

1 **Contribution of the Sensitivity Analysis in Groundwater Vulnerability Assessing Using the**
2 **DRASTIC and Composite DRASTIC Indexes**
3 Mohammad Malakootian¹, Majid Nozari^{2,*}

4 **Manuscript Authors details:**

5 1. Mohammad Malakootian, Department of Environmental Health, School of Public Health,
6 Kerman University of Medical Sciences, Iran. E-mail: m.malakootian@yahoo.com.
7 <https://orcid.org/0000-0002-4051-6242>.
8 2. Majid Nozari, Department of Environmental Health, School of Public Health, Kerman
9 University of Medical Sciences, Iran. Tel: 98-9383921819, E-mail: nozari.m@kmu.ac.ir.
10 <https://orcid.org/0000-0003-2319-1930>.

11
12
13
14
15
16
17
18
19
20
21
22

23 **ABSTRACT**

24 The present study estimates Kerman–Baghin aquifer vulnerability by applying the DRASTIC
25 and composite DRASTIC (CDRASTIC) indexes. The factors affecting the transfer of
26 contamination, including the water table depth, soil media, aquifer media, the impact of the
27 vadose zone, topography, hydraulic conductivity, and land use, were ranked, weighted, and
28 integrated using a geographical information system (GIS). A sensitivity test has also been
29 performed to specify the sensitivity of the parameters. The study results show that the
30 topographic layer displays a gentle slope in the aquifer. The majority of the aquifer covered
31 irrigated field crops and grassland with a moderate vegetation cover. In addition, the aquifer
32 vulnerability maps indicate very similar results, recognizing the northwest parts of the aquifer as
33 areas with high and very high vulnerability. The map removal sensibility analysis (MRSA)
34 revealed the impact of the vadose zone (in the DRASTIC index) and hydraulic conductivity (in
35 the CDRASTIC index) as the most effective parameters in the vulnerability evaluation. In both
36 indexes, the single-parameter sensibility analysis (SPSA) showed net recharge as the most
37 effective factor in the vulnerability estimation. From this study, it can be concluded that
38 vulnerability maps can be used as a tool to control human activities for the sustained protection
39 of aquifers.

40

41 **Keywords:** Vulnerability; Sensitivity analyses; DRASTIC; Composite DRASTIC; Kerman–
42 Baghin aquifer

43

44

45

46

47 **1. Introduction**

48 Groundwater's are as a significant and principal resource in most parts of the world, especially
49 for those in waterless and arid areas. Water quality has been given more affirm on groundwater's
50 control (Neshat et al., 2014; Manap et al., 2013; Manap et al., 2014a; Ayazi et al., 2010). The
51 potential groundwater's contamination by mankind operations at or near the surface of the
52 groundwater has been supposed the major base for control of this source (Tilahun and Merkel,
53 2010).

54 The introduction of potential contaminants to a location on top of an aquifer at a specified
55 position in an underground system is defined as groundwater vulnerability (Sarah and Patricia I,
56 1993; Neshat et al., 2014). Groundwater vulnerability is an estimate of the relative hazard of
57 groundwater pollution by a specific constituent. Vulnerability maps are commonly performed at
58 a sub-basin, basin, or regional scale. They are not normally applied for site-specific estimates
59 including zones smaller than a few tens of square kilometers (Baalousha, 2006; Tilahun and
60 Merkel, 2010). Different techniques have been presented to assess groundwater susceptibility
61 with great precision (Javadi et al., 2010; Javadi et al., 2011). Mostly, these methods including
62 analytic tools considered to relate groundwater contamination with land operations. There are
63 three types of evaluation methods include; the overlay and index, the process-based simulation
64 and, the statistic procedures (Neshat et al., 2014; Dixon, 2004).

65 Overlay and index procedures affirm the incorporation of various zonal maps by allocating
66 a numeral index. Both procedures are simple to use in the geographic information system,
67 especially on a zonal measure. Hence, these methods are the most famous procedures applied to
68 vulnerability estimation (Neshat et al., 2014). The most extensively utilized among these
69 methods encompass GODS (Ghazavi and Ebrahimi, 2015), IRISH (Daly and Drew, 1999), AVI

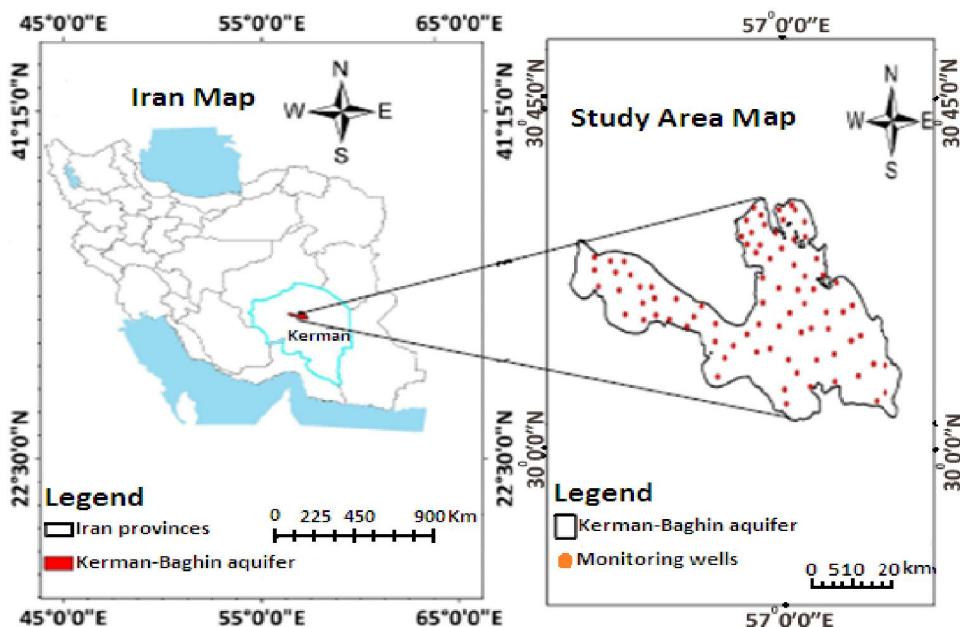
70 (Raju et al., 2014), and DRASTIC (Neshat et al., 2014;Baghapor et al., 2014;Baghapor et al.,
71 2016).

72 The DRASTIC index for the first time proposed by Aller et al (1985). It is considered one of
73 the best indexes for the ~~vulnerability~~ of groundwater. This method ignores the influences of
74 zonal properties. Thus, identical weights and rating values are utilized. In addition, this technique
75 does not apply a standard validation test for the aquifer. Therefore, several investigators
76 developed this index using various techniques (Neshat et al., 2014). The higher DRASTIC index
77 represents the greater contamination potential and inversely. After calculating, the DRASTIC
78 index should be possible to identify the zones that are more prone to pollution. This index only
79 provides a relative estimate and is not created to make a complete assessment (Baalousha, 2006).

80 Many studies have been conducted using DRASTIC index to estimate the groundwater
81 vulnerability in ~~the world~~ different regions (Jaseela et al., 2016;Zghibi et al., 2016;Kardan
82 Moghaddam et al., 2017;Kumar et al., 2016;Neshat and Pradhan, 2017;Souleymane and Tang,
83 2017;Ghosh and Kanchan, 2016;Saida et al., 2017), however, fewer studies have used the
84 CDRASTIC index for evaluation of the groundwater vulnerability (Baghapor et al.,
85 2016;Baghapor et al., 2014;Secunda et al., 1998;Jayasekera et al., 2011;Shirazi et al.,
86 2012;Jayasekera et al., 2008). Boughriba et al. (2010) utilized DRASTIC index in geographical
87 information system environment for an estimate of the ~~vulnerability in the aquifer~~. They provide
88 the DRASTIC modified map prepared from total DRASTIC indexes and small monitoring
89 network maps inclusive two classes, high and medium. Then ~~they~~ integrated the map with the
90 land use map to provide the contamination potential map. They reported that the new obtained
91 map inclusive three various ~~cl~~ very high, medium, ~~and high~~. Babiker et al. (2005) used the
92 DRASTIC index to determine prone points to contamination from human activities in the

93 aquifer. They reported that the western and eastern parts of aquifer fall in the high and medium
94 categories, respectively. The final aquifer vulnerability map represents that the high risk of
95 pollution is in the eastern part of aquifer due to agriculture activities. They also observed that the
96 factor, net recharge has the most effect on the aquifer vulnerability, followed by the soil media,
97 topography, the impact of the vadose zone, and hydraulic conductivity.

