
Flood Routing 

The reservoir routing follows continuity equation: 

𝑑𝑆

𝑑𝑡
= 𝑄𝑙 + 𝑄𝑓 + 𝑄𝑠                                                                        (1) 

 

where S is the storage in the reservoir of the Peñitas Dam, Ql is the flow generated by the 

landslide, Qf, is the flow of tributaries rivers to the site of Peñitas, Qs is the flow extracted 

from the Peñitas spillway, and t is the analysis time. 

6.2 Storage Capacity Curve 

Storage capacity elevation curve for the reservoir may be expressed as: 

𝑆−𝑆𝑜

𝑆𝐹−𝑆𝑜
= (

𝑍−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼

    (2) 

where Z is the elevation of the free water surface in the reservoir, So is the storage 

corresponding to Zo elevation,  which will be considered as a conservation level, SF is storage 

corresponding ZF elevation, which can be interpreted as the maximum level that can be 

reached when Eq. (1) is solved, α>1 is a regression constant. 

From Eq. (2), 

𝑑𝑆

𝑑𝑡
= 𝛼

𝑆𝐹−𝑆𝑜

𝑍𝐹−𝑍𝑜
(
𝑍−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 𝑑𝑍

𝑑𝑡
= 𝛼

𝑆𝐹−𝑆𝑜

𝑍𝐹−𝑍𝑜
(
𝑍−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 𝑑𝐻

𝑑𝑡
    (3) 

where: 

𝐻 = 𝑍 − 𝑍𝑐𝑣         (4) 

is the spillway crest head and Zcv is crest elevation. 

6.3 Hydrograph produced by the landslide 

According to Fig. 3, the flow produced by the landslide can be written as 

 

𝑄𝑙(𝑡) = {

0, 𝑡 ∈ (−∞, 0)

𝑄𝑝𝑙 (1 −
𝑡

𝑡𝑏𝑙
) , 𝑡 ∈ (0, 𝑡𝑏𝑙)

0, 𝑡 ∈ (𝑡𝑏𝑙, ∞)

     (5) 

where Qpl is the peak flood and tbl is the base time of the hydrograph. It must be noted that 

the triangular form of the hydrograph permits an increase in the volume if it is necessary.  

 



 

Figure 3 Discharge law of the hydrograph 

 

6.4 Spillway discharge for the Peñitas Dam 

The spillway discharge is shown in Fig. 4 and is given by 

𝑄𝑠 = {
0,   𝐻 < 𝐻𝑜

𝐶𝐿𝐻
3

2, 𝐻 ≥ 𝐻𝑜
      (6) 

where 

              𝐻𝑜 = 𝑍𝑜 − 𝑍𝑐𝑣                                         (7) 

C is the discharge coefficient, and L is the spillway length. 

Note that if 

𝑄𝑠 < 𝑄𝑙 + 𝑄𝑓 ,   𝑡 ∈ (0, 𝑡𝑝𝑓)                (8) 

then Eq. (6) may be written as 

𝑄𝑠 = {
0,   𝑡 < 0

𝐶𝐿𝐻
3

2, 𝑡 ≥ 0
                    (9) 

In fact,  

              𝑄𝑠,𝑜 ≡ 𝐶𝐿𝐻𝑜
3/2

                                            (10) 

is the discharge in the spillway when t=0, as is shown in Fig.4. 
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Fig. 4. Discharge Law of the Spillway 

 

6.5 Flood routing reviewed 

By substituting Eqs. (3) and (10) in Eq. (1), 

𝐹𝑐(𝐻) = 𝛼
𝑆𝐹−𝑆𝑜

𝑍𝐹−𝑍𝑜
(
𝑍−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 𝑑𝐻

𝑑𝑡
− [𝑄𝑙(𝑡) + 𝑄𝑓(𝑡) − 𝐶𝐿𝐻

3

2] = 0, 𝑡 > 0           (11) 

where )(y)( tQtQ fl  are given by Eqs. (5) and (6), and )(cF  is a differential operator that 

acts over the hydraulic head of the spillway, H. 

