the effect 

of centennial and longer variability in TC activity (Haig et al., 2014; Nott et al., 2007).  

There are some attributes of TCs that are not reported in the IBTrACS dataset. The radius to maximum wind (Rmax) and 

pressure of the outermost closed isobar (poci) are two useful values that can provide additional constraints on the intensity 

and size of TCs. For these variables, we use data obtained from the Joint Typhoon Warning Center (2017), spanning 

Commented [AC1]: Response to: I may have missed it, but I 
suggest including a statement that the model can also be used for 
single event scenario assessments? 

Deleted: Further, the absolute accuracy of the input data is viewed 
as a source of uncertainty in the return period hazard values presented 
here. A thorough treatment of the accuracies is warranted (Harper et 
al., 2008), and the hazard values herein should be considered as only 
one view of the true wind hazard arising from TC events.

Commented [AC2]: Add discussion on uncertainty from short 
input record (and input data more generally), and how this should 
be considered in longer time scale contexts. Address stationary 
statistics issue (see below for more on other input sources) 
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2002-2016 (15 years). This data is used to develop parametric models for these variables (described in Section 3), which 

are then used in the stochastic track generation process. 

It is possible to use data sources other than observational best track archives as input to TCRM. For example, Siqueira et 

al. (2014) used tropical cyclone like vortices (TCLVs) extracted from global circulation models as a source of track data 

for evaluating TC wind hazard in the South West Pacific. After correcting the intensity distribution of the TCLV data, the 

resulting hazard assessment provided quantitative estimates of the projected change in TC wind hazard.  

3 Model software 

The TCRM software has been developed at Geoscience Australia as a free, open-source software package. It is written in 

Python (version 2.7), utilising the Numerical Python “NumPy” (van der Walt et al., 2011), Scientific Python “Scipy” 

(Jones et al., 2001), python-netcdf4 (Unidata, 2018), Pandas (McKinney, 2010), Matplotlib (Hunter, 2007) and Seaborn 

(Waskom et al., 2018) packages for statistical and visualisation functions. Additionally, we use some C code for 

optimisation. The software is available from Geoscience Australia’s GitHub repository (Geoscience Australia, 2018), and 

users can contribute to further development of the model. For this study, we used TCRM version 2.1 (commit reference 

8cd4c22: https://github.com/GeoscienceAustralia/tcrm/releases/tag/v2.1), and made use of the National Computational 

Infrastructure’s High Performance Computing systems for executing the simulations and analysis of the results.   

Simulation times are dependent on the extent of the domain, and the number of simulated years. For the domain used in 

this paper, the data processing and statistical analysis stages take around 15 minutes to complete on a modern desktop 

computer. The generation of tracks for a 10,000 year simulation takes around 5 to 6 CPU hours (2.6GHz clock speed), 

while the corresponding wind fields (a total of around 160,000 separate events for this simulation) take around 3,000 CPU 

hours. The determination of ARI wind speeds requires a similar amount of CPU time, but the majority is consumed in 

reading the required data from the wind field files. 

4 Tropical cyclone track model 

TCs in the Australian region often display complex behaviour, with many tracks exhibiting sudden turns (e.g. TC George, 

2007) and loops (e.g. TC Hamish, 2009). Despite this behaviour, the translation speed and bearing of TCs still display 

significant autocorrelation (Fig. 2 and 3), while there is also a moderate autocorrelation in the rate of pressure change 

across the entire region (Fig. 4). 

The track model is based on the approach used by Hall and Jewson (2007) and Rumpf et al. (2007), utilizing a lag-1 

autoregressive technique to model the future behaviour of each synthetic TC. We extend this autoregressive technique 

and apply it to the intensity (minimum central pressure) of the simulated TCs as well as the track behaviour.  

Users specify a simulation domain, over which the TC wind hazard will be evaluated (Fig. 1). To ensure the simulated 

events capture the complete range of potential tracks entering this domain, an expanded track domain is defined. The 

track domain is determined by examining the extent of all historical tracks that enter the simulation domain. The frequency 

and behaviour of simulated TCs is then determined on the basis of observed events in the track domain.  

The model is trained on the observed track data, using a series of 1° by 1° grid cells across the track domain to capture 

spatial variability in the descriptive statistics (mean, standard deviation and lag-1 autocorrelation coefficient) for selected 

TC parameters (speed of forward motion, bearing, intensity and, where available, Rmax). For each grid cell, a minimum of 

100 valid observations are required before descriptive statistics are calculated. If there are insufficient valid observations, 

then the search area is expanded in steps of 1° zonally (east-west) and 0.5° meridionally (north-south) – to the maximum 
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extent of the track domain – until sufficient observations are found. Distributions for at-sea and over-land conditions are 

calculated separately to allow for different behaviours in these circumstances – specifically intensity in near-coastal areas. 

Regression models are used to control specific sub-components of the track model – Rmax, poci and landfall decay rate. 

These regression models are derived from observed data in the Australian region, but could equally be adapted to other 

regions. The code repository provides access to the analysis tools used to determine these regression models, and can be 

used to re-evaluate the regressions for other basins. The model is intended to be applied to regional basins, rather than a 

global domain, but the ability to adapt these regression models allows users to run in basins other than Australia. 

4.1 Genesis 

Genesis of TCs is modelled as a Poisson process based on historic frequency in the track domain, with locations of genesis 

randomly sampled from a 2-dimensional probability density function (PDF) of historic genesis points (Fig. 5). The PDF 

is generated using multivariate kernel density estimation (Silverman, 1986), utilizing a 2-dimensional Gaussian kernel. 

The PDF for genesis at a location () is: 

𝑓(𝜆, 𝜙) =
ଵ

ଶ ஠୒|௅|మ
∑ exp ቀ−

ௗ೔
మ

ଶ௅మ௅
ቁே

௜ୀଵ  ,         (1) 

where N is the number of genesis points, di is the distance between genesis point i and the point (λ, ϕ) (latitude and 

longitude). L is a 2-by-2 bandwidth matrix determined automatically from the covariance of observed genesis points using 

a cross-validated maximum likelihood approach and is held constant over the entire simulation domain. The annual cycle 

of genesis is included in determining the start time of TC events.  