98 The water difficulties in Iran with a mean annual rainfall about one-third of the world annual
99 rainfall (Chitsazan and Akhtari, 2006; Modabberi et al., 2017) are critical and serious. Also,
100 diminution in these rare resources has deteriorated this condition. Groundwater is the only water
101 source in the Kerman province due to the lack of surface water. The evaluated aquifer in this
102 research located in the central part of Kerman province in Iran. Due to recent droughts, this
103 aquifer is placed under heavy pumping to irrigate crops, which cause gradually reduces the water
104 level. Moreover, recently, the use of groundwater resources has been greater than in former
105 years. It causes the researches on the pathology and zoning the losses in groundwater undeniable.
106 Therefore, the purpose of this research is providing the Kerman–Baghīn aquifer vulnerability
107 maps and performing the sensitivity analysis to identify the most effective factors in the
108 vulnerability.


109 2. Methodology

110 2.1. Study area

111 The Kerman Province covers both semiarid and waterless areas. The present study included a
112 2023 km² area (29° 47' to 30° 31' N latitude and 56° 18' to 57° 37' E longitude) located in the
113 central part of the Kerman Province, Iran (Figure 1). The study area is mostly covered by
114 agricultural land (Neshat et al., 2014). The mean annual rainfall in the study area is 108.3 mm (in
115 2017). The highest and lowest ground elevation in the study area is 1,980 and 1,633 m above sea

116 level, respectively. The mean, minimum, and maximum annual temperatures in the study area
117 are 17°C, -12°C, and 41°C, respectively (in 2017).

118

119 **Fig. 1.** Location map of the Kerman–Baghin aquifer

120 **2.2. Computing the DRASTIC and CDRASTIC indexes**

121 DRASTIC is a procedure developed by the United States Environmental Protection Agency (U.S.
122 EPA) to prepare a systematic estimate of the potential for groundwater pollution (Aller et al.,
123 1985). Through this method, the DRASTIC index is obtained from the sum of the multiplication
124 of the rank and weight of the parameters. Higher sum values demonstrate greater vulnerability of
125 the aquifer to pollution. Vulnerability ranges corresponding to the DRASTIC index are presented
126 in Table 1. In the DRASTIC index, each parameter is rated on a scale from 1 to 10 that shows the
127 relative contamination potential of that parameter for that area. Also, in the DRASTIC index, one
128 weight is assigned to each of the parameters (1 to 5). Weight values show the relative

129 significance of the parameters with respect to each other. The DRASTIC index is obtained using
130 the following formula (Kardan Moghaddam et al., 2017;Neshat and Pradhan, 2017):

131
$$\text{DRASTIC index} = D_r D_W + R_r R_W + A_r A_W + S_r S_W + T_r T_W + I_r I_W + C_r C_W. \quad (1)$$

132 In the above formula, the letters in the acronym DRASTIC comprise a short form of the effective
133 factors in the DRASTIC index. Also, “r” and “w” are the rating and weight of each factor,
134 respectively. The ratings and weights of the factors are depicted in Table 2.

135 **Table 1** The range of vulnerability related to the DRASTIC index

Vulnerability	Ranges
Very low	23-46
Low	47-92
Moderate	93-136
High	137-184
Very high	>185

136

137 **Table 2** Rating and weight related to DRASTIC index factors

DRASTIC parameters	Range	Rating (r)	Weight (w)
Water table depth (m)	0.0-1.5	10	5
	1.5-4.6	9	
	4.6-9.1	7	
	9.1-15.2	5	
	15.2-22.9	3	
	22.9-30.5	2	
	>30.5	1	
Aquifer media	Rubble and sand	9	3
	Gravel and sand	7	
	Gravel, sand, clay and silt	5	
	Sand and clay	4	
	Sand, clay and silt	3	
Soil media	Rubble, sand, clay and silt	9	2
	Gravel and sand	7	
	Gravel, sand, clay and silt	6	
	Sand	5	
	Sand, clay and silt	3	
	clay and silt	2	

Topography or slope (%)	0-2	10	
	2-6	9	
	6-12	5	1
	12-18	3	
	>18	1	
The impact of the vadose zone	Rubble, sand, clay and silt	9	
	Gravel and sand	7	
	Gravel, sand, clay and silt	5	5
	Sand, clay and silt	3	
Hydraulic conductivity (m/day)	0-4.1	1	
	4.1-12.2	2	3
	12.2-28.5	4	
	28.5-40.7	6	
	40.7-81.5	8	

138

139 To get the CDRASTIC index, an additional factor (land use) is added to the above formula.

140 Thus, the CDRASTIC index was obtained as follows:

141
$$\text{CDRASTIC index} = D_r D_w + R_r R_w + A_r A_w + S_r S_w + T_r T_w + I_r I_w + C_r C_w + L_r L_w. \quad (2)$$

142 In the above formula, L_w and L_r are the relative weight and rating related to the land use factor,

143 respectively. Ratings and weightings applied to the pollution potential, which are related to the land

144 use factor based on the CDRASTIC index, are indicated in Table 3. The output of the CDRASTIC

145 index should be within the range of 28 to 280. Vulnerability ranges based on the CDRASTIC index

146 are presented in Table 4.

147 **Table 3** Ratings and weighting applied to the pollution potential related to the land use factor

148 based on the CDRASTIC index

Land use	Rating	Weight
Irrigated field crops + Urban areas	10	
Irrigated field crops + Grassland with poor vegetation cover + Urban areas	9	
Irrigated field crops + Grassland with moderate vegetation cover + Urban areas	8	
Irrigated field crops	8	
Irrigated field crops + Fallow land + Grassland with poor vegetation cover	7	
Irrigated field crops + Grassland with poor vegetation cover	7	
Irrigated field crops + Grassland with moderate vegetation cover	6	
Irrigated field crops + Rocky + Urban areas	5	5

Irrigated field crops + Grassland with poor vegetation cover + Woodland	5
Irrigated field crops + Woodland	5
Irrigated field crops + Rocky	4
Fallow land	3
Fallow land + Grassland with poor vegetation cover	3
Fallow land + Grassland with moderate vegetation cover	3
Grassland with poor vegetation cover	2
Grassland with moderate vegetation cover	2
Grassland with moderate vegetation cover + Woodland	1
Sand dune +Grassland with moderate vegetation cover	1
Sand dune	1

149

150 **Table 4** Vulnerability ranges related to the CDRASTIC index

Vulnerability	Ranges
Very low	<100
Low	100-145
Moderate	145-190
High	190-235
Very high	≥235

151 **2.3. Water table depth**

152 The water table depth factor is the ~~depth from the~~ Earth's surface ~~to the water table~~ in a well
153 (Baghapor et al., 2016). ~~To obtain this factor from existing information,~~ 83 wells in the
154 Kerman–Baghin aquifer were utilized. The interpolation procedure was used to provide a raster
155 map of the water table depth factor, which was categorized based on Table 2.

