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ABSTRACT

The present study estimates Kerman—Baghin aquifer vulnerability by applying the DRASTIC
and composite DRASTIC (CDRASTIC) indexes. The factors affecting the transfer of
contamination, including th€ water table depth, tbé soil media, the aquifer media, the impact of
the vadose zone, tlife topography, the hydraulic conductivity, and tlie land use, were ranked,
weighted, and integrated, using a geographical information system (GIS). A sensitivity test has
also been performed to specify the sensitivity of the parameters. The study results show that the
topographic layer displays a gentle slope in the aquifer. The majority of the aquifer covered
irrigated field crops and grassland with a moderate vegetation cover. In addition, the aquifer
vulnerability maps indicate very similar results, recognizing the northwest parts of the aquifer as
areas with high ;fg very high vulnerability. The map removal sensibility analysis (MRSA)

T AT

reveal{ed%ﬁhe impact of the vadose zone (in the DRASTIC index) and hydraulic conductivity (in
\\:W\Tarr{o,v\f{; 1

the CDRASTIC index) as the most effective parameters in the vulnerability evaluation. In both

————~

indexes, the single-parameter sensibility analysis (SPSA) showed the net recharge as the most

effective factor in the vulnerability estimation. From this study, it can be concluded that

vulnerability maps can be used as a tool to control human activities for the sustained protection
NN

of aquifers. preTecT Cow,  HwnD

_—
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Keywords: Vulnerability; Sensitivity analyses; DRASTIC; Composite DRASTIC; Kerman—

Baghin aquifer
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47 1. Introduction
48  Groundwater is @s/ a significant and principal freshwater resource in most parts of the world,
N
49  especially for these-in waterless and arid areas. Water quality has been given more emphasis on_
50 groundwater management (Neshat et al., 2014; Manap et al., 2013; Manap et al., 2014a; Ayazi et
. o HQMM\) AT itse S

51 al, 2010). The potential groundwater’s. contamination b at or near the
52  surface of the groundwater has been supposed the major base for control of this source (Tilahun

w=_ - . .
53  and Merkel, 2010). [n‘" T eavT \/M\j el 2LPYaALt oo
54 The introduction of potential contaminants to a location on top of an aquifer at a specific
55  location in an underground system is defined as groundwater vulnerability (Sarah and Patricia,
56  1993; Neshat et al., 2014). Groundwater vulnerability is an evaluation of the groundwater

ot cleaw dekrne t anaing
57  pollution relative hazard by a specific constituent. Vulnerability maps are commonly performed
—ue —— oot oue e Je-&@/mw_s between THE Tweo
58 at a sub-basin, basin, or regional scale. They are not normally applied for site-specific
/—“"-"\-/\, L S N
59  evaluations including zones smaller than a few tens of square kilometers (Baalousha, 2006;
Aavdsped
60  Tilahun and Merkel, 2010). Different techniques have been pmsenteé to assess groundwater
™Ee
61  susceptibility with great precision (Javadi et al., 2010; Javadi et al., 2011). Most]rwag‘res*e methods
1S bosed on
62 inelude analytic tools censidered to relate groundwater contamination wﬁ%& land operations.
1 oLpPp o cr,(;\/\bg
63  There are three types of evaluation methods; the overlay and index} the process-based simulations
64  and, the statistic procedures (Neshat et al., 2014; Dixon, 2004). THE T LoHer MEH I Weeg
woT . s custed fie SubSe day, %‘ XTS, Con gl
65 Overlay and index procedures affirm the incorporation of various zonal maps by llocatmg,_ o 1
LrusirQ

66 a numeral index. Both procedures are simple to use in the geographic information system,
67  especially on a zonal measure. Hence, these methods are the most famous procedures applied to
68  vulnerability estimation (Neshat et al., 2014). The most extensively used methods for the
69  groundwater’s vulnerability evaluation are GODS (Ghazavi and Ebrahimi, 2015), IRISH (Daly
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and Drew, 1999), AVI (Raju et al., 2014), and DRASTIC (Neshat et al., 2014; Baghapour et al.,
2014; Baghapour et al., 2016).
@S

The DRASTIC index, for-the-first time proposed by Aller et al (1985), i\is considered‘one of
the best indexes for the groundwater vulnerability estimation. This method ignores the influences
of zonal properties. Thus, identical weights and rating values are utilized. In addition, this
technique does not apply a standard validation test for the aquifer. Therefore, several
investigators developed this index using various techniques (Neshat et al., 2014). The higher
DRASTIC index represents the greater contamination potential and inversely. After calculating
the DRASTIC index, it should be possible to identify the zones that are more prone to pollution.
This index only provides a relative estimation and is not created to make a complete assessment
(Baalousha, 2006).