 

 

6.6 Flood Routing Discretization 

Eq. (13) has no analytical solution for an arbitrary value of α. Thus, a discretization solution 

based on the trapezoidal rule is done: 

𝐹𝐷 = (𝐻𝑗 , 𝐻𝑗+1; ∆𝑡𝑗+1/2) ≡ 𝛼
𝑆𝐹−𝑆𝑜

𝑍𝐹−𝑍𝑜
[
1

2
(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

+
1

2
(
𝑍𝑐+𝐻𝑗+1−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]
𝐻𝑗+1−𝐻𝑗

∆𝑡
𝑗+
1
2

−

  [
𝑄𝑙,𝑗+𝑄𝑙,𝑗+1

2
+
𝑄𝑓,𝑗+𝑄𝑓,𝑗+1

2
−
𝐶𝐿

2
(𝐻𝑗

3/2
+ 𝐻𝑗+1

3/2
)] = 0;   𝑗 = 0,1, … .         (12) 

where 

𝐻𝑗 ≈ 𝐻(𝑡𝑗)                                                                   (13) 

𝐻𝑗+1 ≈ 𝐻(𝑡𝑗+1)          (14) 

           

Both are discrete approximations of the head values over the spillway crest in time tj and tj+1. 

Thus,  

H

Q

H0

Q0



𝑄𝑙,𝑗 = 𝑄𝑙(𝑡𝑗)                               (15) 

𝑄𝑙,𝑗+1 = 𝑄𝑙(𝑡𝑗+1)              (16) 

𝑄𝑓,𝑗 = 𝑄𝑓(𝑡𝑗)               (17) 

𝑄𝑓,𝑗+1 = 𝑄𝑓(𝑡𝑗+1)              (18) 

In Eq. (14), we can use a time interval variable, defined as  

∆𝑡𝑗+1/2 = 𝑡𝑗+1 − 𝑡𝑗              (19) 

If t0=0, Eq. (19) stay: 

𝑡𝑗+1 = 𝑡𝑗 + ∆𝑡𝑗+1
2

= 𝑡𝑗−1 + ∆𝑡𝑗−1
2

+ ∆𝑡
𝑗+

1

2

= 𝑡𝑗−2 + ∆𝑡𝑗−3
2

+ ∆𝑡
𝑗−

1

2

+ ∆𝑡
𝑗+

1

2

= 𝑡𝑜 +

∑ ∆𝑡𝑘+1/2
𝑗
𝑘=0 = ∑ ∆𝑡𝑘+1/2

𝑗
𝑘=0  , 𝑗 = 0,1, ….                 (20) 

Finally, in Eq. (12), );,( DF is a discrete operator that functionally depends on the heads 𝐻𝑗 

and 𝐻𝑗+1 and from the parametric point of view, of the interval ∆𝑡𝑗+1/2. 

It must also be observed that differences equation (12) is centered in tj+1/2=(tj + tj+1)/2, and it 

can be shown that building a continuum function twice differentiable around 𝐻𝑗 = 𝐻(𝑡𝑗) that 

exactly satisfies Eq. (12), is possible to say: 

𝐹𝐷 (𝐻𝑗 , 𝐻𝑗+1; ∆𝑡𝑗+1
2

) = 0             (21) 

Therefore, when differences equation (21) is solved, the differential modified equation  

𝐹𝐶 (𝐻(𝑡) + 𝑂 (∆𝑡𝑗+1
2

2  )) = 0 is being solved (Warming and Hyett. 1974). It must be noted 

that the existence of  𝐻(𝑡) is guaranteed because the same can be built as a cubic spline.  

Therefore, also is possible to show that Eq. (12) has a truncated error 𝑇𝑗+1/2 =

𝐹𝐷[𝐻(𝑡𝑗), 𝐻(𝑡𝑗+1); ∆𝑡𝑗+1/2] =  𝑂 (∆𝑡𝑗+1
2

2  ), (Smith, 1978) 

Given that Eq. (12) defines an “ahead march” problem, this equation in finite differences is 

not lineal in 𝐻𝑗+1  for known 𝐻𝑗, and then the analytical general solution for arbitrary values 

of α is not known.  

With the objective of giving an analytical solution, a similar strategy to proposed by Beam 

and Warming (1976) will be used that allows reaching an “implicit factorized scheme.” 

Remembering the Taylor theorem (Rosenlicht, 1968) for a function twice differentiable, f = 

f (x) can be written as 



xxxxfxxfxfxxf +++=+  ,)(
2

1
)()()( 2

,             (22) 

where the residue has been written in a Lagrangian form. 

