
Flood Routing 1 

The reservoir routing follows continuity equation: 2 

𝑑𝑆

𝑑𝑡
= 𝑄𝑙 + 𝑄𝑓 − 𝑄𝑠                                                                        (1) 3 

 4 

where S is the storage in the reservoir of the Peñitas Dam, Ql is the flow generated by the 5 

landslide, Qf, is the flow of tributaries rivers to the site of Peñitas, Qs is the flow extracted 6 

from the Peñitas spillway, and t is the analysis time. 7 

6.2 Storage Capacity Curve 8 

Storage capacity elevation curve for the reservoir may be expressed as: 9 

𝑆−𝑆𝑜

𝑆𝐹−𝑆𝑜
= (

𝑍−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼

    (2) 10 

where Z is the elevation of the free water surface in the reservoir, So is the storage 11 

corresponding to Zo elevation,  which will be considered as a conservation level, SF is storage 12 

corresponding ZF elevation, which can be interpreted as the maximum level that can be 13 

reached when Eq. (1) is solved, α>1 is a regression constant. The temporal change of water 14 

stored: 15 

The time derivation of Eq. (2) yields: 16 

𝑑𝑆

𝑑𝑡
= 𝛼

𝑆𝐹−𝑆𝑜

𝑍𝐹−𝑍𝑜
(
𝑍−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 𝑑𝑍

𝑑𝑡
= 𝛼

𝑆𝐹−𝑆𝑜

𝑍𝐹−𝑍𝑜
(
𝑍−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 𝑑𝐻

𝑑𝑡
    (3) 17 

where: 18 

𝐻 = 𝑍 − 𝑍𝑐𝑣         (4) 19 

is the spillway crest head, and Zcv is crest elevation. 20 

6.3 Hydrograph produced by the landslide 21 

According to Fig. 3, the flow produced by the landslide can be written as 22 

 23 

𝑄𝑙(𝑡) = {

0, 𝑡 ∈ (−∞, 0)

𝑄𝑝𝑙 (1 −
𝑡

𝑡𝑏𝑙
) , 𝑡 ∈ (0, 𝑡𝑏𝑙)

0, 𝑡 ∈ (𝑡𝑏𝑙, ∞)

     (5) 24 

where Qpl is the peak flood and tbl is the base time of the hydrograph. It must be noted that 25 

the triangular form of the hydrograph permits an increase in the volume if it is necessary, but 26 

can be adopted any form of the hydrograph. 27 

 28 



 29 

 30 

 31 

 32 

 33 

 34 

 35 

Fig. 3 Discharge law of the hydrograph adopted 36 

 37 

6.4 Spillway discharge for the Peñitas Dam 38 

Is usual in hydraulics that discharge follow an exponential law of 𝐻
3

2, and is given by 39 

𝑄𝑠 = {
0,   𝐻 < 𝐻𝑜

𝐶𝐿𝐻
3

2, 𝐻 ≥ 𝐻𝑜
      (6) 40 

where 41 

            𝐻𝑜 = 𝑍𝑜 − 𝑍𝑐𝑣                             (7) 42 

C is the discharge coefficient, and L is the spillway length. 43 

Note that if 44 

𝑄𝑠 < 𝑄𝑙 + 𝑄𝑓 ,   𝑡 ∈ (0, 𝑡𝑝𝑓)                (8) 45 

then Eq. (6) may be written as 46 

𝑄𝑠 = {
0,   𝑡 < 0

𝐶𝐿𝐻
3

2, 𝑡 ≥ 0
                    (9) 47 

In fact,  48 

              𝑄𝑠,𝑜 ≡ 𝐶𝐿𝐻𝑜
3/2

                                            (10) 49 

is the discharge in the spillway when t=0, as is shown in Fig.4. 50 

 51 
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 52 

Fig. 4. Discharge Law of the Spillway 53 

 54 

6.5 Flood routing reviewed 55 

By substituting Eqs. (3) and (10) in Eq. (1), 56 

𝐹𝑐(𝐻) = 𝛼
𝑆𝐹−𝑆𝑜

𝑍𝐹−𝑍𝑜
(
𝑍−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 𝑑𝐻

𝑑𝑡
− [𝑄𝑙(𝑡) + 𝑄𝑓(𝑡) − 𝐶𝐿𝐻

3

2] = 0, 𝑡 > 0           (11) 57 

where )(y)( tQtQ fl  are given by Eqs. (5) and (6), and )(cF  is a differential operator that 58 