Many studies have been conducted using DRASTIC index to estimate the groundwater
vulnerability in different regions of the world (Jaseela et al., 2016; Zghibi et al., 2016; Kardan

Moghaddam et al., 2017; Kumar et al., 2016; Neshat and Pradhan, 2017; Souleymane and Tang,

2017; Ghosh and Kanchan, 2016; Saida et al., 2017), however;“fewer studies have used the

e SPI oo

CDRASTIC index for evaluation of the groundwater vulnerability (]_;:a;l;aIg)lﬁtr‘ugtL al., 2016
Baghapour et al., 2014; Secunda et al., 1998; Jayasekera et al., 2011; Shirazi et al., 2012;
Jayasekera et al., 2008). Boughriba et al. (2010) utilized DRASTIC index in geographical
information system environment for an estimation of the aquifer vulnerability. They provide the
DRASTIC modified map prepared from total DRASTIC indexes and small monitoring network
maps including two classes, high and medium. Then, authors integrated the map with the land
use map to provide the contamination potential map. They reported that the new obtained

groundwater vulnerability map including three various classes very high, high, and medium.

’ VbumN\>o_/\
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Babiker et al. (2005) used the DRASTIC index to determine prone points to contamination from
human activities in the aquifer. They reported that in terms of vulnerability, the western and
eastern parts of the aquifer fall in the high and medium classes, respectively. The final aquifer
vulnerability map represents that the high risk of pollution is in the eastern part of aquifer due to
agriculture activities. They also observed that the factor, net recharge has the biggest effect on
the aquifer vulnerability, followed by the soil media, the topography, the impact of the vadose
zone, and the hydraulic conductivity.

o GVL\A

— . fallabon . /
The water scarcity in Iran, with a mean annual rainfall*about one-third of the worldsannual

e | S pUTT Tnts Two Sherf Sontame
i (Chi > 0

rainfa itsazan and Akhtari, 2006; Modabbeﬂr/l3 et al., 2017)) iwﬂ_t@&iom

. Lo wortE
problem. Also, the groundwater reduction makes wezst the previous probleny. Groundwater is the

only freshwater resource in the Kerman province, due to the lack of surface water. The aquifer,

&

—object-of-thisresearchlyis located in the central part of Kerman province s Iran. Due to recent

O-\/araﬁ e_

v oLoLua,(

o
droughts, this aquifer is placed under heavy pumping to irrigate crops, which cause gaﬁadﬁ%-ly—th&

drop of the water level. Moreos

than—in former—years. It makes the studies on the pathology and zoning the damages in
o frovidep,
groundwater undeniable. Therefore, the purpose of this research is previding the Kerman—

= — e —
Baghin aquifer\vulnerability maps and performing the sensitivity analysis to identify the most

L ix vt i o
ive factors in the vulnerability assessment.

2. Methodology
2.1. Study area

The Kerman Province covers both semiarid and waterless areas. The present study included a
2023 km? area (29" 47’ to 30° 31’ N latitude and 56" 18’ to 57° 37’ E longitude) located in the

central part of the Kerman Province, Iran (Fig.1). The study area is mostly covered by
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agricultural land (Neshat et al., 2014). In the study area, the mean annual rainfall is 108.3 mm
(during 2017); the highest and lowest topographic elevation is 1,980 and 1,633 m above sea
level; and eventually, the mean, minimum, and maximum annual temperatures are 17°C, -12°C,

and 41°C, respectively (during 2017).
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Fig. 1. Location map of the Kerman—Baghin aquifer <4, | o[ THie b QLL\I—Q J ‘e (o 7

2.2. Computing the DRASTIC and CDRASTIC indexes

DRASTIC is a procedure developed by the United States Environmental Protection Agency (U.S
EPA) to evaluate the groundwater pollution (Aller et al., 1985).AHighe1; DRASTIC index
corresponds toafligh vulnerability of the aquifer to pollution. Vulnerability ranges corresponding
to the DRASTIC index are presented in Tab 1. In the DRASTIC index, each parameter is rated
on a scale from 1 to 10 that shows the relative contamination potential of that parameter for that

area. Also, in the DRASTIC index, one weight (1 to 5) is assigned to each of the parameters.

T{’h‘% Vo-\r—( S(/\b\)kc& G-/WPQD‘F Q%.Q/r
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Weight values show the relative significance of the parameters with respect to each other. The
DRASTIC index is obtained using the following formula (Kardan Moghaddam et al., 2017;
Neshat and Pradhan, 2017):

DRASTIC index= D,D_,+ R R, +A A +S5S, +TT, +1I,6 +C.C,. (1)

In the above formula, the letters in the acronym DRASTIC comprise a short form of the effective
factors in the DRASTIC index. D, R, A, S, T, I, and C are the water table depth, the net recharge,
the aquifer media, the soil media, the topography, the impact of the vadose zone, and the

hydraulic conductivity, respectively. Also, “r” and “w” are the rating and weight of each factor,

respectively. The ratings and weights of the factors are depictedin Tab2. o j o U

Table 1 The range of vulnerability related to the DRASTIC index dotermiva +lele
Vulnerability Ranges UQ/LUQ,Q {z

Very low 23-46 Covide Soupeor Tholo,
Low 47-92

Moderate 93-136 WA picRihl o R
High 137-184

Very high >185 %QJ%

Table 2 Rating and weight-related to DRASTIC index factors

DRASTIC parameters Range Rating Weight
(r) (W)