By identifying x with 𝐻𝑗 and f(x) with (
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

, as well as Δx with 𝐻𝑗+1 − 𝐻𝑗, the 

Taylor theorem (22) can be written as 

(
𝑍𝑐 + 𝐻𝑗+1 − 𝑍𝑜

𝑍𝐹 − 𝑍𝑜
)
𝛼−1 

= (
𝑍𝑐 + 𝐻𝑗 − 𝑍𝑜

𝑍𝐹 − 𝑍𝑜
)
𝛼−1 

+ 

(𝛼 − 1)
(𝑍𝑐+𝐻𝑗−𝑍𝑜)

𝛼−2

(𝑍𝐹−𝑍𝑜)𝛼−1
(𝐻𝑗+1 − 𝐻𝑗) +

(𝛼−1)(𝛼−2)

2

(𝑍𝑐+𝐻𝑗+𝛽−𝑍𝑜)
𝛼−3

(𝑍𝐹−𝑍𝑜)𝛼−1
(𝐻𝑗+1 − 𝐻𝑗)

2
;

0 < 𝛽 < 1

 

      (23) 

 Now identifying x with 𝐻𝑗,  f(x) with 𝐻𝑗
3/2

 and Δx with 𝐻𝑗+1 − 𝐻𝑗   for known 𝐻𝑗, it is possible 

again to apply Taylor's theorem (22) as 

𝐻𝑗+1
3/2

= 𝐻𝑗
3/2

+
3

2
𝐻𝑗
1/2
(𝐻𝑗+1 − 𝐻𝑗) +

3

8
𝐻
𝑗+1

−
1

2 (𝐻𝑗+1 − 𝐻𝑗)
2; 0 < 𝛾 < 1            (24) 

Obviously  

𝐻𝑗+1 − 𝐻𝑗 = 𝑂(∆𝑡𝑗+1
2

 )               (25) 

By substituting Eqs. (23) and (24) in Eq. (22) and considering the definition of differences 

FD given in Eq. (12), then: 

𝐹𝐷 = (𝐻𝑗 , 𝐻𝑗+1; ∆𝑡𝑗+1
2

) ≡ 𝛼
𝑆𝐹−𝑆𝑜

𝑍𝐹−𝑍𝑜
[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]
𝐻𝑗+1−𝐻𝑗

∆𝑡
𝑗+
1
2

−  [
𝑄𝑙,𝑗+𝑄𝑙,𝑗+1

2
+
𝑄𝑓,𝑗+𝑄𝑓,𝑗+1

2
−

𝐶𝐿

2
𝐻
𝑗

3

2 −
3

4
𝐶𝐿𝐻

𝑗

1

2 (𝐻𝑗+1 − 𝐻𝑗)] + 𝑂 (∆𝑡𝑗+1
2

2  ) = 0, 𝑗 = 0,1, … . .            (26) 

Thus, without altering the magnitude order of truncated error, i.e. of 𝑂 (∆𝑡
𝑗+

1

2

2  ), from finite 

differences of truncated given by Eq. (12), it is possible to build the next implicit scheme 

factorized of second order for the approximate solution of differential equation of flood 

routing given by Eq. (11), neglecting quadratic terms in 𝐻𝑗+1 − 𝐻𝑗  and obviously in ∆𝑡
𝑗+

1

2

 

in Eq. (26): 

𝐹𝐷 = (𝐻𝑗 , 𝐻𝑗+1; ∆𝑡𝑗+1
2

) ≡ 𝛼
𝑆𝐹−𝑆𝑜

𝑍𝐹−𝑍𝑜
[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]
𝐻𝑗+1−𝐻𝑗

∆𝑡
𝑗+
1
2

+
3

4
𝐶𝐿𝐻

𝑗

1

2 𝐻𝑗+1 −

1

2
  [𝑄𝑙,𝑗 + 𝑄𝑙,𝑗+1 + 𝑄𝑓,𝑗 + 𝑄𝑓,𝑗+1 −

𝐶𝐿

2
𝐻
𝑗

3

2)] = 0, 𝑗 = 0,1… .              (27) 



where 

𝐻𝑗 ≈ 𝐻(𝑡𝑗)                (28) 

