Flood Routing

The reservoir routing follows continuity equation:
as

== Qi+ Qr + Qs (1)
where S is the storage in the reservoir of the Pefiitas Dam, Qi is the flow generated by the
landslide, Qy, is the flow of tributaries rivers to the site of Pefiitas, Qs is the flow extracted
from the Pefiitas spillway, and t is the analysis time.

6.2 Storage Capacity Curve

Storage capacity elevation curve for the reservoir may be expressed as:
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where Z is the elevation of the free water surface in the reservoir, So is the storage
corresponding to Zo elevation, which will be considered as a conservation level, S is storage
corresponding Zr elevation, which can be interpreted as the maximum level that can be

reached when Eq. (1) is solved, a>1 is a regression constant.

From Eq. (2),
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where:

H=7-Z, 4

is the spillway crest head and Z.y is crest elevation.
6.3 Hydrograph produced by the landslide
According to Fig. 3, the flow produced by the landslide can be written as
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where Qp is the peak flood and ty is the base time of the hydrograph. It must be noted that

the triangular form of the hydrograph permits an increase in the volume if it is necessary.
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Figure 3 Discharge law of the hydrograph

6.4 Spillway discharge for the Pefiitas Dam
The spillway discharge is shown in Fig. 4 and is given by
0, H<H,
Qs = {CLH%, H=>H,
where
Ho =2y —Zc
C is the discharge coefficient, and L is the spillway length.
Note that if
Qs <Qu+Qf t€(0,ty)
then Eqg. (6) may be written as
0, t<0
@ = {CLH%, t>0
In fact,

Qs = CLH2"?

is the discharge in the spillway when t=0, as is shown in Fig.4.
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Fig. 4. Discharge Law of the Spillway
6.5 Flood routing reviewed
By substituting Egs. (3) and (10) in Eq. (1),
—20 —4o a-1 d 3
E(H) = a%(%) = —law®+e @ -cLrz|=0,t>0 (11)

where Q,(t) y Qs (t) are given by Egs. (5) and (6), and F,(-) is a differential operator that

acts over the hydraulic head of the spillway, H.

6.6 Flood Routing Discretization
Eq. (13) has no analytical solution for an arbitrary value of a. Thus, a discretization solution

based on the trapezoidal rule is done:
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where
H; ~ H(t)) (13)
Hji1 = H(tj41) (14)

Both are discrete approximations of the head values over the spillway crest in time t; and tj+.
Thus,



Q,; = Q.(t;) (15)

Quj+1 = Qi(tj+1) (16)

Qrj=Qr(t) (17)

Qfj+1 = Qr(tj41) (18)
In Eqg. (14), we can use a time interval variable, defined as

Atjv12 =t — 4 (19)

If to=0, Eq. (19) stay:

tiv1 =t + Atj% =t + Atj_% + Atj% =ti_,+ At}._% + Atj_% + Atj% =t, +

Ym0 Dtisiyz = TheoAtisryz 1j = 01, .. (20)

Finally, in Eq. (12), F,(---) is a discrete operator that functionally depends on the heads H;
and H; . and from the parametric point of view, of the interval At; 4 5.

It must also be observed that differences equation (12) is centered in tj+12=(tj + tj+1)/2, and it
can be shown that building a continuum function twice differentiable around H; = H (t;) that

exactly satisfies Eq. (12), is possible to say:
Therefore, when differences equation (21) is solved, the differential modified equation

F, (H(t) + 0 <Atj2+l )) = 0 is being solved (Warming and Hyett. 1974). It must be noted

2

that the existence of H(t) is guaranteed because the same can be built as a cubic spline.

Therefore, also is possible to show that Eq. (12) has a truncated error Tj,,/,, =
Fo[H(t), H(tjs1); Atys1/5] = O (Atjz+l ) (Smith, 1978)
2

Given that Eq. (12) defines an “ahead march” problem, this equation in finite differences is
not lineal in H;,, for known H;, and then the analytical general solution for arbitrary values
of a is not known.