Water table depth (m) 0.0-1.5 10
1.5-4.6 9
4.6-9.1 7

9.1-15.2 5 5
15.2-22.9 3
22.9-30.5 2
>30.5 1
Net recharge 11-13 10
9-11 8

7-9 5 4
5-7 3
3-5 1
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Aquifer media Rubble and sand
Gravel and sand
Gravel, sand, clay, and silt
Sand and clay
Sand, clay, and silt

Soil media Rubble, sand, clay, and silt
Gravel and sand
Gravel, sand, clay, and silt
Sand
Sand, clay, and silt
clay and silt

N WU oOONOVIWPRe OO

[
o

Topography or slope (%) 0-2
2-6
6-12
12-18
>18

The impact of the vadose zone Rubble, sand, clay, and silt
Gravel and sand
Gravel, sand, clay, and silt
Sand, clay, and silt

w U d Ok wu o

Hydraulic conductivity (m/day) 0-4.1

4.1-12.2
12.2-28.5
28.5-40.7
40.7-81.5

coOo AN

To get the CDRASTIC index, an additional factor (land use) is added to the above formula.

Thus, the CDRASTIC index was obtained as follows:

CDRASTIC index =D,D,, + R.R,, + A,A, +8,5, + T,T, + LI, + C.C, + L.L,, )
J \/\_,0_3!—0——

In-the-abeve—formula, L,, and L, are the relative weight and rating related to the land use factor,

respectively. Ratings and weightings applied to the pollution potential, which are related to the land

use factor based on the CDRASTIC index, are indicated in Tab 3. The CDRASTIC formula final

outputs are ranged from 28 to 280. Vulnerability ranges based on the CDRASTIC index are

presented in Tab 4.

Table 3 Ratings and weighting applied to the pollution potential related to the land use factor

basedontheCDRASTICindexA,\Dw ih jod th‘ _HA_Q Uolued
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Land use Rating Weight

[any
o

Irrigated field crops + Urban areas

Irrigated field crops + Grassland with poor vegetation cover + Urban areas
Irrigated field crops + Grassland with moderate vegetation cover + Urban areas
Irrigated field crops

Irrigated field crops + Fallow land + Grassland with poor vegetation cover
Irrigated field crops + Grassland with poor vegetation cover

Irrigated field crops + Grassland with moderate vegetation cover

Irrigated field crops + Rocky + Urban areas

Irrigated field crops + Grassland with poor vegetation cover + Woodland
Irrigated field crops + Woodland

Irrigated field crops + Rocky

Fallow land

Fallow land + Grassland with poor vegetation cover

Fallow land + Grassland with moderate vegetation cover

Grassland with poor vegetation cover

Grassland with moderate vegetation cover

Grassland with moderate vegetation cover + Woodland

Sand dune +Grassland with moderate vegetation cover

R P P NN W W WP~ oo o N N oo o

Sand dune

152

153  Table 4 Vulnerability ranges related to the CDRASTIC index

Vulnerability Ranges
Very low <100
Low 100-145
Moderate 145-190
High 190-235
Very high >235

154  2.3. Water table depth

155  The water table depth factor is the distance of water table from the Earth’s surface, in a well
156  (Baghapour et al., 2016). 83 wells in the Kerman—Baghin aquifer were utilized to obtain this
157  factor. The interpolation procedure was used to provide a raster map of the water table depth

158  factor, which was categorized based on Tab 2.

159  2.4. Net recharge



160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

Net recharge is the amount of runoff that permeates into the ground and reaches the groundwater
surface (Singh et al., 2015; Ghosh and Kanchan, 2016). This research uses the Piscopo method
(Chitsazan and Akhtari, 2009) to provide the net recharge layer for the Kerman—Baghin aquifer

according to the following equation and Tab 5:
Net recharge factor = slope (%) + rainfall + soil permeability. (3)

In the above equation, the percentage of slope was calculated from a topographical map, using a
digital elevation model. Also, a soil permeability map was created using the Kerman—Baghin
aquifer soil map (with scale 1:250000) and the drilling logs of the 83 wells. In the end, a map of
the area’s rainfall rate was compiled based on the annual average precipitation. Ratings and

weights of the net recharge factor are illustrated in Tab 5.

Table 5 Weight, rating, and range of the net recharge parameter

Slope (%) Rainfall Soil permeability Net Recharge
Range Factor Range Factor Range Factor Range Rating Weight
(%) (mm/year) (cm/year)
<2 4 >850 4 High 5 11-13 10
2-10 3 700-850 3 Moderate to high 4 9-11 8
10-33 2 500-700 2 Moderate 3 7-9 5 4
>33 1 <500 1 Low 2 5-7 3
Very low 1 3-5 1
2.5. Aquifer media

Aquifer media parameter controls the path of groundwater streams in the aquifer (Aller et al.,
1985; Singh et al., 2015). To obtain this layer, the 83 well’s drilling log data were used. The data
were gathered from the Kerman Regional Water Office (KRWO). The range of the aquifer media

layer is shown in Tab 2.