This can result in simulation of genesis over land in the stochastic sampling step. In the Australian region, it is not unusual 

to observe the formation of precursor tropical lows over land. To allow for this in TCRM, weak lows are maintained if 

their central pressure deficit increases above 5 hPa within 12 hours of the initial time. This allows for initial formation 

over land (or in areas of positive pressure tendency), as long as the incipient TC intensifies sufficiently (through the 

stochastic process described in the next section) – usually associated with a move over open water.  

The resulting genesis distribution of simulated events does not exactly match the historical distribution for a number of 

reasons (Fig. 6). Firstly, the stochastic sampling of the distribution for each simulated year will produce a different spatial 

pattern. In the case of simulating a large number of years, this would intuitively converge to the observed distribution. 

However, the subsequent track behaviour determines if the track is retained – for example the simulated genesis density 

may be reduced in regions where tracks are excluded due to rapid weakening or exiting the domain.  

4.2 Tracks 

Following determination of the initial location, intensity, translation speed and bearing of a TC event, the model applies 

an autoregressive process to step the TC forward in time. Equations 2 and 3 describe the translation speed of the TC 

located in grid cell i at time t (for the translation speed v): 

𝑣(𝑡) = 𝜇௩
௜ + 𝜎௩

௜ 𝜒௜(𝑡),           (2) 

𝜒௜(𝑡) =  𝛼௩
௜ 𝜒௜(𝑡 − 1) + 𝜙௩

௜ 𝜀,          (3) 

where v
i is the observed mean translation speed v in grid cell i, v

i is the observed standard deviation of v and v
i is the 

observed lag-1 autocorrelation, and i(t=0)=0. v
i controls the magnitude of the random variation  and is related to v

i 

through Eq. 4 (noting the change of use for the symbol  from Eq. (1)):   

𝜙௩
௜ ଶ

= 1 − 𝛼௩
௜ ଶ

            (4) 
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 is a random value sampled from a logistic distribution with zero mean and unit variance. A logistic distribution is used 

because the heavier tails provide a better representation of the distribution of residuals. Further, comparisons of full track 

simulations gave qualitatively better results when using the logistic distribution. A corresponding approach is used for 

the bearing (direction of movement) of simulated TCs. 

Intensity, measured as the minimum central pressure p(t), is also modelled in a similar manner, except it is the rate of 

change of intensity 𝑝̇(𝑡) that is predicted at each time step t, rather than the intensity itself as described by Eqs. (5-7): 

𝑝(𝑡) = 𝑝(𝑡 − 1) + 𝑝̇(𝑡)∆𝑡 ,          (5) 

𝑝̇(𝑡) = 𝜇௣̇
௜ + 𝜎௣̇

௜ 𝜒௜(𝑡) ,           (6) 

𝜒௜(𝑡) =  𝛼௣̇
௜ 𝜒௜(𝑡 − 1) + 𝜙௣̇

௜ 𝜀 ,          (7) 

where t is the model time step in hours. The statistics for central pressure rates of change (𝜇௣̇
௜  and 𝜎௣̇

௜ ) are normalised to 

be in units of hPa hour-1.  𝛼௣̇
௜  and 𝜙௣̇

௜  are dimensionless and have the corresponding definition to that for v
i and v

i. The 

maximum achievable central pressure of a TC is set to 𝜇௣
௜ − 5𝜎௣

௜ , and is a purely statistical bound. However, we note that 

potential intensity (Holland, 1997) is potentially a more instructive limit, and we are presently working on enhancements 

that will consider this. 

𝑝̇ is preferred to absolute pressure deficit due to the lower lag-1 autocorrelation in  the tendency values, making it more 

akin to a true Markov process than simulating absolute pressure deficit. Figure 6 shows the autocorrelation for both 𝑝̇ and 

𝑝 for a selected grid cell in the Coral Sea. In this case, the lag-1 autocorrelation of 𝑝̇ is 0.3, compared to that of 𝑝 which 

is 0.79.  Using absolute values leads to rapid and almost one-way variation (i.e. constant increase or decrease) in the 

intensity. There remains a strong autocorrelation beyond lag-1 for absolute pressure values, but not for pressure tendency 

values (Fig. 7). Figure 8 shows the time history of central pressure of a small sample of tracks that are generated from a 

single genesis point (155°E, 20°S) and the same initial central pressure (995 hPa). One storm weakens rapidly over the 

first 12 hours. The remaining storms take between 30 and 200 hours to attain maximum lifetime intensity.  

Initial values for 𝑝̇, v and storm bearing are sampled from the observed distributions of initial values in the initial grid 

cell, based on the randomly selected genesis point. 

4.3 Radius to maximum winds 

Where sufficient observed data is available, Rmax is modelled in a similar manner to intensity – i.e. an autoregressive 

model of the rate of change in Rmax, with statistics calculated from the observed values. In the southern hemisphere, Rmax 

has only been recorded consistently since 2002 by the JTWC (Fig. 8). This means there is generally insufficient data to 

develop the autoregressive model with confidence across the entire model domain.  

In the case of insufficient observations, a parametric model of Rmax is used, based on the model of Powell et al. (2005), 

and derived using recorded Rmax values from 2002-2016 JTWC records for the South Pacific and South Indian Ocean 

basins (n=3033): 

ln 𝑅௠௔௫ = 3.543 − 0.00378∆p + 0.813 exp(−0.0022∆𝑝ଶ) + 0.00157𝜆ଶ + 𝜀 ,     (8) 

where p is the central pressure deficit (hPa),  is the latitude (degrees) and  is a random normal variate with mean  = 

0 and variance σ = 0.335, which is held constant for the life of each individual simulated TC. The functional form is 

selected to ensure the Rmax values remain bounded at high intensity (large p). Coefficients were fitted using non-linear 

least squares regression. Figure 9 presents modelled and observed values of Rmax versus p, where the modelled values 
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are derived using randomly selected values of p and . The model slightly over predicts Rmax at low intensity (20 < p 

< 40 hPa), but otherwise provides an excellent match to the observations. 