156 **2.4. Net recharge**

157 Net recharge is the amount of runoff that permeates ~~to the~~ Earth and reaches the groundwater
158 surface (Singh et al., 2015; Ghosh and Kanchan, 2016). This research uses the Piscopo method
159 (Chitsazan and Akhtari, 2009) to provide the net recharge layer for the Kerman–Baghin aquifer
160 according to the following equation and Table 5:

161 Net recharge factor = slope (%) + rainfall + soil permeability. (3)

162 In the above equation, the percentage of slope was calculated from a digital elevation model,
163 which was obtained from a topographical map. Also, a soil permeability map was created using
164 the Kerman–Baghin aquifer soil map (with scale 1:250000) and the drilling logs of the wells
165 (number of wells: 83). In the end, a map of the area's rainfall rate was compiled based on the
166 annual average precipitation. Ratings and weights of the net recharge factor are illustrated in
167 Table 5.

168 **Table 5** Weight, rating, and range of the net recharge parameter

Slope (%)		Rainfall		Soil permeability		Net Recharge		
Range (%)	Factor	Range (mm/year)	Factor	Range	Factor	Range (cm/year)	Rating	Weight
<2	4	>850	4	High	5	11-13	10	
2-10	3	700-850	3	Moderate to high	4	9-11	8	
10-33	2	500-700	2	Moderate	3	7-9	5	4
>33	1	<500	1	Low	2	5-7	3	
				Very low	1	3-5	1	

169 **2.5. Aquifer media**

170 This parameter controls the path of groundwater streams in the aquifer (Aller et al., 1985; Singh
171 et al., 2015). To obtain this layer, the well's drilling log data (number of wells: 83) in the aquifer
172 were used. The data were gathered from the Kerman Regional Water Office (KRWO). The range
173 of the aquifer media layer is shown in Table 2.

174 **2.6. Soil media**

175 The soil media has a considerable effect on the amount of water surface that can penetrate into
176 the aquifer. Therefore, where the soil layer is thick, the debilitation processes such as absorption,
177 filtration, degradation, and evaporation may be considerable (Singh et al., 2015). A soil media
178 raster map was provided using the Kerman–Baghin aquifer soil map and the well's drilling logs.

179 **2.7. Topography**

180 The topography controls the ~~duration~~ of water ~~remaining~~ on the soil ~~surface~~ and the degree of
181 penetration (Singh et al., 2015). For obtain this layer, the percentage of the slope was provided
182 from a digital elevation model, ~~which was obtained from the topographical map~~. The data were
183 gathered from the KRWO. The range of the topographic layer is presented in Table 2.

184 **2.8. The impact of the vadose zone**

185 The vadose zone is ~~outlined as the area above the groundwater level which is unsaturated~~ (Singh
186 et al., 2015). ~~This layer~~ plays a considerable role in decreasing groundwater contamination by
187 pollutant debilitation processes such as purification, chemical reaction, and dispersal (Shirazi et
188 al., 2012). In order to prepare this layer, ~~from~~ the wells drilling log data (~~number of wells: 83~~) in
189 ~~the aquifer~~ were used. The data were gathered from the KRWO. The ~~range of the impact~~ of the
190 vadose zone layer is depicted in Table 2.

191 **2.9. Hydraulic conductivity**

192 The hydraulic conductivity refers to the capability of aquifer ~~matters~~ to transfer water. The high
193 hydraulic conductivity areas demonstrate a high potential for groundwater contamination (Singh
194 et al., 2015; Aller et al., 1985). To prepare this layer, ~~pumping tests of wells~~ were used (~~number~~
195 ~~of wells: 83~~). The range of the hydraulic conductivity layer is shown in Table 2.

196 **2.10. Land use**

197 Groundwater is drastically connected with the perspective and land use that it underlies. Land
198 use influences groundwater resources via variation in recharge and by changing demands ~~for~~
199 ~~water. Land use is obligatory since it is required by the CDRASTIC index. The Indian remote~~

200 sensing satellite information was utilized to providing land use raster map. The weight and rating
201 related to the land use layer are presented in Table 3.

202 **2.11. Sensitivity Analyses**

203 One of the main advantages of the DRASTIC index is the ~~performance of evaluation using a~~
204 ~~more number of input data which can restrict the effects of errors or mistakes~~ on the final results.
205 Nevertheless, some investigators, like Babiker et al. (2005), Barber et al. (1993), and Merchant
206 (1994), reported that ~~we could obtain~~ similar results ~~using~~ using fewer data and lower costs. The
207 unavoidable subjectivity related to the choice of the seven factors, ranks, and weights utilized to
208 calculate the vulnerability index has also been criticized. Therefore, in order to eliminate the
209 aforementioned criticisms, two sensitivity analyses were performed as follows (Napolitano and
210 Fabbri, 1996):

211 **A. MRSA**

212 **MRSA** value indicates the ~~sensibility of the vulnerability map to eliminating~~ one or more maps
213 from the suitability analysis. MRSA is calculated as follows (Babiker et al., 2005; Martínez-
214 Bastida et al., 2010; Saidi et al., 2011; Modabberi et al., 2017):

$$215 S = \left[\left| \frac{\frac{V}{N} - \frac{V'}{n}}{V} \right| \right] \times 100 \quad (4)$$

216 ~~In this formula~~, S is the sensibility value expressed in terms of variation index. V is the intrinsic
217 vulnerability index (real vulnerability index) ~~index~~ and V' is the intrinsic vulnerability index
218 after removal of factor X. N and n are the numbers of data factors utilized to calculate V and V',
219 respectively (Babiker et al., 2005; Martínez-Bastida et al., 2010; Saidi et al., 2011; Modabberi et
220 al., 2017).

221 **B. SPSA**

222 SPSA was presented by Napolitano and Fabbri (1996) for the first time. This test shows the
223 effect of each of the DRASTIC factors in the final vulnerability index. Using this test derived
224 from equation 5, the real and effective weight of each factor compared to the theoretical weight
225 assigned by the analytical model (Babiker et al., 2005; Martínez-Bastida et al., 2010; Saidi et al.,
226 2011; Modabberi et al., 2017).

227
$$W = \left[\frac{P_r P_w}{V} \right] \times 100 \quad (5)$$

228 In this above equation, W is the effective weight of each factor. P_r and P_w are the rank and
229 weight assigned to factor P , respectively. V is the intrinsic vulnerability index (Martínez-Bastida
230 et al., 2010; Babiker et al., 2005; Saidi et al., 2011; Modabberi et al., 2017).

231 **3. Results and discussion**

232 **3.1. DRASTIC and CDRASTIC parameters**

233 Based on the data shown in Table 2, the assigned rating of water table depth varies from 1 to 10.
234 In addition, based on the results presented in Table , the water table depth in the aquifer varies
235 from 4.6 to >30.5 m (rating 1 to 7). Around 27.55% of the aquifer has a depth of >30.5 m, and
236 66.16 % of the aquifer has a depth between 9.1 m and 30.5 m. Less than 7% has a depth between
237 4.6 m and 9.1 m. The Kerman–Baghīn aquifer rated map of water table depth factor is presented
238 in Figure 2(A). According to Figure 2(A) and Table 6, the least impact of the water table depth
239 parameter on aquifer vulnerability occurs in parts of the center (6.39%), whereas the water table
240 depth parameter most influences vulnerability in parts of the north, south, northwest, and
241 southeast (27.55%).