2.6. Soil media

10
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The soil media has a considerable effect on the amount of water surface that can penetrate into
the aquifer. Therefore, where the soil layer is thick, the debilitation processes such as absorption,
filtration, degradation, and evaporation may be considerable (Singh et al., 2015). A soil media

raster map was provided using the Kerman—Baghin aquifer soil map and the well’s drilling logs.

2.7. Topography

The topography controls the residence time of water inside on the soil and the degree of
penetration (Singh et al., 2015). For obtain this layer, the percentage of the slope was provided
from the topographical map, using a digital elevation model. The data were gathered from the

KRWO. The range of the topographic layer is presented in Tab 2.
2.8. The impact of the vadose zone

The vadose zone is the unsaturated area located between the topographic surface and the
groundwater level (Singh et al., 2015). It plays a considerable role in decreasing groundwater
contamination by pollutant debilitation processes such as purification, chemical reaction, and

et Lo ygo wazan
dispersal (Shirazi et al., 2012). In order to prepare this layer, the wells drilling log data were

used. The data were gathered from the KRWO. The impact range of the vadose zone layer is

depicted in Tab 2.

2.9. Hydraulic conductivity

The hydraulic conductivity refers to the capability of the aquifer to transfer water. The high
hydraulic conductivity areas demonstrate a high potential for groundwater contamination (Singh
et al., 2015; Aller et al., 1985). To prepare this layer, data derived from pumping tests of wells

were used. The range of the hydraulic conductivity layer is shown in Tab 2.

2.10. Land use

11
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Land use influences groundwater resources via variation in recharge amount and by changing
freshwater demands for water. Land use is obligatory since it is required by the CDRASTIC
index. The Indian remote sensing satellite information was utilized to providing land use raster

map. The weight and rating related to the land use layer are presented in Tab 3.

2.11. Sensitivity Analyses

One of the main advantages of the DRASTIC index is the evaluation performance because of

high number of input data are used, this allows to restrict the effects of errors on the final results.

Nevertheless, some investigators, like Babiker et al. (2005), Barber et al. (1993), and Merchant
ot

(1994), reported that similar results could be obtained using fewer data and lower costs. The

unavoidable subjectivity related to the choice of the seven factors, ranks, and weights utilized to

calculate the vulnerability index has also been criticized. Therefore, in order to eliminate the
aforementioned criticisms, two sensitivity analyses were performed as follows (Napolitano and

Fabbri, 1996):
A. Map removal sensibility analysis (MRSA)

MRSA value indicates the vulnerability map sensibility to removal one or more maps from the
suitability analysis. MRSA is calculated as follows (Babiker et al., 2005; Martinez-Bastida et al.,

2010; Saidi et al., 2011; Modabberi et al., 2017):

N

S is the sensibility value expressed in terms of variation index, V is the intrinsic vulnerability

v__v

x| n

] X 100 4

index (real vulnerability index) and V' is the intrinsic vulnerability index after removal of factor

12
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X, N and n are the numbers of data factors utilized to calculate V and V', respectively (Babiker et

al., 2005; Martinez-Bastida et al., 2010; Saidi et al., 2011; Modabberi et al., 2017).
B. Single-parameter sensibility analysis (SPSA)

SPSA was presented by Napolitano and Fabbri (1996) for the first time. This test shows the
effect of each of the DRASTIC factors in the final vulnerability index. Using this test derived
from equation 5, the real and effective weight of each factor, compared to the theoretical weight
assigned by the analytical model was calculated > abiker et al., 2005; Martinez-Bastida et al.,

2010; Saidi et al., 2011; Modabberi et al., 20 1_@

W= [P P“] X 100, 5)

loway Cole_

228
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240

«Where, W is the effective weight of each factor. P, and Py, are the rank and weight assigned to
\Wo Lowwmo,
factor P, respectively. V is the intrinsic vulnerability index (Martinez-Bastida et al., 2010;

Babiker et al., 2005; Saidi et al., 2011; Modabberi et al., 2017).
3. Results and discussion
3.1. DRASTIC and CDRASTIC parameters

Based on the data shown in Tab 2, the assigned rating of water table depth varies from 1 to 10. In
addition, based on the results presented in Tab 6, the water table depth in the aquifer varies from
4.6 to >30.5 m (rating 1 to 7). Around 27.55% of the aquifer has a depth greater than 30.5 m, and
66.16 % of the aquifer has a depth ranging from 9.1 m and 30.5 m. Less than 7% has a depth
between 4.6 m and 9.1 m. The Kerman—Baghin aquifer rated map of water table depth factor is
presented in Fig 2(A). According to Fig 2(A) and Tab 6, the minimum impact of the water table
depth parameter on aquifer vulnerability occurs in the central parts (6.39%), whereas the

maximum impact occurs in the north, south, northwest, and southeast parts (27.55%).

13
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According to the results presented in Tab 6, 75.81% of the aquifer has a net recharge value in
the range of 7 to 9 cm/year. 11.74% of the aquifer has a net recharge value between 9 and 11
cm/year. The Kerman—Baghin aquifer rated map of the net recharge parameter is shown in Fig
2(B). According to Piscopo's method, the Kerman—Baghin aquifer was divided into three classes,
with regards to the net recharge factor. The highest net recharge value was seen in the north,
northeast, south, southwest, parts of the northwest, parts of the center, and parts of the southeast
(75.81%), whereas the least net recharge value appeared in parts of the northwest and center
(11.74%), as shown in Fig 2(B) and Tab 6.