4.4 Pressure of outermost closed isobar 

The central pressure deficit p used to quantify the intensity of synthetic TCs is the difference between the central pressure 

and the pressure of the outermost closed isobar poci. We initially considered the daily long-term mean sea level pressure 

at the location of the TC (pltm) as a proxy for poci. However, there are substantial and systematic differences between the 

two (Fig. 10). Using pltm will lead to synthetic TCs generating sufficient wind speeds to remain defined as TCs at higher 

central pressure values than observed. To define poci for the synthetic TCs, we modify pltm based on the central pressure, 

latitude and day of year, plus a random innovation: 

𝒑𝒐𝒄𝒊 = 𝟐𝟑𝟐𝟒. 𝟐 − 𝟎. 𝟔𝟓𝟑𝟗𝟗𝒑𝒍𝒕𝒎 − 𝟏. 𝟑𝟗𝟖𝒑𝒄 + 𝟎. 𝟎𝟎𝟎𝟕𝟒𝟎𝒑𝒄
𝟐 + 𝟎. 𝟎𝟎𝟒𝟒𝟓𝝀𝟐 − 𝟏. 𝟒𝟑𝟒 𝒄𝒐𝒔൫𝟐𝝅𝒅𝒚𝒆𝒂𝒓/𝟑𝟔𝟓൯ +𝜺,  (9) 

where pltm is the daily long term mean sea level pressure at the location of the TC, pc is the central pressure,  the latitude, 

dyear the day of year.  is a random innovation sampled from a normal distribution with  = 0 and  = 2.572. The 

coefficients were determined using ordinary least squares fitting to the parameters, using observed values of poci from 

2002-2016 JTWC records (n=1833).  

Modelled values of poci qualitatively match the observed values (Fig. 11), with l2 norm values all less than 0.4. Closer 

inspection however reveals subtle differences. When plotted against pltm (Fig. 11a), the maximum density of modelled 

values of poci is skewed to lower values (approximately 3 hPa lower). For pc versus poci (Fig. 11b), the comparison is much 

closer, with the peaks in the PDF for both modelled and observed poci coinciding near weak (high pc) and poci near 1006 

hPa. Comparison by latitude (Fig. 11c) is very good, with the peak of the PDF of modelled values overlaying the observed 

peak. The PDF of modelled poci against day of year (Fig. 11d) is also very close to the observed distribution. 

4.5 Landfall 

Initial testing using only the autoregressive model for intensity after landfall resulted in unrealistically long-lived tracks 

after landfall. Instead, the filling rate of TCs after landfall is modelled in the same manner as Vickery (2005), where the 

central pressure deficit p decreases as an exponential function of time over land t, the central pressure deficit at landfall 

p0 and the translation speed at landfall, v0: 

∆𝑝(𝑡) = ∆𝑝଴ exp(−𝛼𝑡)          (10) 

where 

𝛼 = 𝛼଴ + 𝛼ଵ∆𝑝଴ + 𝛼ଶ𝑣଴          (11). 

To determine an optimum value for the parameters 01 and 2, the decay behaviour of 174 landfalling TCs recorded 

in the IBTrACS dataset was analysed (Fig. 12). p0 is the last observation of central pressure deficit prior to landfall, and 

all observations of p after landfall are normalised by this value. Differences in the decay rate of TCs can be identified 

between those making landfall on the northwest Australian coastline and the eastern coastline (Fig. 13). We hypothesise 

that this is due to the presence of the Great Dividing Range along the eastern coast of Australia, with elevations exceeding 

1400 metres in places (e.g. Mt Bartle Frere and Bellenden Ker). Further, the mean central pressure of landfalling cyclones 

in eastern Australia is higher than those along the western Australian coastline (Fig. 14). In the interest of minimising the 

data demands (especially with a view to application in other basins), topography was not included in the regression such 

that we do not have to source suitable topographic data for all potential basins. However this is an area for future 

development.  
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An exponential decay function was fitted to the normalised pressure deficit pp0 for the 174 landfalling TCs (Fig. 15). 

In general, p follows the expected exponential decay form with  defined as: 

𝛼 = 0.03515 + 0.000435∆𝑝଴ + 0.002865𝑣଴ + 𝜀(𝜇, 𝜎)       (12) 

where  is a random variate sampled from a lognormal distribution with =0.6953 and =0.0471, and held fixed for each 

event. Coefficients were fitted using non-linear least squares optimisation. This gives a decay rate parameter that is 

influenced by central pressure at landfall and replicates the observed decay rates well (Fig. 16). The effect of the landfall 

decay model can also be seen in several of the storms in Fig. 8. Storms that move back over open water revert back to the 

stochastic intensity model, with some storms showing reintensification. For example, track 0 makes landfall after about 

220 hours, weakens, but reverts back to the stochastic intensity model near 235 hours, before a second landfall at 242 

hours. 

4.6 Lysis 

Lysis of a synthetic TC occurs when p falls below an arbitrary threshold, set to be 5 hPa, either due to the decline in 

intensity following landfall, or through the autoregressive process described above. TCs are also terminated on exiting 

the track domain. 

5 Tropical cyclone wind field model 

Parametric wind fields are calculated for each event in the synthetic catalogue to enable a high spatial resolution 

understanding of the ARI wind speeds. The additional benefit of this calculation is that users can select individual 

synthetic events from the catalogue and obtain a wind field for use in scenario simulations.  