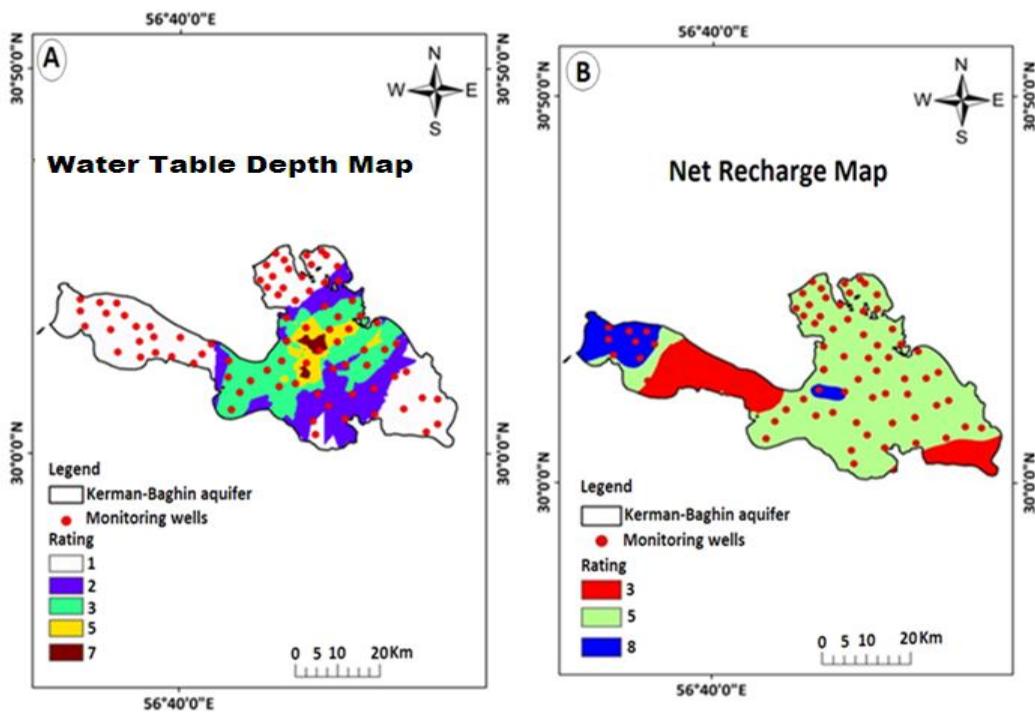
242 According to the results presented in Table 6, 75.81% of the aquifer has a net recharge value
243 in the range of 7 to 9 cm/year. The highest rating of 8 is dedicated only to 11.74% of the aquifer
244 that has a net recharge value between 9 and 11 cm/year. The Kerman–Baghin aquifer rated map
245 of the net recharge parameter is shown in Figure 2(B). According to Piscopo's method, the
246 Kerman–Baghin aquifer was divided into three classes with regards to the net recharge factor.
247 The highest net recharge value was seen in the north, northeast, south, southwest, parts of the
248 northwest, parts of the center, and parts of the southeast (75.81%), whereas the least net recharge
249 value appeared in parts of the northwest and center (11.74%), as shown in Figure 2(B) and Table
250 6.

251 As observed in Table 6, the majority of the Kerman–Baghin aquifer media is composed of
252 sand, clay, and silt (75.21%). The Kerman–Baghin aquifer rated map of aquifer media is
253 presented in Figure 3(A). Parts of the aquifer in the north, northwest, northeast, center, and
254 southeast are composed of sand, clay, and silt. Parts of the aquifer in the northwest are composed
255 of rubble and sand (5.58%). Parts of the aquifer in the south and northwest are composed of
256 gravel and sand (8.95%), and gravel, sand, clay, and silt (10.26%).

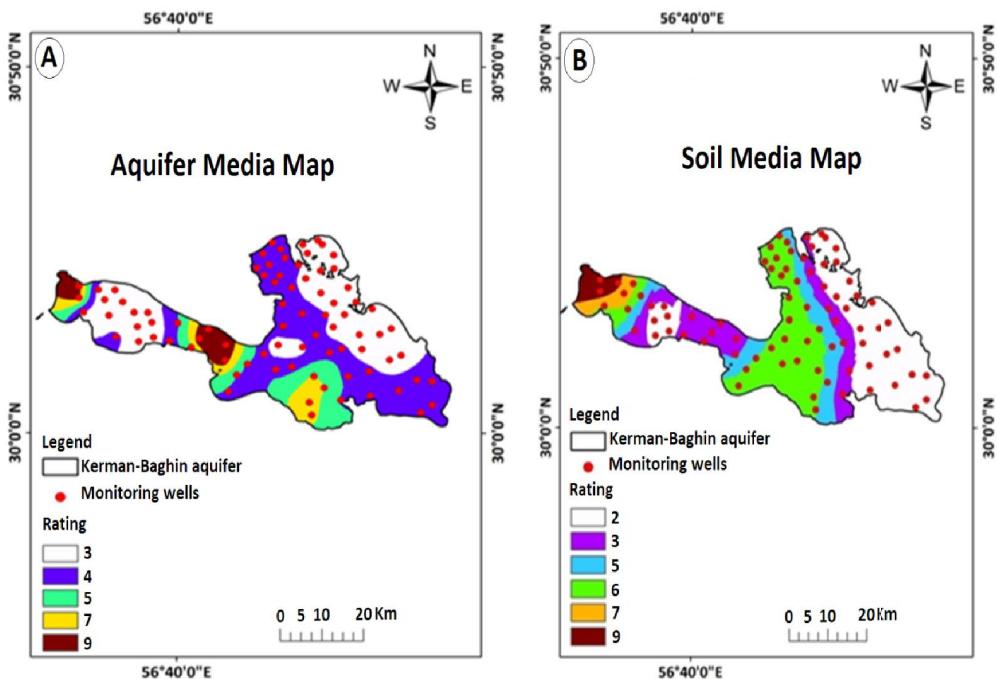
257 The Kerman–Baghin aquifer rated map of the soil media parameter is presented in Figure
258 3(B). The soil map depicts six different classes of the soil. The highest rank (rank = 9) was
259 assigned to rubble, sand, clay, and silt (a combination of rubble, sand, clay and silt soils). Also,
260 the lowest rank (rank = 2) was assigned to clay and silt (a combination of clay and silt soils).
261 Most of the aquifer soil media is covered with silt, sand, and clay (about 80%).

262 The Kerman–Baghin aquifer rated map of the topography parameter is indicated in Figure
263 4(A). The topographical layer shows a gentle slope (0 to 6%) over most of the aquifer, hence
264 gaining ranks of 9 and 10. A slope range of 0 to 2% includes 34.72% of the study area, and its

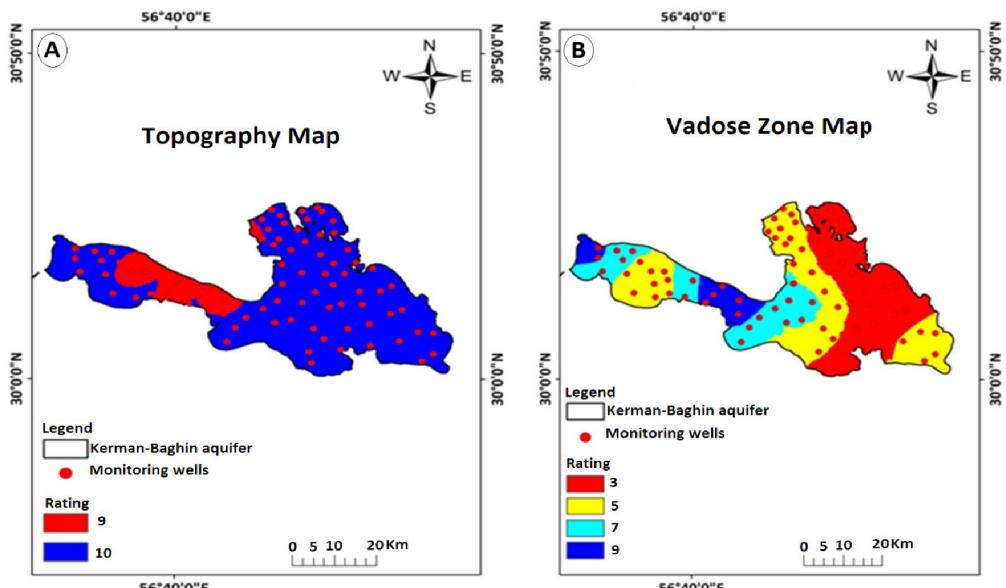
265 rating (slope range = 0–2%) is 10. A rank of 9 is dedicated for 65.28% of the aquifer, which has
266 a 2 to 6% slope (parts of the northwest) as shown in Figure 4(A) and Tables 2 and 6. As the
267 gradient increases, the runoff increases as well (Israil et al., 2006) leading to less penetration
268 (Jaiswal et al., 2003). Based on Madrucci et al.'s ~~study~~ (2008), the gradients higher than 35° are
269 considered restrictions on groundwater desirability because of the lack of springs.