As observed in Tab 6, the majority of the Kerman—Baghin aquifer media is composed of sand,
clay, and silt (75.21%). The Kerman—Baghin aquifer rated map of aquifer media is presented in
Fig 3(A). Parts of the aquifer in the north, northwest, northeast, center, and southeast are
composed of sand, clay, and silt. Parts of the aquifer in the northwest are composed of rubble and
sand (5.58%). Parts of the aquifer in the south and northwest are composed of gravel and sand
(8.95%), and gravel, sand, clay, and silt (10.26%).

The Kerman—Baghin aquifer rated map of the soil media parameter is presented in Fig 3(B).
The soil map depicts six different classes of the soil. The highest rank (rank = 9) was assigned to
rubble, sand, clay, and silt (a combination of rubble, sand, clay and silt soils). Also, the lowest
rank (rank = 2) was assigned to clay and silt (a combination of clay and silt soils). Most of the
aquifer soil media is covered with silt, sand, and clay (about 80%).

The Kerman—Baghin aquifer rated map of the topography parameter is indicated in Fig 4(A).
The topographical layer shows a gentle slope (0 to 6%) over most of the aquifer, hence gaining
ranks of 9 and 10. A slope range of 0 to 2% includes 34.72% of the study area, and its rating

(slope range = 0-2%) is 10. Also, 65.28% of the aquifer has a slope range of 2 to 6% (parts of

14
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the northwest) as shown in Fig 4(A) and Tab 6. As the gradient increases, the runoff increases as
well (Israil et al., 2006) leading to less penetration (Jaiswal et al., 2003). Based on Madrucci et
al. (2008), the gradients higher than 35° are considered restrictions on groundwater desirability
because of the lack of springs.

The Kerman—Baghin aquifer rated map of the impact of the vadose zone parameter is
indicated in Fig 4(B). According to the results, the soil with a rank of 5 (gravel, sand, clay, and
silt) is more effective on aquifer vulnerability (35.47%). Other various types of soils such as
sand, clay, and silt (parts of the north, northeast, south, and southeast), gravel and sand (parts of
the center and northwest), and rubble, sand, clay, and silt (parts of the northwest) cover 34.24%,
20.39%, and 9.9% of the aquifer, respectively, as shown in Fig 4(B) and Tab 6. Sandy soil is
effective on groundwater occurrence because of the high rate of penetration (Srivastava and
Bhattacharya, 2006). However, clay soil is arranged poorly because of the low infiltration
(Manap et al., 2014b).

The Kerman—Baghin aquifer rated map of the hydraulic conductivity parameter is presented
in Fig 5(A). The hydraulic conductivity factor shows high variability. Our study results show that
the hydraulic conductivity parameter of the Kerman—Baghin aquifer varied from 0 to 81.5 m/day.
The potential for groundwater contamination greater in zones with high hydraulic conductivity
(38.27%). As shown in Fig 5(A) and Tab 6, 29.51%, 23.93%, 5.98%, and 2.31% of the study
areas have hydraulic conductivity in the ranges of 0 to 4.1 m/day, 12.2 to 28.5 m/day, 28.5 to
40.7 m/day, and 40.7 to 81.5 m/day, respectively.

The Kerman—Baghin aquifer rated map of the land use parameter is presented in Fig 5(B).
Our results show that the majority of the Kerman—Baghin aquifer is covered with irrigated field

crops and grassland with moderate vegetation cover (20.45%). Less than 4% of the study area is
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irrigated field crops and urban areas (3.61%), and 58.47% of the study area is irrigated field

crops with urban areas, grassland with poor and moderate vegetation cover, fallow land,

woodland, and rocky ground. In addition, 10.17% of the study area is fallow land with poor

grassland and moderate vegetation cover, and 13.72% of the study area is sand dunes with poor

grassland and moderate vegetation cover and woodland as shown in Fig 5(B) and Tabs 3 and 6.

56"40'0°E

30°0°0°N

30°S0'0°N

Legend
[]Kerman-Baghin aquifer
o Monitoring wells

Rating

Ch

|k

=3

s

.

++++++++

WS&'U'N

30'0'0°N

Fig. 2.