5.1 Radial wind profile 

The wind field around each TC is calculated at high spatial resolution (up to 0.01°) to ensure the peak wind speeds near 

the eye are accurately captured. TCRM first uses a radial profile to estimate the gradient level wind associated with the 

vortex. To allow users to explore the range of variability in ARI wind speeds associated with different radial profiles, we 

have implemented a number of profiles in TCRM. These include the Holland (1980), Schloemer (1954), Willoughby and 

Rahn (2004), Powell et al. (2005), Jelesnianski (1966), the McConochie et al. (2004) double exponential profile and a 

Rankine vortex profile. The Willoughby, Schloemer and Powell et al. profiles are all variants of the Holland profile – the 

difference being the definition of the peakedness or  parameter. While more complex radial profiles are available in the 

literature, we have chosen to implement simpler models that rely only on readily available best-track parameters (e.g. 

central pressure, latitude). For this verification study, the Powell et al. (2005) profile was used, with  defined as: 

𝛽 = 1.881093 − 0.010917|𝜆| − 0.005561𝑅௠௔௫ + 𝜀       (13) 

where  is the latitude of the TC centre and   is a random variate sampled from a normal distribution with zero mean and 

standard deviation 0.286. The random innovation term is held fixed for each storm event. 

5.2 Boundary layer model 

In addition to the range of radial profiles, users can also select one of three boundary layer models. These boundary layer 

models relate the winds at the gradient level to those near the surface, taking into account the asymmetry induced by the 

forward motion of the TC and surface friction effects. In parametric TC models, this is often achieved by vector addition 

of the forward motion and the gradient winds together with a surface wind reduction factor. Examples of this type include 

McConochie et al.’s (2004) model, which varies the inflow angle as a function of radial distance, or the Hubbert model 
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(Hubbert et al., 1991). Alternatively, a linear analytic model (Kepert, 2001) of the boundary layer flow can be applied 

with minimal computational cost.  

In this study, the linear boundary layer model of Kepert (2001) was applied to relate gradient level winds to surface winds. 

This model utilises a bulk formulation for the boundary layer with the drag coefficient set to a constant value of 0.002 

and the turbulent diffusivity for momentum set to 50 m2 s-1, as recommended by Kepert (2001). The model assumes 

Vtangential >> Vtranslation, which may be violated for low intensity storms (e.g. incipient TCs). The boundary layer model is 

modified to linearly reduce the effects of translation speed when Vtranslation > 0.2 Vtangential. The effects are also reduced to 

zero at distances greater than 2 Rmax, using an inverse square decay function.   

The linear analytic model generates a surface wind speed corresponding to a 1-minute mean wind speed (Khare et al., 

2009). This is converted to a 0.2-second gust wind speed using a wind speed conversion factor determined using the 

approach outlined in Harper et al. (2010). The resulting wind fields represent a 10-metre above-ground, 0.2 second gust 

wind speed over flat terrain with an aerodynamic roughness length of 0.02 metres. This is carried across the entire 

simulation domain, including over-water areas. This choice is made to enable direct comparison to other measures of 

regional-scale wind hazard such as weather station observations. For more localised wind speeds that can be used for 

detailed wind impact calculations (e.g. Krause and Arthur, 2018), local site conditions can be incorporated via an offline 

calculation that can incorporate local accelerations over topography and varying surface roughness conditions (Yang et 

al., 2014). 

Throughout the simulations, it is assumed the gradient-level wind is axisymmetric. However, the simulated tracks can 

extend to mid-latitudes, where TCs undergo transition to extra-tropical cyclones and the gradient level wind becomes 

asymmetric (Foley and Hanstrum, 1994; Jones et al., 2003; Loridan et al., 2013). Further, the assumption in the linear 

boundary layer model that Vtangential >> Vtranslation does not hold for transitioning storms, where Vtranslation can exceed 70 

km/h (Foley and Hanstrum, 1994). This means the simulated hazard values in the mid-latitudes (approximately poleward 

of 30° in the south-eastern Indian Ocean) are likely not indicative of the true wind hazard associated with (transitioning) 

TCs. It is also likely in these regions that other phenomena (e.g. thunderstorms) are the predominant source of extreme 

wind gusts. There are promising developments in the area of extra-tropical transition (Loridan et al., 2015; Bieli et al., 

2019), which have direct application in probabilistic modelling frameworks and may be integrated into TCRM in future 

releases. 

6. Extreme value distribution fitting 

Once wind swaths for the simulated TCs have been generated using the wind field module, the maximum wind speed 

from all simulated events, irrespective of direction, for each grid point is stored. Because of the large number of events 

simulated, it is possible to estimate average recurrence intervals (ARIs) for the wind speeds at each grid point. The 

simplest approach is to use an empirical approach based on Eq. (14): 

𝐴𝑅𝐼 =
௡೚್ೞ

ଵି
ೝ೔

೙೐ೡ೐೙೟ೞశభ

           (14) 

where ri is the wind-speed rank of the ith event, nobs= 365.25 is the number of values per simulated year and 

nevents=10000×nobs is the total number of simulated ‘daily’ observations for the 10,000 year simulation. For each point 

across the simuation domain, we treat each simulated event as an individual ‘daily’ observation and rank the simulated 

wind speeds from all events. This usually produces around 105 records (depending on the frequency of TCs at that 

location). The remaining ‘daily’ records are zero filled. 
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A more sophisticated approach is also implemented, where the simulated maximum wind speed values are fitted to a 

Generalized Pareto Distribution (GPD) using a peaks-over-threshold approach. ARI wind speeds are estimated from the 

GPD parameters using Eq. (15): 

𝑤(𝑡; 𝜇, 𝜎, 𝜉) = 𝜇 +
ఙ

క
ൣ(𝑛௢௕௦𝜌𝑡)క − 1൧        (15) 

where w is the wind speed with an ARI of t years. µ, σ and ξ are the location, scale and shape parameters of the fitted 

GPD distribution respectively and ρ is the rate of exceedances above the threshold u. The threshold is set to the 99.5th 

percentile of the simulated wind speed values. As wind speeds are considered a bounded phenomenon (Lechner et al., 

1992), the fitted shape parameter ξ can be constrained to be positive to ensure the resulting distribution is bounded at long 

return periods (Holmes and Moriarty, 1999). Again, this parameter fitting is performed at each point across the region of 

interest, leading to a spatial representation of ARI wind speeds. 