𝐻𝑗+1 ≈ 𝐻(𝑡𝑗+1)                            (29) 

are discrete approximations of head values over the spillway crest that acquires in the times 

tj and tj+1. A truncated error can be shown that is given by Eq. (27):  

𝑇𝑗+1/2 = 𝐹𝐷 (𝐻(𝑡𝑗), 𝐻(𝑡𝑗+1); ∆𝑡𝑗+1
2

) =  𝑂 (∆𝑡
𝑗+

1

2

2  ). The approximation order of Eq. (12) is 

not affected; however, Eq. (26) can be written as 

𝛼
𝑆𝐹−𝑆𝑜

𝑍𝐹−𝑍𝑜
[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]𝐻𝑗+1 − 𝛼
𝑆𝐹−𝑆𝑜

𝑍𝐹−𝑍𝑜
[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]𝐻𝑗 + (
3

4
∆𝑡
𝑗+

1

2

)𝐶𝐿𝐻
𝑗

1

2𝐻𝑗+1-

1

2
∆𝑡
𝑗+

1

2

 (𝑄𝑙,𝑗 +𝑄𝑙,𝑗+1 + 𝑄𝑓,𝑗 + 𝑄𝑓,𝑗+1 −
1

2
𝐶𝐿𝐻

𝑗

3

2) = 0; 𝑗 = 0,1, …… ..           (30) 

and: 

𝐻𝑗+1 =
𝛼
𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]𝐻𝑗 + 
1

2
∆𝑡
𝑗+
1
2

 (𝑄𝑙,𝑗+𝑄𝑙,𝑗+1+𝑄𝑓,𝑗+𝑄𝑓,𝑗+1−
1

2
𝐶𝐿𝐻

𝑗

3
2)

𝛼
𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]+(
3

4
∆𝑡
𝑗+
1
2

)𝐶𝐿𝐻
𝑗

1
2

 𝑗 = 0,1, …    (31) 

Recursive Eq. (31) let the calculus of the flood routing over the Peñitas Reservoir and allows 

the calculation of discharged flows by the spillway that correspond to each interval of time, 

given by Eq. (31): 

𝑄𝑠,𝑗+1 ≡ 𝐶𝐿𝐻𝑗+1

3

2 ; 𝑗 = 0,1, …                    (32) 

 

It must be observed that with this analysis, associated to time design flood, must coincide 

with the flood caused by the landslide, which is unlikely to happen. An analysis with different 

times in each event is a motive for future research.  

 

Maximum water elevation occurs once the landslide peak flow is reached and is given by 

equating inflow and outflow discharges as is shown in Fig. 5, (Q1≡𝑄∗). In other words, the 

value H1≡𝐻∗ is given by Eq. (31), where the time is given by t1≡𝑡∗, in Eq. (31): 

 

𝑄∗ ≡ 𝐶𝐿𝐻∗

3

2 = 𝑄𝑝𝑓 (1 −
𝑡∗−𝑡𝑝𝑓

𝑡𝑏𝑓−𝑡𝑝𝑓
)                    (33) 



 

Fig.5 Schematic representation of Inflow-Outflow to Peñitas River. 

 

6.7 Ordinary Risk Case 

In the case that only the failure of the natural dam is present without floods from the 

tributaries, the analysis will be denominated “Ordinary Risk Case," then Eq. (31) continues 

being applicable with the consideration that Qf, j=Qf, j+1≡0, j=0,1,... . In this case, Fig. 5 shows 

that the maximum head belongs to j=0 and is given by: 

𝐻𝑗+1 =
𝛼
𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻0−𝑍𝑜
𝑍𝐹−𝑍𝑜

)
𝛼−1 

]𝐻0 + 
1

2
∆𝑡1
2

 (𝑄𝑙,0+𝑄𝑙,1−
1

2
𝐶𝐿𝐻0

3
2)

𝛼
𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻0−𝑍𝑜
𝑍𝐹−𝑍𝑜

)
𝛼−1 

]+(
3

4
∆𝑡1
2

)𝐶𝐿𝐻0

1
2

 𝑗 = 0,1, …   (34) 

 

According with this Fig. 5, 

𝑄𝑙,0 = 𝑄𝑝,𝑙                                                     (35) 