S6°40°0"E

30°50°0°N

30°0°0°N

56‘4?‘0‘!
B N
W#. E
s
Net Recharge Map

Legend

[ Jkerman-Baghin aquifer
® Monitoring wells

30°50°0°N

30°0°0°N

56°40'0"€

Kerman—Baghin aquifer rated maps of A) water table depth and B) net recharge

16



294

295

296

297

56"40'0"E

A

30°50'0"N

Legend
["JKerman-Baghin aquifer
e Monitoring wells

30°0'0°N

Rating

0 510 20Km
Ll

30°50'0°N

30°00°N

56°40'0"E

30°50'0"N

30°0°0°N

56°40'0"E

Fig. 3. Kerman—Baghin aquifer rated maps of A) aquifer media and B) soil media

56°40°0"€E

30°50'0"N

Topography Map

30°0'0°N

Legend

:]Kerman—aaghln aquifer
@® Monitoring wells

Rating
.
. w0

0 510 20Km
(EENEEEEN

56°40'0"E

30°50'0°N

30°0°0°N

30"50'0°N

30"0°'0"N

z
)
3
R
Legend :
[_]Kerman-Baghin aquifer g
@ Monitoring wells
Rating
I
| E
5
s
() 0510 20Km
K loealany)
56'40'0"
56"40°0"E
(B) N

Vadose Zone Map

Legend
[ Jkerman-Baghin aquifer

@ Monitoring wells

Rating
. :
s
K
. -y

56"40'0"E

Fig. 4. Kerman—Baghin aquifer rated maps of A) topography and B) vadose zone

17

30"50'0"N

30"0°0"N



56 HD"E 55°5 0 c"s

- - = =
(8 B NI
E w‘-?_»g = =1 WJ\-&E )
5 ] P
L m s =
Hydraulic Conductivity Map Land Use Map
-" .o‘.
. ::a‘.b : - ..-... _Z _2
ey e o
s - . =] =
. o. s * = b
. . = =
% M | [JKerman-Baghinaquifer — il
.'1 Legend - » Monitoring wells
B Kerman-Baghin aquifer l= Rating
; s Monitoring wells - 11
Rating -‘Ii
—
5 — I
s
- ?5 10 20Km fllg 0 5 10 20Km
8 | E
— - 10
5674007 ~r '
298 55500 E
299  Fig. 5. Kerman—Baghin aquifer rated maps of A) hydraulic conductivity and B) land use
300 Table 6 The area of rating (km? and %) of the DRASTIC and CDRASTIC parameters
DRASTIC and Rating Area Area The aquifer geographic directions covered by the respective rating in the
CDRASTIC indexes (km?) (%) parameters rated maps
parameters
Water table depth 1 557.73 27.55 Parts of the north, south, northwest, and southeast
2 472.18 23.34 Parts of the north, south, and center
3 469.78 23.29 Parts of the center
5 395.00 19.53 Parts of the center
7 129.14 6.39 Parts of the center
Net recharge 3 252.04 12.45 Parts of southeast, and northwest
5 1534.15 75.81 North, northeast, south, southwest, and parts of the northwest, center, southeast
8 237.6 11.74 Parts of the northwest and center
Aquifer media 3 743.18 36.72 Parts of the north, northwest, northeast, and center
4 779.01 38.49 Parts of the north, northwest, southeast, and center
5 207.81 10.26 Parts of the south, and northwest
7 181.02 8.95 Parts of the south, and northwest
9 112.76 5.58 Parts of the northwest
Soil media 2 658.5 32.53 Parts of the north, northwest, northeast, and southeast
399.72 19.75 Parts of the north, northwest, south, and center
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5 297.44 14.69 Parts of the north, northwest, south, and center

6 538.77 26.62 Parts of the northwest, center, and southwest
7 67.56 3.33 Parts of the northwest
9 61.79 3.08 Parts of the northwest
Topography 9 702.74 34.72 North, northwest, northeast, south, southeast, southwest, and center
10 1321.07 65.28 parts of the northwest
The impactof the 3 692.87 34.24 Parts of the north, northeast, south, and southeast
vadose zone 5 717.91 35.47 Parts of the north, northwest, south, southeast, and center
7 412.49 20.39 Parts of the center, and northwest
9 200.53 9.9 Parts of the northwest
Hydraulic 1 597.11 29.51 Parts of the northeast, northwest, southeast, and center
conductivity 2 774.52 38.27 parts of the northwest, south, southeast, and center
4 484.17 23.93 Parts of the northwest, south, and southeast
6 120.99 5.98 Parts of the south, and northwest
8 46.7 2.31 Parts of the south, and northwest
Land use 1 112.48 5.56 Parts of the south
2 165.02 8.16 Parts of the south
3 205.65 10.17 Parts of the south, and center
4 357.06 17.64 Parts of the south, southwest, northwest, and center
5 234.86 11.61 Parts of the southeast, northwest, and center
6 413.86 20.45 Parts of the southeast, northwest, northeast, and center
7 182.63 9.02 Parts of the north, northwest, and northeast
8 169.4 8.37 Parts of the north, northwest, and northeast
9 109.42 5.41 Parts of the north, northwest, and northeast
10 73.09 3.61 Parts of the north

301  3.2. DRASTIC and CDRASTIC vulnerability indexes

302 The Kerman—Baghin aquifer vulnerability map using DRASTIC and CDRASTIC indexes is
303 shown in Fig 6. In the studied aquifer, the vulnerability falls under very high, high, moderate,
304 low, and very low vulnerable areas. It is found that in both indexes, the parts of north, northeast,
305 northwest, south, southwest, southeast and center come under low and very low vulnerability.