acts over the hydraulic head of the spillway, H. 59 

 60 

6.6 Flood Routing Discretization 61 

Eq. (13) has no analytical solution for an arbitrary value of α. Thus, a discretization solution 62 

based on the trapezoidal rule is done: 63 

𝐹𝐷 = (𝐻𝑗 , 𝐻𝑗+1; ∆𝑡𝑗+1/2) ≡ 𝛼
𝑆𝐹−𝑆𝑜

𝑍𝐹−𝑍𝑜
[
1

2
(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

+
1

2
(
𝑍𝑐+𝐻𝑗+1−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]
𝐻𝑗+1−𝐻𝑗

∆𝑡
𝑗+
1
2

−64 

  [
𝑄𝑙,𝑗+𝑄𝑙,𝑗+1

2
+
𝑄𝑓,𝑗+𝑄𝑓,𝑗+1

2
−
𝐶𝐿

2
(𝐻𝑗

3/2
+ 𝐻𝑗+1

3/2
)] = 0;   𝑗 = 0,1, … .         (12) 65 

where 66 

𝐻𝑗 ≈ 𝐻(𝑡𝑗)                                                                         (13) 67 

𝐻𝑗+1 ≈ 𝐻(𝑡𝑗+1)                         (14) 68 

           69 

Both are discrete approximations of the head values over the spillway crest in time tj and tj+1. 70 

Thus,  71 

𝑄𝑙,𝑗 = 𝑄𝑙(𝑡𝑗)                               (15) 72 

H

Q

H0

Q0



𝑄𝑙,𝑗+1 = 𝑄𝑙(𝑡𝑗+1)              (16) 73 

𝑄𝑓,𝑗 = 𝑄𝑓(𝑡𝑗)               (17) 74 

𝑄𝑓,𝑗+1 = 𝑄𝑓(𝑡𝑗+1)              (18) 75 

In Eq. (14), we can use a time interval variable, defined as  76 

∆𝑡𝑗+1/2 = 𝑡𝑗+1 − 𝑡𝑗              (19) 77 

If t0=0, Eq. (19) stay: 78 

𝑡𝑗+1 = 𝑡𝑗 + ∆𝑡𝑗+1
2

= 𝑡𝑗−1 + ∆𝑡𝑗−1
2

+ ∆𝑡
𝑗+

1

2

= 𝑡𝑗−2 + ∆𝑡𝑗−3
2

+ ∆𝑡
𝑗−

1

2

+ ∆𝑡
𝑗+

1

2

= 𝑡𝑜 +79 

∑ ∆𝑡𝑘+1/2
𝑗
𝑘=0 = ∑ ∆𝑡𝑘+1/2

𝑗
𝑘=0  , 𝑗 = 0,1, ….                 (20) 80 

Finally, in Eq. (12), );,( DF is a discrete operator that functionally depends on the heads 𝐻𝑗 81 

and 𝐻𝑗+1 and from the parametric point of view, of the interval ∆𝑡𝑗+1/2. 82 

It must also be observed that differences equation (12) is centered in tj+1/2=(tj + tj+1)/2, and it 83 

can be shown that building a continuum function twice differentiable around 𝐻𝑗 = 𝐻(𝑡𝑗) that 84 

exactly satisfies Eq. (12), is possible to say: 85 

𝐹𝐷 (𝐻𝑗 , 𝐻𝑗+1; ∆𝑡𝑗+1
2

) = 0             (21) 86 

Therefore, when differences equation (21) is solved, the differential modified equation  87 

𝐹𝐶 (𝐻(𝑡) + 𝑂 (∆𝑡𝑗+1
2

2  )) = 0 is being solved (Warming and Hyett. 1974). It must be noted 88 

that the existence of  𝐻(𝑡) is guaranteed because the same can be built as a cubic spline.  89 

Therefore, also is possible to show that Eq. (12) has a truncated error 𝑇𝑗+1/2 =90 

𝐹𝐷[𝐻(𝑡𝑗), 𝐻(𝑡𝑗+1); ∆𝑡𝑗+1/2] =  𝑂 (∆𝑡𝑗+1
2

2  ), (Smith, 1978) 91 

Given that Eq. (12) defines an “ahead march” problem, this equation in finite differences is 92 

not lineal in 𝐻𝑗+1  for known 𝐻𝑗, and then the analytical general solution for arbitrary values 93 

of α is not known.  94 

With the objective of giving an analytical solution, a similar strategy to proposed by Beam 95 

and Warming (1976) will be used that allows reaching an “implicit factorized scheme.” 96 