𝑄𝑙,1 = (1 −
𝑡∗

𝑡𝑏𝑓
)𝑄𝑝,𝑙             (36) 

∆𝑡1/2 = 𝑡∗                                    (37) 

By substituting Eqs. (35) through (37) in Eq. (34), 

Q

t

Qpl

t2=tbl

1 2

t1=t*

3

t0=0 t3=tbs

Q0

Q1=Q*

Q2

Q3=0

t1/2 t3/2 t5/2

Inflow

Outflow



𝐻𝑗+1 =

𝛼
𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]𝐻0 + 
1

2
𝑡∗ ((2−

𝑡∗
𝑡𝑏𝑙
)𝑄𝑝𝑙−

1

2
𝐶𝐿𝐻0

3
2)

𝛼
𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻0−𝑍𝑜
𝑍𝐹−𝑍𝑜

)
𝛼−1 

]+(
3

4
𝑡∗)𝐶𝐿𝐻0

1
2

 𝑗 = 0,1, …         (38) 

Analogous to Eq. (32), equating inflow and outflow discharges, when t=t* (as in Fig. 4)  

𝑄∗ = 𝐶𝐿𝐻∗

3

2 = (1 −
𝑡∗

𝑡𝑏𝑙
)𝑄𝑝,𝑙                 (39) 

By substituting Eq. (38) in Eq. (39), 

𝐶𝐿 {

𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]𝐻0 + 
1

2
𝑡∗ (2𝑄𝑝𝑙−

1

2
𝐶𝐿𝐻0

3
2)−𝑄𝑝𝑙

𝑡∗
2

2𝑡𝑏𝑙

𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻0−𝑍𝑜
𝑍𝐹−𝑍𝑜

)
𝛼−1 

]+(
3

4
𝑡∗)𝐶𝐿𝐻0

1
2

}

3/2

= (1 −
𝑡∗

𝑡𝑏𝑙
)𝑄𝑝,𝑙                                     

(40) 

Equation (40) is not linear in t* and can be expressed as a polynomial equation of sixth degree. 

By the Abel impossibility theorem, it is not possible obtain an explicit solution; therefore, an 

alternative method is proposed as the one used before for determining t*. Let now 

𝐴 = 𝛼
𝑆𝐹−𝑆𝑜

𝑍𝐹−𝑍𝑜
[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]𝐻0                                                   (41) 

𝐵 =
1

2
 (2𝑄𝑝𝑙 −

1

2
𝐶𝐿𝐻0

3

2)                                                              (42) 

𝐷 = 𝛼
𝑆𝐹−𝑆𝑜

𝑍𝐹−𝑍𝑜
[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]                                                        (43) 

𝐸 =
3

4
𝐶𝐿𝐻0

1

2                                                                                   (44) 

        

By expanding the left member of Eq. (40) in Taylor series, we have (as in Eqs. (38) and (39) 

through (44)): 

{

𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]𝐻0 + 
1

2
𝑡∗ (2𝑄𝑝𝑙−

1

2
𝐶𝐿𝐻0

3
2)−𝑄𝑝𝑙

𝑡∗
2

2𝑡𝑏𝑙

𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻0−𝑍𝑜
𝑍𝐹−𝑍𝑜

)
𝛼−1 

]+(
3

4
𝑡∗)𝐶𝐿𝐻0

1
2

}

3

2

= (
𝐴+𝐵𝑡∗+𝐵′𝑡∗

2

𝐷+𝐸𝑡∗
)
3/2

= (
𝐴

𝐷
)
3/2

+

3

2
(
𝐴

𝐷
)
1/2

 
𝐵𝐷−𝐴𝐸

𝐷2
𝑡∗ + 𝑂(Δ𝑡1

2

2)                                                (45) 

By neglecting the terms of 𝑂(Δ𝑡1
2

2) in this equation, by substituting the result in Eq. (39) and 

by solving for t*, we have 



𝑡∗ =
𝑄𝑝𝑙−𝐶𝐿(

𝐴

𝐷
)
3/2

3

2
𝐶𝐿(

𝐴

𝐷
)
1/2

(
𝐵

𝐷
−
𝐴𝐸

𝐷2
)+

𝑄𝑝𝑙

𝑡𝑏𝑙

                           (46) 