270 The Kerman–Baghin aquifer rated map of the impact of the vadose zone parameter is
271 indicated in Figure 4(B). According to the results, the soil with a rank of 5 (gravel, sand, clay,
272 and silt) is more effective on aquifer vulnerability (35.47%). Other various types of soils such as
273 sand, clay, and silt (parts of the north, northeast, south, and southeast), gravel and sand (parts of
274 the center and northwest), and rubble, sand, clay, and silt (parts of the northwest) cover 34.24%,
275 20.39%, and 9.9% of the aquifer, respectively, as shown in Figure 4(B) and Table 6. Sandy soil
276 is effective on groundwater occurrence because of the high rate of penetration (Srivastava and
277 Bhattacharya, 2006). However, clay soil is arranged poorly because of the low infiltration
278 (Manap et al., 2014b).

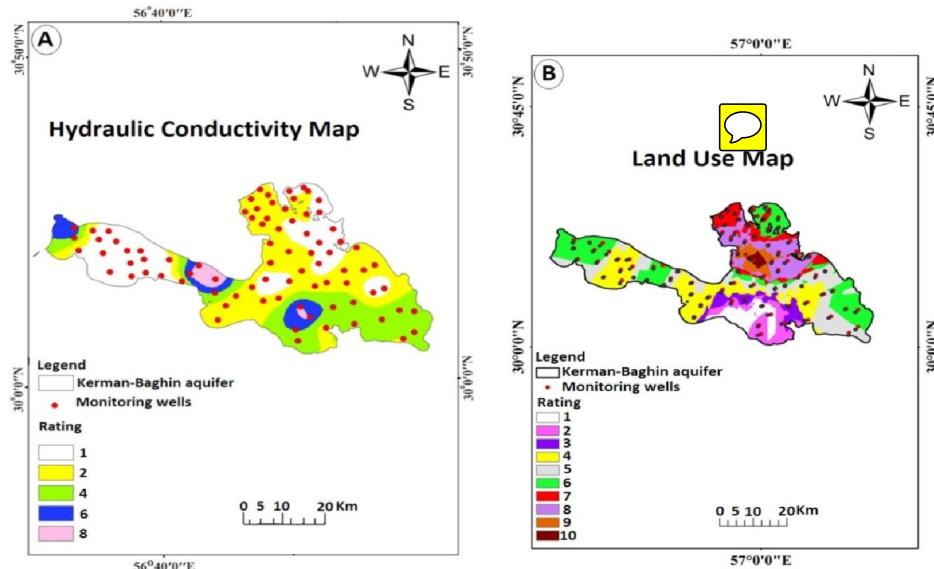
279 The Kerman–Baghin aquifer rated map of the hydraulic conductivity parameter is presented
280 in Figure 5(A). The hydraulic conductivity factor shows high variability. Our study results show
281 that the hydraulic conductivity parameter of the Kerman–Baghin aquifer varied from 0 to 81.5
282 m/day. The potential for groundwater contamination is ~~more for~~ zones with high hydraulic
283 conductivity (38.27%). As shown in Figure 5(A) and Table 6, 29.51%, 23.93%, 5.98%, and
284 2.31% of the study areas have hydraulic conductivity in the ranges of 0 to 4.1 m/day, 12.2 to
285 28.5 m/day, 28.5 to 40.7 m/day, and 40.7 to 81.5 m/day, respectively.


286 The Kerman–Baghin aquifer rated map of the land use parameter is presented in Figure 5(B).
287 Our results show that the majority of the Kerman–Baghin aquifer is covered with irrigated field

288 crops and grassland with moderate vegetation cover (20.45%). Less than 4% ~~of land use~~ of the
289 study area is irrigated field crops and urban areas (3.61%), and 58.47% ~~of land use~~ of the study
290 area is irrigated field crops with urban areas, grassland with poor and moderate vegetation cover,
291 fallow land, woodland, and rocky ground. In addition, 10.17% ~~of land use~~ of the study area is
292 fallow land with poor grassland and moderate vegetation cover, and 13.72% ~~of land use~~ of the
293 study area is sand dunes with poor grassland and moderate vegetation cover and woodland as
294 shown in Figure 5(B) and Tables 3 and 6.



295
296 **Fig. 2.** Kerman–Baghin aquifer rated maps of A) water table depth and B) net recharge


297

298 **Fig. 3.** Kerman–Baghin aquifer rated maps of A) aquifer media and B) soil media

299

300 **Fig. 4.** Kerman–Baghin aquifer rated maps of A) topography and B) vadose zone

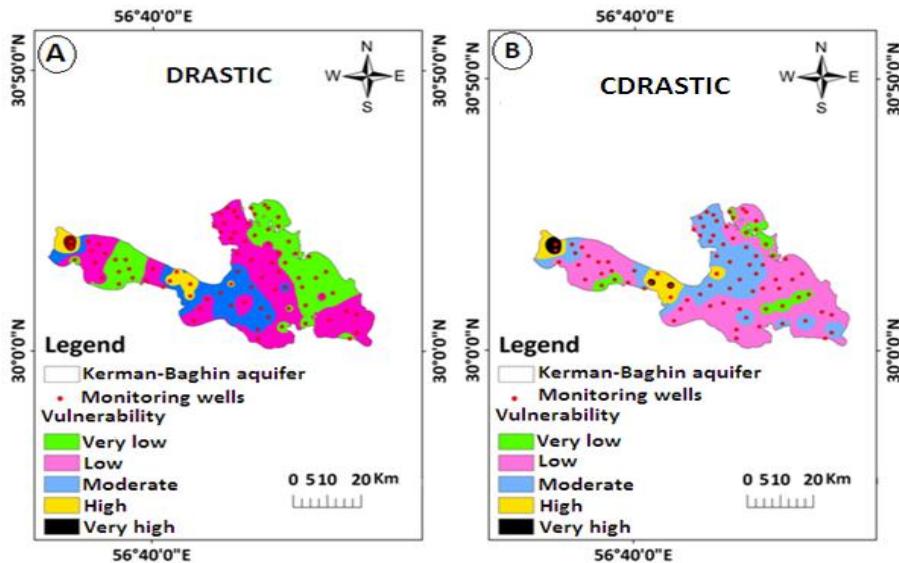
301

302 **Fig. 5.** Kerman–Baghin aquifer rated maps of A) hydraulic conductivity and B) land use

303 **Table 6** The area of rating (km^2 and %) of the DRASTIC and CDRASTIC parameters

DRASTIC and CDRASTIC indexes parameters	Rating	Area (km^2)	Area (%)	The aquifer geographic directions covered by the respective rating in the parameters rated maps
Water table depth	1	557.73	27.55	Parts of the north, south, northwest, and southeast
	2	472.18	23.34	Parts of the north south, and center
	3	469.78	23.29	Parts of the center
	5	395.00	19.53	Parts of the center
	7	129.14	6.39	Parts of the center
Net recharge	3	252.04	12.45	Parts of southeast, and northwest
	5	1534.15	75.81	North, northeast, south, southwest, and parts of the northwest, center, southeast
	8	237.6	11.74	Parts of the northwest and center
Aquifer media	3	743.18	36.72	Parts of the north, northwest, northeast, and center
	4	779.01	38.49	Parts of the north, northwest, southeast, and center
	5	207.81	10.26	Parts of the south, and northwest
	7	181.02	8.95	Parts of the south, and northwest
	9	112.76	5.58	Parts of the northwest
Soil media	2	658.5	32.53	Parts of the north, northwest, northeast, and southeast
	3	399.72	19.75	Parts of the north, northwest, south, and center