Remembering the Taylor theorem (Rosenlicht, 1968) for a function twice differentiable, f = 97 

f (x) can be written as 98 

xxxxfxxfxfxxf +++=+  ,)(
2

1
)()()( 2

,             (22) 99 



where the residue has been written in a Lagrangian form. 100 

By identifying x with 𝐻𝑗 and f(x) with (
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

, as well as Δx with 𝐻𝑗+1 − 𝐻𝑗, the 101 

Taylor theorem (22) can be written as 102 

(
𝑍𝑐 + 𝐻𝑗+1 − 𝑍𝑜

𝑍𝐹 − 𝑍𝑜
)
𝛼−1 

= (
𝑍𝑐 + 𝐻𝑗 − 𝑍𝑜

𝑍𝐹 − 𝑍𝑜
)
𝛼−1 

+ 103 

(𝛼 − 1)
(𝑍𝑐+𝐻𝑗−𝑍𝑜)

𝛼−2

(𝑍𝐹−𝑍𝑜)𝛼−1
(𝐻𝑗+1 − 𝐻𝑗) +

(𝛼−1)(𝛼−2)

2

(𝑍𝑐+𝐻𝑗+𝛽−𝑍𝑜)
𝛼−3

(𝑍𝐹−𝑍𝑜)𝛼−1
(𝐻𝑗+1 − 𝐻𝑗)

2
;

0 < 𝛽 < 1

 

      (23) 104 

 Now identifying x with 𝐻𝑗,  f(x) with 𝐻𝑗
3/2

 and Δx with 𝐻𝑗+1 − 𝐻𝑗   for known 𝐻𝑗, it is possible 105 

again to apply Taylor's theorem (22) as 106 

𝐻𝑗+1
3/2

= 𝐻𝑗
3/2

+
3

2
𝐻𝑗
1/2
(𝐻𝑗+1 − 𝐻𝑗) +

3

8
𝐻
𝑗+1

−
1

2 (𝐻𝑗+1 − 𝐻𝑗)
2; 0 < 𝛾 < 1            (24) 107 

Obviously  108 

𝐻𝑗+1 − 𝐻𝑗 = 𝑂(∆𝑡𝑗+1
2

 )               (25) 109 

By substituting Eqs. (23) and (24) in Eq. (22) and considering the definition of differences 110 

FD given in Eq. (12), then: 111 

𝐹𝐷 = (𝐻𝑗 , 𝐻𝑗+1; ∆𝑡𝑗+1
2

) ≡ 𝛼
𝑆𝐹−𝑆𝑜

𝑍𝐹−𝑍𝑜
[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]
𝐻𝑗+1−𝐻𝑗

∆𝑡
𝑗+
1
2

−  [
𝑄𝑙,𝑗+𝑄𝑙,𝑗+1

2
+
𝑄𝑓,𝑗+𝑄𝑓,𝑗+1

2
−112 

𝐶𝐿

2
𝐻
𝑗

3

2 −
3

4
𝐶𝐿𝐻

𝑗

1

2 (𝐻𝑗+1 − 𝐻𝑗)] + 𝑂 (∆𝑡𝑗+1
2

2  ) = 0, 𝑗 = 0,1, … . .            (26) 113 

Thus, without altering the magnitude order of truncated error, i.e. of 𝑂 (∆𝑡
𝑗+

1

2

2  ), from finite 114 

differences of truncated given by Eq. (12), it is possible to build the next implicit scheme 115 

factorized of second order for the approximate solution of differential equation of flood 116 

routing given by Eq. (11), neglecting quadratic terms in 𝐻𝑗+1 − 𝐻𝑗  and obviously in ∆𝑡
𝑗+

1

2

 117 

in Eq. (26): 118 

𝐹𝐷 = (𝐻𝑗 , 𝐻𝑗+1; ∆𝑡𝑗+1
2

) ≡ 𝛼
𝑆𝐹−𝑆𝑜

𝑍𝐹−𝑍𝑜
[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]
𝐻𝑗+1−𝐻𝑗

∆𝑡
𝑗+
1
2

+
3

4
𝐶𝐿𝐻

𝑗

1

2 𝐻𝑗+1 −119 

1

2
  [𝑄𝑙,𝑗 + 𝑄𝑙,𝑗+1 + 𝑄𝑓,𝑗 + 𝑄𝑓,𝑗+1 −

𝐶𝐿

2
𝐻
𝑗

3

2)] = 0, 𝑗 = 0,1… .              (27) 120 

where 121 



𝐻𝑗 ≈ 𝐻(𝑡𝑗)                (28) 122 

𝐻𝑗+1 ≈ 𝐻(𝑡𝑗+1)                            (29) 123 

are discrete approximations of head values over the spillway crest that acquires in the times 124 