With the objective of giving an analytical solution, a similar strategy to proposed by Beam
and Warming (1976) will be used that allows reaching an “implicit factorized scheme.”
Remembering the Taylor theorem (Rosenlicht, 1968) for a function twice differentiable, f =

f (x) can be written as



f(x+Ax):f(x)+f'(x)Ax+;f”(§)Ax2, X<E<X+AX, (22)

where the residue has been written in a Lagrangian form.

Ze+Hj—Zo
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By identifying x with H; and f(x) with (

Taylor theorem (22) can be written as
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Now identifying x with H;, f(x) with Hj3/2 and Axwith H;; — H; for known H;, it is possible

again to apply Taylor's theorem (22) as
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HYY = HY' + 2 H(Hyyq = Hy) + 2H, 2 (Hjay — H)%0 <y <1 (24)
Obviously
Hji, — Hj = 0(At;,1) (25)
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By substituting Egs. (23) and (24) in Eq. (22) and considering the definition of differences
Fo given in Eq. (12), then:
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Thus, without altering the magnitude order of truncated error, i.e. of O (Atj-2+1 ) from finite
2

differences of truncated given by Eq. (12), it is possible to build the next implicit scheme
factorized of second order for the approximate solution of differential equation of flood

routing given by Eq. (11), neglecting quadratic terms in H;,; — H; and obviously in Atj+1

2

in Eq. (26):
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where
Hjiq =~ H(tj41) (29)
are discrete approximations of head values over the spillway crest that acquires in the times

tj and tj+1. A truncated error can be shown that is given by Eq. (27):

Tiy12=Fp (H(tj),H(tjﬂ);Atj%) =0 (Atj{r% ) The approximation order of Eq. (12) is

not affected; however, Eq. (26) can be written as
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and:
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Recursive Eq. (31) let the calculus of the flood routing over the Pefiitas Reservoir and allows
the calculation of discharged flows by the spillway that correspond to each interval of time,
given by Eq. (31):

3

Qsj+1 = CLH]2+1, j=0.1,.. (32)
It must be observed that with this analysis, associated to time design flood, must coincide
with the flood caused by the landslide, which is unlikely to happen. An analysis with different

times in each event is a motive for future research.

Maximum water elevation occurs once the landslide peak flow is reached and is given by
equating inflow and outflow discharges as is shown in Fig. 5, (Q:=Q,). In other words, the

value Hi=H, is given by Eq. (31), where the time is given by t:1=t,, in Eq. (31):

0, = cué = Qpf (1 — Lohr ) (33)

thf—tpf
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Fig.5 Schematic representation of Inflow-Outflow to Pefiitas River.

6.7 Ordinary Risk Case

In the case that only the failure of the natural dam is present without floods from the
tributaries, the analysis will be denominated “Ordinary Risk Case," then Eq. (31) continues
being applicable with the consideration that Qf,j=Q, +1=0, j=0,1,... . In this case, Fig. 5 shows

that the maximum head belongs to j=0 and is given by:
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According with this Fig. 5,
Ql,o = Qp'l (35)
t*

By substituting Egs. (35) through (37) in Eq. (34),
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Analogous to Eq. (32), equating inflow and outflow discharges, when t=t= (as in Fig. 4)

3

Q.= CLH: = (1= ) Qp (39)

By substituting Eqg. (38) in Eq. (39),
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Equation (40) is not linear in t= and can be expressed as a polynomial equation of sixth degree.
By the Abel impossibility theorem, it is not possible obtain an explicit solution; therefore, an

alternative method is proposed as the one used before for determining t=. Let now
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By expanding the left member of Eq. (40) in Taylor series, we have (as in Egs. (38) and (39)

through (44)):
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By neglecting the terms of O(Atf) in this equation, by substituting the result in Eg. (39) and
2

by solving for tx, we have



Q CL( )3/2
pl—

(46)
Zeu(8)” (B-a5) g2t

From Eqgs. (41) through (44), we have
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By substituting Egs. (47) through (50) in Eq. (45),
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By finally substituting Eg. (51) in Eq. (38), the explicit expression for the maximum head is

obtained:
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