306  This can be attributed to low water depth, hydraulic conductivity, and net recharge characterizing
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322

these aquifer areas; an other reason might be that the aquifer media mostly are mostly clay, sand
and silt soils. The area of the vulnerability, identified by investigated indexes, is illustrated in
Tab 7. Low and very low vulnerable zones cover 25.21% and 38.31%, respectively, of the
Kerman—Baghin aquifer using the DRASTIC index. Very low and low vulnerable zones cover
24.95% and 40.41%, respectively, using the CDRASTIC index. This is primarily due to water
table depth and relatively low permeability of the vadose zone in such aquifers (Colins et al.,
2016). Around 26 % of the studied aquifer has moderate groundwater pollution potential, using
DRASTIC and CDRASTIC indexes. This does not mean that such areas are without pollution
but it is relatively prone to pollution when compared with other areas (Colins et al., 2016). From
the DRASTIC index values, it was noticed that 10.4% of the study aquifer is under high (8.46%)
and very high (1.94%) vulnerability. The results of the study showed that 8.75% of the aquifer is
in the ranges of 190 to 235 and greater than 235 in the CDRASTIC index (Tab 7). The
vulnerability maps according to these two indexes indicated very same findings, showing the
northwest portion of the aquifer as the high and very high vulnerable zones. The high
vulnerability can be attributed to great water depth, hydraulic conductivity, and net recharge in

these aquifer areas. In addition, this can due to the great slope in this area.

20



56°40°0"E

DRASTIC

(@ 2.

| Legend
Kerman-Baghin aquifer

Monitoring wells
Vulnerability

30°0'0"N

30°0'0"N

30°50'0"N
30°50'0"N

30°0'0"N

56"30'0"E

o
£
Legend s
Kerman-Baghin aquifer 2

I\."ulnerability

CDRASTIC

=
m
30°50'0"N

Monitering wells

Wery low Wery low
| Lowr Low
IModerate 0510 20Km I Moderate 0510 20Km
High High
Bl Very high Il Very high
323 56°40'0"E 56°40'0"E
324  Fig. 6. The vulnerability maps of the Kerman—Baghin aquifer by DRASTIC and CDRASTIC
325 indexes
326  Table 7 The area of vulnerability (km?® and %) identified by DRASTIC and CDRASTIC indexes
DRASTIC CDRASTIC
Vulnerability = Ranges Area Area The aquifer geographic Area Area The aquifer geographic
(kmz) (%) directions covered by the Ranges (kmz) (%) directions covered by the
respective vulnerability respective vulnerability
Very low 23-46 510.25 25.21 Parts of the south, north, <100 505.02 24.95 Parts of the southeast, north,
northwest, and northeast northwest, and northeast
Low 47-92 775.14 38.31 Parts of the south, 100-145 817.70 40.41 Parts of the south, southwest,
southwest, southeast, southeast, north, northwest,
north, northwest, northeast, and center
northeast, and center
Moderate 93-136 527. 26.08 Parts of the south, 145-190 524.06 25.89 Parts of the south, southwest,
85 southwest, northwest, southwest, northwest, and
and center
High 137-184 171.02 8.46 Parts of the northwest 190-235 126.91 6.28 Parts of the northwest and
Very high >185 39.23 1.94 Parts of the northwest 2235 49.79 2.47 Parts of the northwest
327
328  3.3. The sensitivity of the DRASTIC model
329 The MRSA, the DRASTIC index, is performed by eliminating one layer data at a time as
330 indicated in Tab 8. The results showed a high variation in vulnerability index when the impact of
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the vadose zone factor was removed, so that, the average variation index is 1.88%. This shows
that this factor is more effective in vulnerability assessment using the DRASTIC index. When
this parameter is removed from the overlay process, this leads to a significant decrease in
vulnerability index. This could be due to the high theoretical weight assigned to this factor
(weight = 5). These findings are similar to those obtained by Dibi et al. (2012) who have shown
that, in addition to this parameter, topography, net recharge, and water table depth have a high
impact on the vulnerability index. Also, in Samake et al. (2011), the impact of the vadose zone
and the hydraulic conductivity parameters had a considerable impact on the vulnerability index,
that appears to have a moderate sensitivity to the deletion of water table depth (1.48%), net
recharge (1.36%), and hydraulic conductivity (1.25%) parameters. The minimum menu variation
index was achieved after eliminating the aquifer media factor (0.44%), as indicated in Tab 8.

For the estimation of the individual factors effect towards aquifer vulnerability, the SPSA is
performed. The results summaries of SPSA in the DRASTIC index are shown in Tab 9. The
SPSA compares the effective weights and theoretical weights. The average value of the effective
weight of the net recharge factor is 43.26% and its theoretical weight (%) is 17.4%. This shows
that this factor is more effective in vulnerability assessment using the DRASTIC index. The
results reported by other studies (Babiker et al., 2005; Doumouya et al., 2012) are similar to
those of the present study. The impact of the vadose zone and water table depth parameters has
high theoretical weights (21.74%); they have been dedicated with an effective weight with
average value such as 8.33% and 25.55%. The remaining factors show an average value of the
effective weights of 14.91% (aquifer media), 9.89% (soil media), 11.35% (topography), and
7.01% (hydraulic conductivity). The theoretical weights assigned to the water table depth, net

recharge, topography, and hydraulic conductivity parameters are not in agreement with the

22



354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

effective weight. The highest and lowest impact on aquifer vulnerability was related to the net
recharge and hydraulic conductivity parameters, respectively (Tab 9).