tj and tj+1. A truncated error can be shown that is given by Eq. (27):  125 

𝑇𝑗+1/2 = 𝐹𝐷 (𝐻(𝑡𝑗), 𝐻(𝑡𝑗+1); ∆𝑡𝑗+1
2

) =  𝑂 (∆𝑡
𝑗+

1

2

2  ). The approximation order of Eq. (12) is 126 

not affected; however, Eq. (26) can be written as 127 

𝛼
𝑆𝐹−𝑆𝑜

𝑍𝐹−𝑍𝑜
[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]𝐻𝑗+1 − 𝛼
𝑆𝐹−𝑆𝑜

𝑍𝐹−𝑍𝑜
[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]𝐻𝑗 + (
3

4
∆𝑡
𝑗+

1

2

)𝐶𝐿𝐻
𝑗

1

2𝐻𝑗+1-128 

1

2
∆𝑡
𝑗+

1

2

 (𝑄𝑙,𝑗 +𝑄𝑙,𝑗+1 + 𝑄𝑓,𝑗 + 𝑄𝑓,𝑗+1 −
1

2
𝐶𝐿𝐻

𝑗

3

2) = 0; 𝑗 = 0,1, …… ..           (30) 129 

and: 130 

𝐻𝑗+1 =
𝛼
𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]𝐻𝑗 + 
1

2
∆𝑡
𝑗+
1
2

 (𝑄𝑙,𝑗+𝑄𝑙,𝑗+1+𝑄𝑓,𝑗+𝑄𝑓,𝑗+1−
1

2
𝐶𝐿𝐻

𝑗

3
2)

𝛼
𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]+(
3

4
∆𝑡
𝑗+
1
2

)𝐶𝐿𝐻
𝑗

1
2

 𝑗 = 0,1, …    (31) 131 

Recursive Eq. (31) let the calculus of the flood routing over the Peñitas Reservoir and allows 132 

the calculation of discharged flows by the spillway that correspond to each interval of time, 133 

given by Eq. (31): 134 

𝑄𝑠,𝑗+1 ≡ 𝐶𝐿𝐻𝑗+1

3

2 ; 𝑗 = 0,1, …                    (32) 135 

 136 

It must be observed that with this analysis, associated to time design flood, must coincide 137 

with the flood caused by the landslide, which is unlikely to happen. An analysis with different 138 

times in each event is a motive for future research.  139 

 140 

Maximum water elevation occurs once the landslide peak flow is reached and is given by 141 

equating inflow and outflow discharges as is shown in Fig. 5, (Q1≡𝑄∗). In other words, the 142 

value H1≡𝐻∗ is given by Eq. (31), where the time is given by t1≡𝑡∗, in Eq. (31): 143 

 144 

𝑄∗ ≡ 𝐶𝐿𝐻∗

3

2 = 𝑄𝑝𝑓 (1 −
𝑡∗−𝑡𝑝𝑓

𝑡𝑏𝑓−𝑡𝑝𝑓
)                    (33) 145 



 146 

Fig.5 Schematic representation of Inflow-Outflow to Peñitas River. 147 

 148 

6.7 Ordinary Risk Case 149 

In the case that only the failure of the natural dam is present without floods from the 150 

tributaries, the analysis will be denominated “Ordinary Risk Case," then Eq. (31) continues 151 

being applicable with the consideration that Qf, j=Qf, j+1≡0, j=0,1,... . In this case, Fig. 5 shows 152 

that the maximum head belongs to j=0 and is given by: 153 

𝐻𝑗+1 =
𝛼
𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻0−𝑍𝑜
𝑍𝐹−𝑍𝑜

)
𝛼−1 

]𝐻0 + 
1

2
∆𝑡1
2

 (𝑄𝑙,0+𝑄𝑙,1−
1

2
𝐶𝐿𝐻0

3
2)