Confidence intervals are estimated from the covariance matrix of the parameter fit. This method is useful for estimating 

winds speeds at very long ARIs, where the frequency of events is very low. ARI wind speeds estimated using this method 

tend to be underestimated at lower ARIs compared to the empirical approach, largely because the threshold selection 

excludes lower, more frequent wind speeds. 

7 Results 

7.1 Track model verification 

To evaluate the performance of the model, we run a series of comparisons between the observed tracks and a large number 

of simulated track sets. 1000 synthetic event sets were generated, each representing 35 years of TC activity, mimicking 

the length of the input historical record. For each metric, historical values are compared to the mean value for the 

collection of synthetic event sets, with 90th percentile confidence intervals calculated using bootstrapping methods. 

The distribution of observed longitude crossing rates are well modelled for both eastward- and westward-moving storms 

(Fig. 17). The values represent the probability density of events crossing each longitude in 2 degree latitudinal segments. 

In general, the model simulates the longitude crossing rates well. Near 150°E, 15°S the model does not capture the rate 

of TCs crossing Cape York Peninsula, which is related to the termination of TCs due to low intensity. Similar overall 

results are obtained for longitude crossing rates when the model is tested in the western North Pacific and Atlantic basins 

(not shown), including in mid- to high-latitudes, capturing the paths of recurving TCs.   

TCRM simulations of minimum central pressure perform well, especially for the more intense (lower minimum central 

pressure) TC events (Fig. 18). The lower tail of the simulated distribution closely follows the observed tail. For weak TC 

events (> 980 hPa), the observed distributions lie outside the 90th percentile of the simulations. This has little impact on 

the derived extreme wind speeds, which are generated by the most intense TCs.  

The spatial distribution of minimum central pressure is presented in Fig. 19. Values represent the lowest minimum central 

pressure value observed in each 1° by 1° grid cell in the historical record. We apply the same process to each of 1000 

synthetic event set, and the mean of those is presented. There is general agreement between the synthetic and observed 

(historic) distributions, though individual events in the historic record do result in greater variability. The spatial 

distribution of the mean central pressure (Fig. 20), calculated in a similar manner to the minimum central pressure, again 

shows good agreement between the synthetic and observed event sets, without the large variability seen in the historic 

minima.  
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Lifetime maximum intensity (LMI), defined as the maximum wind speed for the life of the TC, can be used to evaluate 

how well the model simulates the evolution of intensity of TCs. Figure 21 shows the mean location of LMI in the observed 

(top) and simulated (bottom) records. There is little discernible pattern in the location of LMI for observed TCs. This may 

in part be due to the small numbers of events available for the analysis (n=377), as only those events with a maximum 

wind speed recorded were used. The mean LMI is generally evenly distributed throughout the domain, though lower LMI 

values can be seen over Cape York (145°E) and south of Indonesia at low latitudes. For the simulated events, there is a 

clear trend towards higher LMI at higher latitudes in the Indian Ocean, with highest LMI simulated at 20-25°S. There is 

also indications that LMI increases towards the south in the Coral Sea to the east of Australia.  

The average time taken to achieve LMI for observed TCs (Fig. 22, top) shows little clear pattern, though the areas off the 

western coast of Australia do tend to be slightly higher. The simulated tracks (bottom) display a strong tendency to achieve 

LMI at higher latitudes (> 17.5°S), and take longer to achieve LMI in these areas. This may lead to higher ARI wind 

speeds at these higher latitudes. Comparing geographical areas, observed time to LMI off the northwest coastline is around 

96-144 hours, while the mean time to LMI is only around 48-72 hours for simulated events. On the east coast, there 

appears less difference between observed and simulated time to LMI, but there is a greater range of values, ranging 

between 48 and 120 hours. 

Figure 23 presents the landfall probabilities around the Australian coastline. Each gate is 200 km wide and located 

approximately 50 km off the coast (Fig. 1). TCRM replicates the observed probability of landfall well, with the mean of 

the synthetic event sets generally close to the observed probability. The relatively low occurrence of landfall around the 

Australian coastline (on average only 4 TCs cross the coast each year) means there is large variability in the landfall count 

for any given synthetic event set. Again, qualitatively similar results are obtained for simulations in the western North 

Pacific and Atlantic basins (not shown).  

At all times the 80th percentile range captures the observed landfall probability, as expected. However, the mean landfall 

probability in the simulations for the region between Coral Bay and Port Hedland is substantially lower than the observed 

landfall probability. This is possibly linked to lower genesis probabilities directly to the north of this area. Historically, 

there is a local maximum in genesis probability between 120°E and 130°E, extending westward into the Indian Ocean 

near 10°S (Fig. 5). The mean genesis density for the simulations does not show the same local maximum, or the westward 

extension. This lower genesis density is likely translating into lower track densities in the region, and therefore lowers 

landfall rates along the northwest Australian coast. This in turn acts to reduce ARI wind speeds along this part of the 

coastline compared to observed ARI wind speeds. 

When examining the distribution of intensity at landfall (Fig. 24), the proportion of category 5 landfalls along the lower 

west coast is high, representing around 25% of landfalls through gates between Cape Leeuwin and Coral Bay. This is 

hypothesised to be linked to the poor representation of transitioning TCs in this region. The region from Coral Bay to Port 

Hedland (noted previously for a low landfall probability) displays a similar landfall intensity distribution to observations, 

where the majority of landfalling TCs are severe (category 3-5). Along the east coast, between Mackay and Coffs Harbour, 

the proportion of category 5 landfalls is also high (around 20%). Additionally, the probability of any landfall in this region 

is significantly higher than the observations. These two factors contribute to an overestimate of the ARI wind speeds in 

southern Queensland and northern NSW.  