	5	297.44	14.69	Parts of the north, northwest, south, and center
	6	538.77	26.62	Parts of the northwest, center, and southwest
	7	67.56	3.33	Parts of the northwest
	9	61.79	3.08	Parts of the northwest
Topography	9	702.74	34.72	North, northwest, northeast, south, southeast, southwest, and center
	10	1321.07	65.28	parts of the northwest
The impact of the vadose zone	3	692.87	34.24	Parts of the north, northeast, south, and southeast
	5	717.91	35.47	Parts of the north, northwest, south, southeast, and center
	7	412.49	20.39	Parts of the center, and northwest
	9	200.53	9.9	Parts of the northwest
Hydraulic conductivity	1	597.11	29.51	Parts of the northeast, northwest, southeast, and center
	2	774.52	38.27	parts of the northwest, south, southeast and center
	4	484.17	23.93	Parts of the northwest, south, and southeast
	6	120.99	5.98	Parts of the south, and northwest
	8	46.7	2.31	Parts of the south, and northwest
Land use	1	112.48	5.56	Parts of the south
	2	165.02	8.16	Parts of the south
	3	205.65	10.17	Parts of the south, and center
	4	357.06	17.64	Parts of the south, southwest, northwest and center
	5	234.86	11.61	Parts of the southeast, northwest, and center
	6	413.86	20.45	Parts of the southeast, northwest, northeast, and center
	7	182.63	9.02	Parts of the north, northwest, and northeast
	8	169.4	8.37	Parts of the north, northwest, and northeast
	9	109.42	5.41	Parts of the north, northwest, and northeast
	10	73.09	3.61	Parts of the north



304 **3.2. DRASTIC and CDRASTIC vulnerability indexes**

305 The Kerman–Baghīn aquifer vulnerability map using DRASTIC and CDRASTIC indexes is
306 shown in Figure 6. In the studied aquifer, the vulnerability falls under very high, high, moderate,
307 very low, ~~and low~~ vulnerable areas. It is found that in both indexes, the parts of north, northeast,
308 northwest, south, southwest, southeast and center come under low and very low vulnerability.
309 This can be attributed to low water depth, hydraulic conductivity, and net recharge ~~in~~ these

310 aquifer areas and the other reason might be that the aquifer media mostly are clay, sand and silt
311 soils. The area of the vulnerability identified by investigated indexes is illustrated in Table 7.
312 Low and very low vulnerable zones cover 25.21% and 38.31% of the Kerman–Baghin aquifer
313 using the DRASTIC index, respectively. Very low and low vulnerable zones cover 24.95% and
314 40.41% of the Kerman Baghin aquifer using the CDRASTIC index, respectively. This is
315 primarily due to water depth and relatively low permeability of the vadose zone in such aquifers
316 (Colins et al., 2016). Around 26 % of the studied aquifer area has moderate groundwater
317 pollution potential using DRASTIC and CDRASTIC indexes. This does not mean that such areas
318 are without pollution but it is relatively prone to pollution when compared with other areas
319 (Colins et al., 2016). From the DRASTIC index values, it was noticed that 10.4% of the study
320 aquifer is under high (8.46%) and very high (1.94%) of vulnerability. The results of the study
321 showed that 8.75% of the aquifer is under high (6.28%) and very high (2.47%) of vulnerability in
322 the CDRASTIC index. The vulnerability maps according to these two indexes indicated very
323 same findings, showing the northwest portion of the aquifer as the high and very high vulnerable
324 zones. The high vulnerability can be attributed to high water depth, hydraulic conductivity, and
325 net recharge in these aquifer areas. In addition, this can be due to the high slope in this area.

326

327 **Fig. 6.** The vulnerability maps of the Kerman–Baghin aquifer by DRASTIC and CDRASTIC

328 indexes

329 **Table 7** The area of vulnerability (km² and %) identified by DRASTIC and CDRASTIC indexes

330 The sensibility of the DRASTIC index

Vulnerability	DRASTIC				composite DRASTIC			
	Ranges	Area (km ²)	Area (%)	The aquifer geographic directions covered by the respective vulnerability	Ranges	Area (km ²)	Area (%)	The aquifer geographic directions covered by the respective vulnerability
Very low	23-46	510.25	25.21	Parts of the south, north, northwest, and northeast	<100	505.02	24.95	Parts of the southeast, north, northwest, and northeast
Low	47-92	775.14	38.31	Parts of the south, southwest, southeast, north, northwest, northeast, and center	100-145	817.70	40.41	Parts of the south, southwest, southeast, north, northwest, northeast, and center
Moderate	93-136	527.85	26.08	Parts of the south, southwest, northwest, and center	145-190	524.06	25.89	Parts of the south, southwest, northwest, and center
High	137-184	171.02	8.46	Parts of the northwest	190-235	126.91	6.28	Parts of the northwest and center
Very high	>185	39.23	1.94	Parts of the northwest	≥235	49.79	2.47	Parts of the northwest

331

332 **3.3. Sensitivity of the DRASTIC model**

333 The MRSA to the DRASTIC index is performed by eliminating one layer data at a time as
334 indicated in Table 8. The results showed a high variation in vulnerability index when the impact
335 of the vadose zone factor was removed, so that, the average variation index is 1.88%. This shows
336 that this factor is more effective in vulnerability assessment using the DRASTIC index. When
337 this parameter is removed from the overlay process, this leads to a significant decrease in
338 vulnerability index. This could be due to the high theoretical weight allocated to this factor
339 (weight = 5). These findings are similar to those obtained by Dibi et al. (2012) who have shown
340 that in addition to this parameter, topography, net recharge, and water table depth have a high
341 impact on the vulnerability index. Also, in Samake et al. (2011) study, the impact of the vadose
342 zone and the hydraulic conductivity parameters had a considerable impact on the vulnerability
343 index. The vulnerability index appears to have a moderate sensitivity to the deletion of water
344 table depth (1.48%), net recharge (1.36%), and hydraulic conductivity (1.25%) parameters. The
345 minimum menu variation index was achieved after eliminating the aquifer media factor (0.44%),
346 as indicated in Table 8.

347 For the estimate of the effect of individual factors towards aquifer vulnerability, the SPSA is
348 performed. The results summary of SPSA to the DRASTIC index is shown in Table 9. The
349 SPSA compares the effective weights and theoretical weights. The average value of the effective
350 weight of the net recharge factor is 43.26% and its theoretical weight (%) is 17.4%. This shows
351 that this factor is more effective in vulnerability assessment using the DRASTIC index. The
352 results reported by other studies (Babiker et al., 2005; Doumouya et al., 2012) are similar to those
353 of the present study. The impact of the vadose zone and water table depth parameters has high
354 theoretical weights (21.74%). They have been dedicated with an effective weight with average
355 value such as 8.33% and 25.55%. The remaining factors show an average value of the effective
356 weight of 10.00% and 10.00%.

356 weights of 14.91% (aquifer media), 9.89% (soil media), 11.35% (topography), and 7.01%
357 (hydraulic conductivity). The theoretical weights ~~allocated~~ to the water table depth, net recharge,
358 topography, and hydraulic conductivity parameters are not in agreement with the effective
359 weight. The highest and lowest impact on aquifer vulnerability was related to the net recharge
360 and hydraulic conductivity parameters, respectively (Table 9).