𝛼
𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻0−𝑍𝑜
𝑍𝐹−𝑍𝑜

)
𝛼−1 

]+(
3

4
∆𝑡1
2

)𝐶𝐿𝐻0

1
2

 𝑗 = 0,1, …   (34) 154 

 155 

According with this Fig. 5, 156 

𝑄𝑙,0 = 𝑄𝑝,𝑙                                                     (35) 157 

𝑄𝑙,1 = (1 −
𝑡∗

𝑡𝑏𝑓
)𝑄𝑝,𝑙             (36) 158 

∆𝑡1/2 = 𝑡∗                                    (37) 159 

By substituting Eqs. (35) through (37) in Eq. (34), 160 

Q

t

Qpl

t2=tbl

1 2

t1=t*

3

t0=0 t3=tbs

Q0

Q1=Q*

Q2

Q3=0

t1/2 t3/2 t5/2

Inflow

Outflow



𝐻𝑗+1 =

𝛼
𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]𝐻0 + 
1

2
𝑡∗ ((2−

𝑡∗
𝑡𝑏𝑙
)𝑄𝑝𝑙−

1

2
𝐶𝐿𝐻0

3
2)

𝛼
𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻0−𝑍𝑜
𝑍𝐹−𝑍𝑜

)
𝛼−1 

]+(
3

4
𝑡∗)𝐶𝐿𝐻0

1
2

 𝑗 = 0,1, …         (38) 161 

Analogous to Eq. (32), equating inflow and outflow discharges, when t=t* (as in Fig. 4)  162 

𝑄∗ = 𝐶𝐿𝐻∗

3

2 = (1 −
𝑡∗

𝑡𝑏𝑙
)𝑄𝑝,𝑙                 (39) 163 

By substituting Eq. (38) in Eq. (39), 164 

𝐶𝐿 {

𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]𝐻0 + 
1

2
𝑡∗ (2𝑄𝑝𝑙−

1

2
𝐶𝐿𝐻0

3
2)−𝑄𝑝𝑙

𝑡∗
2

2𝑡𝑏𝑙

𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻0−𝑍𝑜
𝑍𝐹−𝑍𝑜

)
𝛼−1 

]+(
3

4
𝑡∗)𝐶𝐿𝐻0

1
2

}

3/2

= (1 −
𝑡∗

𝑡𝑏𝑙
)𝑄𝑝,𝑙                                     165 

(40) 166 

Equation (40) is not linear in t* and can be expressed as a polynomial equation of sixth degree. 167 

By the Abel impossibility theorem, it is not possible obtain an explicit solution; therefore, an 168 

alternative method is proposed as the one used before for determining t*. Let now 169 

𝐴 = 𝛼
𝑆𝐹−𝑆𝑜

𝑍𝐹−𝑍𝑜
[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]𝐻0                                                   (41) 170 

𝐵 =
1

2
 (2𝑄𝑝𝑙 −

1

2
𝐶𝐿𝐻0

3

2)                                                              (42) 171 

𝐷 = 𝛼
𝑆𝐹−𝑆𝑜

𝑍𝐹−𝑍𝑜
[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]                                                        (43) 172 

𝐸 =
3

4
𝐶𝐿𝐻0

1

2                                                                                   (44) 173 

        174 

By expanding the left member of Eq. (40) in Taylor series, we have (as in Eqs. (38) and (39) 175 

through (44)): 176 

{

𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻𝑗−𝑍𝑜

𝑍𝐹−𝑍𝑜
)
𝛼−1 

]𝐻0 + 
1

2
𝑡∗ (2𝑄𝑝𝑙−

1

2
𝐶𝐿𝐻0

3
2)−𝑄𝑝𝑙

𝑡∗
2

2𝑡𝑏𝑙

𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻0−𝑍𝑜
𝑍𝐹−𝑍𝑜

)
𝛼−1 

]+(
3

4
𝑡∗)𝐶𝐿𝐻0

1
2

}

3

2

= (
𝐴+𝐵𝑡∗+𝐵′𝑡∗

2

𝐷+𝐸𝑡∗
)
3/2

= (
𝐴

𝐷
)
3/2

+177 

3

2
(
𝐴

𝐷
)
1/2

 
𝐵𝐷−𝐴𝐸

𝐷2
𝑡∗ + 𝑂(Δ𝑡1

2

2)                                                (45) 178 

By neglecting the terms of 𝑂(Δ𝑡1
2

2) in this equation, by substituting the result in Eq. (39) and 179 

by solving for t*, we have 180 



𝑡∗ =
𝑄𝑝𝑙−𝐶𝐿(

𝐴

𝐷
)
3/2

3

2
𝐶𝐿(

𝐴

𝐷
)
1/2

(
𝐵

𝐷
−
𝐴𝐸

𝐷2
)+

𝑄𝑝𝑙

𝑡𝑏𝑙

                           (46) 181 

From Eqs. (41) through (44), we have 182 

𝐴

𝐷
= 𝐻0                       (47) 183 

𝐵

𝐷
=

𝑄𝑝𝑙−
1

4
𝐶𝐿(

𝐴

𝐷
)
3/2

𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻0−𝑍𝑜
𝑍𝐹−𝑍𝑜

)
𝛼−1 

]