From Eqs. (41) through (44), we have 

𝐴

𝐷
= 𝐻0                       (47) 

𝐵

𝐷
=

𝑄𝑝𝑙−
1

4
𝐶𝐿(

𝐴

𝐷
)
3/2

𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻0−𝑍𝑜
𝑍𝐹−𝑍𝑜

)
𝛼−1 

]

                            (48) 

𝐸

𝐷
=

3

4

𝐶𝐿(𝐻0)
1/2

     𝛼
𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻0−𝑍𝑜
𝑍𝐹−𝑍𝑜

)
𝛼−1 

]

                                           (49) 

Hence, 

𝐵

𝐷
−
𝐴𝐸

𝐷2
=

𝑄𝑝𝑙−𝐶𝐿𝐻0
3/2

𝛼
𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻0−𝑍𝑜
𝑍𝐹−𝑍𝑜

)
𝛼−1 

]

                           (50) 

By substituting Eqs. (47) through (50) in Eq. (45), 

 

𝑡∗ =
𝑄𝑝𝑙−𝐶𝐿𝐻0

3/2

3

2
𝐶𝐿𝐻0

1/2
𝑄𝑝𝑙−𝐶𝐿𝐻0

3/2

𝛼
𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻0−𝑍𝑜
𝑍𝐹−𝑍𝑜

)
𝛼−1 

]

+
𝑄𝑝𝑙

𝑡𝑏𝑙

                                   (51) 

By finally substituting Eq. (51) in Eq. (38), the explicit expression for the maximum head is 

obtained:   

 

 

 

𝐻∗ =
{
 
 
 

 
 
 

𝛼
𝑆𝐹 − 𝑆𝑜
𝑍𝐹 − 𝑍𝑜

[(
𝑍𝑐 +𝐻𝑗 − 𝑍𝑜
𝑍𝐹 − 𝑍𝑜

)
𝛼−1 

]𝐻0 +
1
2

[
 
 
 
 
 
 
 

𝑄𝑝𝑙 − 𝐶𝐿𝐻0

3
2

3
2
𝐶𝐿𝐻0

1
2 [

𝑄𝑝𝑙 − 𝐶𝐿𝐻0
3
2

𝛼
𝑆𝐹 − 𝑆𝑜
𝑍𝐹 − 𝑍𝑜

[(
𝑍𝑐 + 𝐻0 − 𝑍𝑜
𝑍𝐹 − 𝑍𝑜

)
𝛼−1 

]

+
𝑄𝑝𝑙
𝑡𝑏𝑙
]

]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

2𝑄𝑝𝑙 −
𝑄𝑝𝑙
𝑡𝑏𝑙

[(𝑄𝑝𝑙 − 𝐶𝐿𝐻0

3
2) −

1
2
𝐶𝐿𝐻0

3
2]

[
𝑄𝑝𝑙 − 𝐶𝐿𝐻0

3/2

𝛼
𝑆𝐹 − 𝑆𝑜
𝑍𝐹 − 𝑍𝑜

[(
𝑍𝑐 + 𝐻0 − 𝑍𝑜
𝑍𝐹 − 𝑍𝑜

)
𝛼−1 

]

+
𝑄𝑝𝑙
𝑡𝑏𝑙
]

]
 
 
 
 
 
 
 

}
 
 
 

 
 
 

𝑆𝐹 − 𝑆𝑜
𝑍𝐹 − 𝑍𝑜

[(
𝑍𝑐 + 𝐻0 − 𝑍𝑜
𝑍𝐹 − 𝑍𝑜

)
𝛼−1 

] + (
3
4
)𝐶𝐿𝐻0

1
2  

𝑄𝑝𝑙 − 𝐶𝐿𝐻0

3
2

3
2
𝐶𝐿𝐻0

1
2

𝑄𝑝𝑙 − 𝐶𝐿𝐻0
3
2

𝛼
𝑆𝐹 − 𝑆𝑜
𝑍𝐹 − 𝑍𝑜

[(
𝑍𝑐 + 𝐻0 − 𝑍𝑜
𝑍𝐹 − 𝑍𝑜

)
𝛼−1 

]

+
𝑄𝑝𝑙
𝑡𝑏𝑙
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