361 **Table 8** Statistical results of MRSA in the DRASTIC index

SD	Sensitivity of variability index (S) (%)			Removed parameters
	Min.	Max.	Ave.	
0.414	0.05	2.36	1.36	D
0.775	0.07	3.06	1.48	R
0.311	0.05	1.31	0.44	A
0.486	0.00	1.65	0.73	S
0.339	0.03	1.31	0.51	T
0.894	0.25	3.84	1.88	I
0.550	0.03	1.98	1.25	C

362

363 **Table 9** Statistical results of SPSA in the DRASTIC index

SD	Effective weight (%)			Theoretical weight (%)	Theoretical weight	Parameters
	Min.	Max.	Ave.			
6.179	3.23	28.46	8.33	21.74	5	D
11.998	14.06	73.47	43.26	17.4	4	R
3.190	7.26	22.13	14.91	13.04	3	A
2.916	4.49	14.29	9.89	8.7	2	S
2.222	6.45	14.71	11.35	4.3	1	T
5.367	15.79	37.31	25.55	21.74	5	I
3.738	2.42	18.75	7.01	13.04	3	C

364

365 3.4. The sensibility of the CDRASTIC index

366 The MRSA ~~to~~ the CDRASTIC index is performed by eliminating on data layer at a time as
367 indicated in Table 10. The mean variation index of hydraulic conductivity parameter is 4.13%.
368 The hydraulic conductivity has a greater effect in the aquifer vulnerability followed by water
369 table depth (4.05%), soil media (3.82%), topography (3.68%), aquifer media (3.28%), net
370 recharge (2.72%), the impact of the vadose zone (2.33%), and land use ~~parameter~~ (1.99%).

371 The effective weight derived from the SPSA to the CDRASTIC index is shown in Table 11.
372 The average value of the effective weight of the net recharge factor is 32.62%. This shows that
373 this factor is more effective in vulnerability assessment using CDRASTIC index. The hydraulic
374 conductivity displays the lowest effective weights (5.32%). The topography, net recharge, and
375 land use had upper effective weights toward the theoretical weights specified by CDRASTIC
376 index. The average value of the effective weight of the land use parameter is 24.82%. This shows
377 that this parameter is the second effective parameter in aquifer vulnerability using the
378 CDRASTIC index (Table 11).

379 **Table 10** Statistical results of MRSA in the CDRASTIC index

SD	Sensitivity of variability index (S) (%)			Removed parameters
	Min.	Max.	Ave.	
1.403	0.50	6.48	4.05	D
1.617	0.11	10.91	2.72	R
1.541	0.06	5.99	3.28	A
1.508	0.67	6.60	3.82	S
1.353	0.87	5.87	3.68	T
1.439	0.06	5.12	2.33	I
1.480	0.55	6.72	4.13	C
0.375	1.23	3.00	1.99	L

380

381 **Table 11** Statistical results of SPSA in the CDRASTIC index

SD	Effective weight (%)			Theoretical weight (%)	Theoretical weight	Parameters
	Min.	Max.	Ave.			
4.849	2.63	26.88	6.27	21.74	5	D
10.672	10.4	66.67	32.62	17.4	4	R
3.026	6.29	20.00	11.23	13.04	3	A
2.621	3.31	12.96	7.5	8.7	2	S
1.609	5.2	12.82	8.45	4.3	1	T
4.648	10.87	32.05	19.2	21.74	5	I
3.134	2.1	14.88	5.32	13.04	3	C
10.122	3.88	42.37	24.82	17.85	5	L

382

383 **4. Conclusions**

384 Evaluations of vulnerability indexes for the Kerman–Baghin aquifer were conducted using the
385 GIS-based DRASTIC and CDRASTIC indexes. Seven hydro–geological factors (the letters
386 comprising the acronym) are applied to determine vulnerability with DRASTIC. ~~Eight~~ hydro–
387 geological parameters (one additional to the seven in DRASTIC) ~~are utilized to determine~~
388 ~~vulnerability~~ with the CDRASTIC index. From the DRASTIC index values, it was determined
389 that 10.4% of the aquifer is under high (8.46%) and very high (1.94%) vulnerability. From the
390 CDRASTIC index values, it was determined that 8.75% of the aquifer is under high (6.28%) and
391 very high (2.47%) vulnerability. Also, we found that parts of the north, south, southeast, and
392 northwest are under low and very low vulnerability using the DRASTIC and CDRASTIC
393 indexes. Agricultural and industrial activities are found to be a major threat in the zones with
394 high and very high vulnerability. The MRSA signifies the fact that hydraulic conductivity and
395 the impact of the vadose zone factors induce a high risk of aquifer contamination according to
396 the DRASTIC and CDRASTIC indexes, respectively. In both indexes, the SPSA analysis shows
397 the net recharge factor as a high risk for aquifer contamination. These results indicate that the
398 studied indexes are effective tools for determining groundwater vulnerability. Also, these results
399 could be utilized by private and government agencies as a guide for groundwater contamination
400 assessment in Iran.

401 **Acknowledgments**

402 The authors would like to thank the Environmental Health Engineering Research Center,
403 Kerman University of Medical Sciences, for their scientific support.

404 **Competing interests.** The authors declare that they have no conflict of interest.

405 **References**

406 Aller, L., Truman, b., Jay H, L., Rebeeca J, P., and Glen, H.: DRASTIC: a standardized system
407 for evaluating ground water pollution potential using hydrogeologic settings, U.S Environmental
408 Protection Agency, USA, 1985.

409 Ayazi, M. H., Pirasteh, S., Arvin, A., Pradhan, B., Nikouravan, B., and Mansor, S.: Disasters and
410 risk reduction in groundwater: Zagros Mountain Southwest Iran using geoinformatics
411 techniques, *Disaster Adv.*, 3, 51-57, 2010.

412 Baalousha, H.: Vulnerability assessment for the Gaza Strip, Palestine using DRASTIC, *J.*
413 *Environ. Geol.*, 50, 405-414, <https://doi.org/10.1007/s00254-006-0219-z>, 2006.

414 Babiker, I. S., Mohamed, M. A., Hiyama, T., and Kato, K.: A GIS-based DRASTIC model for
415 assessing aquifer vulnerability in Kakamigahara Heights, Gifu Prefecture, central Japan, *Sci*
416 *Total Environ.*, 345, 127-140, <https://doi.org/10.1016/j.scitotenv.2004.11.005>, 2005.

417 Baghapor, M. A., Talebbeydokhti, N., Tabatabee, H., and Nobandegani, A. F.: Assessment of
418 groundwater nitrate pollution and determination of groundwater protection zones using
419 DRASTIC and composite DRASTIC (CD) models: the case of Shiraz unconfined aquifer, *J.*
420 *Health. Sci. Surveill. Syst.*, 2, 54-65, 2014.

421 Baghapor, M. A., Nobandegani, A. F., Talebbeydokhti, N., Bagherzadeh, S., Nadiri, A. A.,
422 Gharekhani, M., and Chitsazan, N.: Optimization of DRASTIC method by artificial neural
423 network, nitrate vulnerability index, and composite DRASTIC models to assess groundwater
424 vulnerability for unconfined aquifer of Shiraz Plain, Iran, *J Environ Health Sci Eng.*, 14, 1-16,
425 <https://doi.org/10.1186/s40201-016-0254-y>, 2016.

426 Barber, C., Bates, L. E., Barron, R., and Allison, H.: Assessment of the relative vulnerability of
427 groundwater to pollution: a review and background paper for the conference workshop on
428 vulnerability assessment, *AGSO J Aust Geol Geophys.*, 14, 147-154, 1993.

429 Boughriba, M., Barkaoui, A.-e., Zarhloule, Y., Lahmer, Z., El Houadi, B., and Verdoya, M.:
430 Groundwater vulnerability and risk mapping of the Angad transboundary aquifer using
431 DRASTIC index method in GIS environment, Arab J Geosci., 3, 207-220,
432 <https://doi.org/10.1007/s12517-009-0072-y>, 2010.