                            (48) 184 

𝐸

𝐷
=

3

4

𝐶𝐿(𝐻0)
1/2

     𝛼
𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻0−𝑍𝑜
𝑍𝐹−𝑍𝑜

)
𝛼−1 

]

                                           (49) 185 

Hence, 186 

𝐵

𝐷
−
𝐴𝐸

𝐷2
=

𝑄𝑝𝑙−𝐶𝐿𝐻0
3/2

𝛼
𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻0−𝑍𝑜
𝑍𝐹−𝑍𝑜

)
𝛼−1 

]

                           (50) 187 

By substituting Eqs. (47) through (50) in Eq. (45), 188 

 189 

𝑡∗ =
𝑄𝑝𝑙−𝐶𝐿𝐻0

3/2

3

2
𝐶𝐿𝐻0

1/2
𝑄𝑝𝑙−𝐶𝐿𝐻0

3/2

𝛼
𝑆𝐹−𝑆𝑜
𝑍𝐹−𝑍𝑜

[(
𝑍𝑐+𝐻0−𝑍𝑜
𝑍𝐹−𝑍𝑜

)
𝛼−1 

]

+
𝑄𝑝𝑙

𝑡𝑏𝑙

                                   (51) 190 

By finally substituting Eq. (51) in Eq. (38), the explicit expression for the maximum head is 191 

obtained:   192 

 193 

 194 

 195 

𝐻∗ =
{
 
 
 

 
 
 

𝛼
𝑆𝐹 − 𝑆𝑜
𝑍𝐹 − 𝑍𝑜

[(
𝑍𝑐 +𝐻𝑗 − 𝑍𝑜
𝑍𝐹 − 𝑍𝑜

)
𝛼−1 

]𝐻0 +
1
2

[
 
 
 
 
 
 
 

𝑄𝑝𝑙 − 𝐶𝐿𝐻0

3
2

3
2
𝐶𝐿𝐻0

1
2 [

𝑄𝑝𝑙 − 𝐶𝐿𝐻0
3
2

𝛼
𝑆𝐹 − 𝑆𝑜
𝑍𝐹 − 𝑍𝑜

[(
𝑍𝑐 + 𝐻0 − 𝑍𝑜
𝑍𝐹 − 𝑍𝑜

)
𝛼−1 

]

+
𝑄𝑝𝑙
𝑡𝑏𝑙
]

]
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 

2𝑄𝑝𝑙 −
𝑄𝑝𝑙
𝑡𝑏𝑙

[(𝑄𝑝𝑙 − 𝐶𝐿𝐻0

3
2) −

1
2
𝐶𝐿𝐻0

3
2]

[
𝑄𝑝𝑙 − 𝐶𝐿𝐻0

3/2

𝛼
𝑆𝐹 − 𝑆𝑜
𝑍𝐹 − 𝑍𝑜

[(
𝑍𝑐 + 𝐻0 − 𝑍𝑜
𝑍𝐹 − 𝑍𝑜

)
𝛼−1 

]

+
𝑄𝑝𝑙
𝑡𝑏𝑙
]

]
 
 
 
 
 
 
 

}
 
 
 

 
 
 

𝑆𝐹 − 𝑆𝑜
𝑍𝐹 − 𝑍𝑜

[(
𝑍𝑐 + 𝐻0 − 𝑍𝑜
𝑍𝐹 − 𝑍𝑜

)
𝛼−1 

] + (
3
4
)𝐶𝐿𝐻0

1
2  

𝑄𝑝𝑙 − 𝐶𝐿𝐻0

3
2

3
2
𝐶𝐿𝐻0

1
2

𝑄𝑝𝑙 − 𝐶𝐿𝐻0
3
2

𝛼
𝑆𝐹 − 𝑆𝑜
𝑍𝐹 − 𝑍𝑜

[(
𝑍𝑐 + 𝐻0 − 𝑍𝑜
𝑍𝐹 − 𝑍𝑜

)
𝛼−1 

]

+
𝑄𝑝𝑙
𝑡𝑏𝑙

 196 

 197 
 198 
 199 
 200 
 201 
 202 
 203 
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