Table 8 Statistical results of MRSA in the DRASTIC index

The sensitivity of variability index (S) (%) Removed
SD Min. Max. Ave. parameters
0.414 0.05 2.36 1.36 D
0.775 0.07 3.06 1.48 R
0.311 0.05 1.31 0.44 A
0.486 0.00 1.65 0.73 S
0.339 0.03 1.31 0.51 T
0.894 0.25 3.84 1.88 I
0.550 0.03 1.98 1.25 C

Table 9 Statistical results of SPSA in the DRASTIC index

Effective weight (%) Theoretical Theoretical Parameters
SD Min. Max. Ave. weight (%) weight
6.179 3.23 28.46 8.33 21.74 5 D
11.998 14.06 73.47 43.26 17.4 4 R
3.190 7.26 22.13 14.91 13.04 3 A
2.916 4.49 14.29 9.89 8.7 2 S
2.222 6.45 14.71 11.35 4.3 1 T
5.367 15.79 37.31 25.55 21.74 5 I
3.738 2.42 18.75 7.01 13.04 3 C

3.4. The sensibility of the CDRASTIC index

The MRSA in the CDRASTIC index is performed by eliminating on data layer at a time as
indicated in Tab 10. The mean variation index of hydraulic conductivity parameter is 4.13%. The
hydraulic conductivity has a greater effect on the aquifer vulnerability followed by water table
depth (4.05%), soil media (3.82%), topography (3.68%), aquifer media (3.28%), net recharge
(2.72%), the impact of the vadose zone (2.33%), and land use (1.99%).

The effective weight derived from the SPSA to the CDRASTIC index is shown in Tab 11.
The average value of the effective weight of the net recharge factor is 32.62%. This shows that

this factor is more effective in vulnerability assessment using CDRASTIC index. The hydraulic
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conductivity displays the lowest effective weights (5.32%). The topography, net recharge, and
land use had upper effective weights toward the theoretical weights specified by CDRASTIC
index. The average value of the effective weight of the land use parameter is 24.82%. This shows
that this parameter is the second effective parameter in aquifer vulnerability, using the
CDRASTIC index (Tab 11).

Table 10 Statistical results of MRSA in the CDRASTIC index

The sensitivity of variability index (S) (%) Removed
SD Min. Max. Ave. parameters
1.403 0.50 6.48 4.05 D
1.617 0.11 10.91 2.72 R
1.541 0.06 5.99 3.28 A
1.508 0.67 6.60 3.82 S
1.353 0.87 5.87 3.68 T
1.439 0.06 5.12 2.33 I
1.480 0.55 6.72 4.13 C
0.375 1.23 3.00 1.99 L

Table 11 Statistical results of SPSA in the CDRASTIC index

Effective weight (%) Theoretical Theoretical Parameters
SD Min. Max. Ave. weight (%) weight
4.849 2.63 26.88 6.27 21.74 5 D
10.672 10.4 66.67 32.62 17.4 4 R
3.026 6.29 20.00 11.23 13.04 3 A
2.621 3.31 12.96 7.5 8.7 2 S
1.609 5.2 12.82 8.45 4.3 1 T
4.648 10.87 32.05 19.2 21.74 5 |
3.134 2.1 14. 88 5.32 13.04 3 C
10.122 3.88 42.37 24.82 17.85 5 L

4. Conclusions

Evaluations of vulnerability indexes for the Kerman—Baghin aquifer were conducted using the

GIS-based DRASTIC and CDRASTIC indexes. Seven hydro—geological factors (the letters
were cons dolored] ?,t- o ,
comprising the acronym) afe’aﬁphed ivy determme/aqul vulnerability with DRASTIC; eight
LI "fjl/\g’ T
hydro—geological parameters (one-additional to the-seven—inDPRASTIC) with the CDRASTIC
waarg  Cons:olerod
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384  high (8.46%) and very high (1.94%) vulnerability. From the CDRASTIC index values, it was

—

L O

385  determined that 8.75% of the aquifer is under high (6.28%) armd very high (2.47%) vulnerability.
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388  activities a—re—fcrcrrrd"to be 4 major threatSin the zones with high and very high vulnerability. The

389  MRSA signifies the fact that hydraulic conductivity and the impact of the vadose zone faefors’

390 induce a high risk of aquifer contamination according to the DRASTIC and CDRASTIC indexes,
Foe  weTd.dsS et
391  respectively. In_both indexes; the SPSA analysis shows the net recharge f—aefefas a high risk for

How | ou d:d not volidete THE Awalys
392  aquifer contamination. These results indicate that the studied indexes are effective tools for

393  determining groundwater vulnerability. Also, these results could be utilized by private and

394  government agencies as a guide for groundwater contamination assessment in Iran.
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