 

7.2 Wind field model verification 

To demonstrate the reliability of the wind field model, we modelled a number of historical TC events using the parametric 

wind field and compared to observed wind speeds recorded at Bureau of Meteorology weather stations near to the track 
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of the TC. We select stations that are within 100 km of the track, in an effort to verify against the strongest winds of the 

TC and provide a meaningful result. In total, 29 stations and 14 TCs are examined, providing a cursory analysis of the 

wind field model performance. 

The configuration is kept consistent with that used to derive the ARI wind speeds, so no calibration of the parameters 

(e.g. peakedness parameter) is performed for individual TCs used in the verification (c.f. McConochie et al., 2004). We 

chose not to calibrate for each individual event so as to quantify the capability of the wind field model to reproduce gross 

features of observed TCs. In a stochastic model such as TCRM, it is important that the wind field model display no 

significant bias in wind speed, and errors in the mean wind field are minimised. By using a consistent configuration for 

verifying the wind field model, it is possible to quantify the bias in the wind field that might arise in applying that 

configuration to a set of synthetically generated TCs. This will generally result in a poorer simulation of each individual 

TC when assessed using metrics such as root mean square error, since the parameters have not been optimised for the 

evolution of each individual event. The reader is directed to the references for the profiles and boundary layer model for 

more thorough validation of those models. 

Simulated wind speeds are matched to corresponding observations from weather stations based on the time of observation. 

The wind field model provides data at five minute intervals, so it is possible that absolute peak observed values may not 

match the time interval. Observed wind speeds are corrected for gust averaging time periods (Harper et al., 2010), as the 

default configuration for TCRM is to produce wind speeds representing a 0.2 second gust wind speed. No corrections for 

site exposure (e.g. topographic enhancement, surface roughness changes) are made. 

7.2.1 Weather station wind histories 

For each simulated event, time histories of wind speed and direction at all weather stations within the modelled domain 

are recorded. Figures 25 to 28 present the time history for four stations (Mardie, Carnarvon, Lucinda Point and Flinders 

Reef) during the passage of four separate TCs (Glenda, Olwyn, Yasi and Larry respectively). For each of these events, 

the TCRM wind field simulation captures the increase in wind speed as the TC approaches the station, with the time of 

peak wind speeds accurately modelled. 

Changes in wind direction follow the observations closely, except for Lucinda Point (Fig. 27) where the observed winds 

quickly returned to a southerly direction after the passage of TC Yasi. The simulation shows winds turning anti-clockwise 

as the TC passes at around 00Z on February 3 2011, consistent with a cyclonic vortex passing north of the observation 

site. It appears a similar shift occurs in the observations several hours earlier, but winds turn back to the south rapidly at 

around 18Z on February 2. This difference is likely due to the model not containing any other sources of pressure gradient 

winds from synoptic-scale weather patterns such as high pressure ridging into the Coral Sea following the passage of the 

TC (for example, see the discussion in McConochie et al., 1999). 

Peak wind speeds are closely simulated, except for Lucina Point in TC Yasi, where the wind field model underestimates 

the peak wind speed by nearly 20 m s-1. Among other events (Fig. 29, lower right panel), the tendency is for the TCRM 

wind field simulation to overestimate peak wind speeds. There are likely several factors (for example, instrument failure 

or site exposure) leading to this overestimation, which may be drawn out in a more thorough validation of the wind field 

model and analysis of those event. The results here are likely due to our decision not to correct the observed wind speeds 

for site exposure, which would reduce the modelled wind speeds. 

For the complete time histories (all corresponding time records, not just the peak), Fig. 29 presents the root mean square 

error, bias and mean absolute error for all 29 stations and 14 events modelled. The average RMSE is 9.2 m s-1 and the 

bias 1.2 m s-1. In the context of a stochastic model where many thousands of events will be simulated, the average RMSE 

outcome is acceptable, but the tendency for peak wind speeds to be overestimated requires further investigation. 
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7.3 ARI wind speed verification 

ARI wind speeds for the Australian region are calculated from a simulation of 10,000 simulated TC seasons, or over 

160,000 individual simulated TC events. Two ARI wind speeds are examined – the 50-year ARI wind speeds are 

compared to observed TC-related wind speeds, while the 500-year ARI wind speed is compared to the regional design 

wind speeds detailed in AS/NZS 1170.2 (2011). We use the 500-year ARI wind speed for comparison, as it represents 

the regional design wind speed for residential housing in AS/NZS 1170.2 (2011).  

Observed ARI wind speeds were estimated from daily maximum gust wind speed observations that may be attributable 

to the passage of a TC, recorded at Bureau of Meteorology weather stations (Fig. 1). All TCs passing within 200 km of 

the station, when the station was open, were recorded. Daily maximum wind gusts corresponding to the closest passage 

of each TC were then extracted and empirical ARI values determined based on Eq. (14). Corrections are made for gust 

wind speed averaging times where instrumentation is known (Harper et al., 2010). 

The 500-year ARI wind speed map (Fig. 30) displays qualitative similarities to existing design wind loading standards 

(see Fig. 3.1A in AS/NZS 1170.2), at least over continental Australia (the design standard does not define wind speeds 

over the ocean). Highest wind speeds are estimated along the northwest coast of Australia, with a peak value near 70 m s-

1 near Port Hedland (near 120°E) for the 500 year ARI. The remainder of the northern and much of the eastern coastline 

indicates lower wind speeds, generally between 50 and 60 m s-1. The wind speeds drop below 45 m s-1 across Cape York 

(142°E), where there is also a marked decrease in TC frequency. The highest values of 500-year ARI wind speed along 

the east coast occur around the Rockhampton region, reaching 60 m s-1. ARI wind speeds steadily decline further south, 

reaching around 50 m s-1 in northern New South Wales. The comparatively high values at higher latitudes (c.f. AS/NSZ 

1170.2) are likely indicative of the model failing to correctly simulate the extratropical transition process noted in section 

5.2. 

ARI curves for selected locations are presented in Fig. 31, along with estimated ARI wind speeds for observed TC-related 

wind speeds (see below) at those locations. The solid line is a GPD fitted to the simulated wind speeds using peaks-over-

threshold with a 99.5th percentile threshold, but here we have relaxed the constraint of  > 0. 90th percentile confidence 

intervals are determined from the covariance matrix of the fitting routine. 

For locations along the west coast (Carnarvon, Port Hedland), the model underestimates the hazard profile compared to 

the observed hazard profile. For Port Hedland (64 years of records), the simulated 50-year ARI wind speed is just under 

50 m s-1, while the observed 50-year ARI is approximately 57 m s-1 (Table 1). Similarly at Carnarvon (65 years of 

records), the simulated 50-year ARI is 35 m s-1 and the observed 50-year ARI is close to 45 m s-1. This is a significant 

discrepancy between the simulation and observations. In part, this is attributed to the comparatively low landfall rates 

along this section of the coastline (Fig. 22, 23), and so points to additional work on improving the simulation of intense 

TCs along this section of the Australian coastline, in terms of both event rates and intensity. 

In other parts of the country, model performance is much better. Simulated ARI wind speeds at Darwin closely match the 

observed ARI wind speeds, but the outlying observation of TC Tracy (1974 – 67 m s-1) is cause for further investigation. 

This analysis places the observed wind speed of Tracy at around a 5000-year ARI, but there is significant uncertainty on 

this estimate, and conjecture on the most appropriate way to estimate this from observations (Harper et al., 2012). For 

east coast locations, the simulated ARI wind speeds for Cairns, Townsville and Rockhampton are all close to the observed 

ARI wind speeds, varying at the 50-year ARI by at most a few percent. The observed ARI wind speeds generally fall 

within the 95th percentile confidence interval of a GPD fitted to the simulated values (not shown).  It is also notable that 

observed and simulated ARI wind speeds lie below the corresponding regional wind loading design levels specified in 

AS/NZS 1170.2 (2011) for all locations, except for Port Hedland where observed ARI wind speeds are close to the 

regional design level. 
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An important component of stochastic models is to check for convergence in solutions (Shome et al., 2018). For TCRM, 

this can be checked by splitting the synthetic catalogue into two subsets, calculating ARI values from each and examining 

the range of values. A large difference in ARI wind speeds indicate the model has not converged. It is expected that at 

large ARIs the model would not converge, as variability in the tail of the distribution is to be expected when modelling 

rare events. Significant difference in the ARI values for the two subsamples indicates the variability in the distribution is 

large. Figure 34 shows the convergence checks for the locations mentioned above. Carnarvon, Port Hedland and Willis 

Island show little difference in the subsets below the 1000-year ARI level – generally differing by less than 2%. Darwin, 

Townsville and Broome show divergence in the subsets at around the 500-year ARI level. Cairns and Rockhampton both 

display weak convergence beyond the 100-year ARI level, but converge again above 1000 years. These results suggest 

that it may be required to run larger catalogues to achieve robust convergence of the ARI values, in line with other 

hurricane catastrophe models (Shome et al., 2018). 

8 Conclusion 

The Tropical Cyclone Risk Model, developed at Geoscience Australia, is a new statistical-parametric model of TC 

behaviour that is capable of delivering a high-resolution (approximately 2 km) spatial understanding of ARI gust wind 

speeds due to TCs, at continental scales. It is a free and open-source software model, with the goal of delivering TC wind 

hazard information to the hazard and risk modelling community in a free and transparent manner. Potential applications 

include evaluation of risk, scenario modelling for emergency management planning, informing wind loading requirements 

for building standards and projections of future climate hazard and risk. The model provides information that can readily 

be used to guide other hazard assessments, such as wave climate modelling and coastal storm surge, and there is potential 

to include other perils such as rainfall through appropriate parametric models (Lonfat et al., 2007; Mudd et al., 2015).  

Initial evaluation of the model was performed using historical best-track data for the Australian region to generate a 

catalogue of 10,000 years of events. The statistical track model performs well in areas with a high density of TC events, 

but confidence is reduced at higher latitudes and near the equator due to the lower number of historical events. Simulated 

ARI wind speeds are generally consistent with observations of TC-generated winds around Australia, except in the 

northwest of the country where the simulated ARI wind speeds are significantly lower than observed. This deficit is linked 

to low landfall rates in this part of the country and will be investigated into the future. There are also significant 

opportunities to improve model performance at mid-latitudes, especially in processes such as extra-tropical transition, 

where other types of weather phenomena may have a substantial influence on the wind hazard climate. 
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Table 1: Observed and simulated 50-year ARI wind speeds for selected locations. Simulated ARI wind speeds are taken to be 
the empirical ARIs. All values are in m s-1. 

 Simulated Observed AS/NZS 1170.2 

Carnarvon (94300) 33.1 45.3 66 

Port Hedland (94312) 48.9 56.8 66 

Broome (94203) 45.4 41.2 55 

Darwin (94120) 34.5 43.8 55 

Cairns (94287) 40.4 40.0 55 
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Townsville (94294) 40.9 43.8 55 

Rockhampton (94374) 41.9 35.0 55 

Willis Island (94299) 46.3 56.4 55 

 

 

 

Figure 1: Historical TC tracks (1981-2016), simulation domain, track domain, automatic weather stations (with station 
number) and coastal gates (50 km offshore, 200 km wide) used for landfall analysis (selected gates labelled). 

 

Figure 2: Lag-1 autocorrelation of TC translation speed, based on IBTrACS v03r09 (1981-2016).Values are calculated on a 1x1 
degree grid. 
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Figure 3: Lag-1 autocorrelation of TC bearing (direction of movement), based on IBTrACS v03r09 (1981-2016). 

 

Figure 4: Lag-1 autocorrelation of central pressure rate of change, based on IBTrACS v03r09 (1981-2016). 

 

Figure 5: TC genesis points for historical TC events (1981-2016), and the corresponding probability density function 
(TCs/year). Points do not represent first observation of TC intensity – rather, they represent the first point recorded in the 
best-track database. 
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Figure 6: TC genesis points and corresponding probability density function for a sample of 35 simulated years of TC activity. 
Note the different scale compared to Figure 5. 

 

 

Figure 7: Autocorrelation values for minimum central pressure and pressure rate of change, for a single grid cell in the Coral 
Sea. 
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Figure 8: Autocorrelation of minimum central pressure (left) and pressure rate of change (right) for lagged observations 
between 1 and 10 steps. The solid blue line is the mean for all grid cells in the track domain, and the shading is one standard 
deviation.  

 

Figure 9: Central pressure, normalised intensity and tracks of 10 events with a common genesis point (155°E, 20°S) and initial 
intensity (995 hPa). The lower left panel presents the normalised intensity p/max(p). Colours are for clarity only. 
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Figure 10: Distribution of radius to maximum wind for all Southern Hemisphere TCs (2002-2016). ‘KDE’ is the empirical 
distribution determined using kernel density estimation, ‘Lognormal fit’ is a fitted lognormal distribution using maximum 
likelihood estimation. Data source: JTWC (2017). 

 

Figure 11: Modelled (o) and observed (x) Rmax for southern hemisphere TCs (2002-2016), plotted against central pressure 
deficit. Modelled values are based on a random selection of observed combinations of central pressure deficit and latitude. 
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Figure 12: Difference between pltm and poci for southern hemisphere TCs (2002-2016). Solid line is the empirical distribution 
determined using kernel density estimation. Dashed line is a fitted lognormal distribution. Data source: JTWC (2016). 
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Figure 13: Observed (shaded) and modelled (contours) distribution of poci for southern hemisphere TCs, plotted against (a) 
penv, (b) pc, (c) latitude and (d) day of year. Modelled values are based on a random selection of observed combinations of pc, 
penv, latitude and day of year. Contour interval is 0.01. Note the different horizontal scale in each panel. 
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Figure 14: Landfalling tropical cyclones in Australia, 1981-2016. Source: IBTrACS v03r09 (1981-2016). 
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Figure 15: Mean (top) and standard deviation (bottom) of rate of change of central pressure (hPa/hour), based on IBTrACS 
v03r09 (1981-2016). 

 

Figure 16: Mean central pressure (hPa), based on IBTrACS v03r09 (1981-2016). 
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Figure 17: Observed pressure deficit versus time after landfall (top), and normalised by pressure deficit at landfall (t=0, 
bottom). Colours are for clarity only.  

 

Figure 18: Observed and modelled pressure deficit decay rates (α) as a function of landfall pressure deficit (Δp0). The regression 
line includes the approximate 95% confidence interval (shaded) based on bootstrap resampling of the observed values. Δp0 
values used for the modelled decay rates are randomly sampled from the observed values. See text for details of the model 
equation. 
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Figure 19: Distribution of longitude crossing rates for synthetic and observed TCs. Values represent 100 times the probability 
density of events crossing each longitude in 2 degree latitudinal segments. Upper panel is for TCs moving east to west, lower 
panel for TCs moving west to east. Red lines are the observed distribution (IBTrACS v03r09 1981-2016); black the mean of 
1000 simulations each representing 30 years of activity. Shaded band indicates the 90th percentile range of the simulations. 

 

Figure 20: Distribution of minimum central pressure values (hPa). Red line is the observed distribution (IBTrACS v03r09 
1981-2016); black the mean of 1000 simulations each representing 35 years of activity. Shaded band indicates the 90th percentile 
range of the simulations. 
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Figure 21: Historic and synthetic minimum central pressure values over the simulation domain. Synthetic values are the mean 
of 1000 simulations of 35 years of TC activity. 
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Figure 22: Historic (top) and synthetic (bottom) mean central pressure values across the simulation domain. Synthetic values 
are the mean of 1000 simulations of 35 years of TC activity. 
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Figure 23: Historic (top) and synthetic (bottom) mean lifetime maximum intensity. Synthetic values are the mean of 1000 
simulations of 35 years of TC activity. 

 

Figure 24: Mean time taken (hours) to achieve lifetime maximum intensity for historical (top) and synthetic (bottom) TCs. 
Synthetic values are the mean of 1000 simulations of 35 years of TC activity. 
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Figure 25: Probability of a TC making landfall around the Australian coastline. Black line is the observed distribution 
(IBTrACS v03r09 1981-2016); red the mean of 1000 simulations each representing 35 years of activity. Shaded band indicates 
the 80th percentile range of the simulations. 

 

Figure 26: Mean distribution of landfall intensity (by TC intensity category) for synthetic TCs. Categories are based on the 
Australian TC intensity scale. The observed landfall probability is shown in black.  
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Figure 27: Modelled and observed wind speed (top) and direction (bottom) at Mardie (Western Australia) for the passage of 
TC Glenda (2006).  

 

Figure 28: Modelled and observed wind speed (top) and direction (bottom) for Carnarvon (Western Australia) for the passage 
of TC Olwyn (2015).  
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Figure 29: Modelled and observed wind speed (top) and direction (bottom) at Lucinda Point (Queensland) for the passage of 
TC Yasi (2011).  

 

Figure 30: Modelled and observed wind speed (top) and direction (bottom) for Flinders Reef (Queensland) for the passage of 
TC Larry (2006).  
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Figure 31: Root mean square error (RMSE), bias (Bias), mean absolute error (MAE) and scatter plot of observed versus 
modelled maximum wind speed for 42 weather station observations associated with the passage of a TC.  

 
Figure 32: 500-year ARI wind speed due to tropical cyclones across Australia, using empirically estimated return period wind 
speeds (Eq. 11).  
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Figure 33: Hazard profile for locations around Australia. Estimated ARI wind speeds derived from observed TC wind speeds 
are marked by 'X'. “Percentile threshold fit” (blue line) uses the 99.5th percentile as the threshold for the peaks-over-threshold 
for fitting the GPD to the simulated wind speeds from the stochastic event set (red circles). The blue shading is the 90th percentile 
confidence interval of the GPD fit. The title for each panel includes the years of available observational data for the location. 
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Figure 34: ARI convergence tests for locations around Australia.  

 