433 Chitsazan, M., and Akhtari, Y.: Evaluating the potential of groundwater pollution in Kherran and
434 Zoweircherry plains through GIS-based DRASTIC model, J. Water. Wastewater, 17, 39-51,
435 2006.

436 Chitsazan, M., and Akhtari, Y.: A GIS-based DRASTIC model for assessing aquifer
437 vulnerability in Kherran Plain, Khuzestan, Iran, Water Resour Manag., 23, 1137-1155,
438 <https://doi.org/10.1007/s11269-008-9319-8>, 2009.

439 Colins, J., Sashikkumar, M., Anas, P., and Kirubakaran, M.: GIS-based assessment of aquifer
440 vulnerability using DRASTIC Model: A case study on Kodaganar basin, Earth Sci. Res. J., 20, 1-
441 8, <https://doi.org/10.15446/esrj.v20n1.52469>, 2016.

442 Daly, D., and Drew, D.: Irish methodologies for karst aquifer protection, in: Beek B (ed)
443 Hydrogeology and engineering geology of sinkholes and karst, Balkema, Rotterdam, 267-272,
444 1999.

445 Dibi, B., Kouame, K. I., Konan-Waidhet, A. B., Savane, I., Biemi, J., Nedeff, V., and Lazar, G.:
446 Impact of agriculture on the quality of groundwater resources in peri-urban zone of Songon
447 (Cote D'Ivoire), Environ. Engine. Manage. J., 11, 2173-2182,
448 <https://doi.org/10.30638/eemj.2012.271>, 2012.

449 Dixon, B.: Prediction of ground water vulnerability using an integrated GIS-based Neuro-Fuzzy
450 techniques, J. Spat. Hydro., 4, 1-38, 2004.

451 Doumouya, I., Dibi, B., Kouame, K. I., Saley, B., Jourda, J. P., Savane, I., and Biemi, J.:
452 Modelling of favourable zones for the establishment of water points by geographical information
453 system (GIS) and multicriteria analysis (MCA) in the Aboisso area (South-east of Côte d'Ivoire),
454 Environ. Earth. Sci., 67, 1763-1780, <https://doi.org/10.1007/s12665-012-1622-2>, 2012.

455 Ghazavi, R., and Ebrahimi, Z.: Assessing groundwater vulnerability to contamination in an arid
456 environment using DRASTIC and GOD models, Inte. J. Environ. Sci. Tech, 12, 2909-2918,
457 <https://doi.org/10.1007/s13762-015-0813-2>, 2015.

458 Ghosh, T., and Kanchan, R.: Aquifer vulnerability assessment in the Bengal alluvial tract, India,
459 using GIS based DRASTIC model, Model Earth Syst Environ., 2, 2-13,
460 <https://doi.org/10.1007/s40808-016-0208-5>, 2016.

461 Israil, M., Al-hadithi, M., Singhal, D., Kumar, B., Rao, M. S., and Verma, S.: Groundwater
462 resources evaluation in the Piedmont zone of Himalaya, India, using Isotope and GIS techniques,
463 J. Spatial. Hydro., 6, 107-119, 2006.

464 Jaiswal, R., Mukherjee, S., Krishnamurthy, J., and Saxena, R.: Role of remote sensing and GIS
465 techniques for generation of groundwater prospect zones towards rural development--an
466 approach, Int J Remote Sens., 24, 993-1008, <https://doi.org/10.1080/01431160210144543>, 2003.

467 Jaseela, C., Prabhakar, K., and Harikumar, P. S. P.: Application of GIS and DRASTIC modeling
468 for evaluation of groundwater vulnerability near a solid waste disposal site, Int. J. Geoscien., 7,
469 558-571, <https://doi.org/10.4236/ijg.2016.74043>, 2016.

470 Javadi, S., Kavehkar, N., Mousavizadeh, M., and Mohammadi, K.: Modification of DRASTIC
471 model to map groundwater vulnerability to pollution using nitrate measurements in agricultural
472 areas, J. Agr. Sci. Tech., 13, 239-249, 2010.

473 Javadi, S., Kavehkar, N., Mohammadi, K., Khodadadi, A., and Kahawita, R.: Calibrating
474 DRASTIC using field measurements, sensitivity analysis and statistical methods to assess
475 groundwater vulnerability, Water. Int., 36, 719-732,
476 <https://doi.org/10.1080/02508060.2011.610921>, 2011.

477 Jayasekera, D., Kaluarachchi, J. J., and Villholth, K. G.: Groundwater Quality Impacts Due to
478 Population Growth and Land Use Exploitation in the Coastal Aquifers of Sri Lanka, Southern
479 Illinois University Carbondale 2008, 43.

480 Jayasekera, D. L., Kaluarachchi, J. J., and Villholth, K. G.: Groundwater stress and vulnerability
481 in rural coastal aquifers under competing demands: a case study from Sri Lanka, Environ Monit
482 Assess. , 176, 13-30, <https://doi.org/10.1007/s10661-010-1563-8>, 2011.

483 Kardan Moghaddam, H., Jafari, F., and Javadi, S.: Vulnerability evaluation of a coastal aquifer
484 via GALDIT model and comparison with DRASTIC index using quality parameters, Hydro. Sci.
485 J., 62, 137-146, <https://doi.org/10.1080/02626667.2015.1080827>, 2017.

486 Kumar, P., Thakur, P. K., Bansod, B. K., and Debnath, S. K.: Assessment of the effectiveness of
487 DRASTIC in predicting the vulnerability of groundwater to contamination: a case study from
488 Fatehgarh Sahib district in Punjab, India, Environ. Earth. Sci., 75, 879,
489 <https://doi.org/10.1007/s12665-016-5712-4>, 2016.

490 Madrucci, V., Taioli, F., and de Araújo, C. C.: Groundwater favorability map using GIS
491 multicriteria data analysis on crystalline terrain, Sao Paulo State, Brazil, J. Hydro., 357, 153-173,
492 <https://doi.org/10.1016/j.jhydrol.2008.03.026>, 2008.

493 Manap, M. A., Sulaiman, W. N. A., Ramli, M. F., Pradhan, B., and Surip, N.: A knowledge-
494 driven GIS modeling technique for groundwater potential mapping at the Upper Langat Basin,
495 Malaysia, Arabian. J. Geosci., 6, 1621-1637, <https://doi.org/10.1007/s12517-011-0469-2>, 2013.

496 Manap, M. A., Nampak, H., Pradhan, B., Lee, S., Sulaiman, W. N. A., and Ramli, M. F.:
497 Application of probabilistic-based frequency ratio model in groundwater potential mapping using
498 remote sensing data and GIS, Arabian. J.Geosci., 7, 711-724, <https://doi.org/10.1007/s12517-012-0795-z>, 2014a.

500 Manap, M. A., Nampak, H., Pradhan, B., Lee, S., Sulaiman, W. N. A., and Ramli, M. F.:
501 Application of probabilistic-based frequency ratio model in groundwater potential mapping using
502 remote sensing data and GIS, Arabian. J. Geosci., 7, 711-724, <https://doi.org/10.1007/s12517-012-0795-z>, 2014b.

504 Martínez-Bastida, J. J., Arauzo, M., and Valladolid, M.: Intrinsic and specific vulnerability of
505 groundwater in central Spain: the risk of nitrate pollution, Hydro. J., 18, 681-698,
506 <https://doi.org/10.1007/s10040-009-0549-5>, 2010.

507 Merchant, J. W.: GIS-based groundwater pollution hazard assessment: a critical review of the
508 DRASTIC model, Photogramm Eng Remote Sensing., 60, 1117-1127, 1994.

509 Modabberi, H., Hashemi, M. M. R., Ashournia, M., and Rahimipour, M. A.: Sensitivity Analysis
510 and Vulnerability Mapping of the Guilan Aquifer Using Drastic Method, Rev. Environ. Earth.
511 Sci., 4, 27-41, <https://doi.org/10.18488/journal.80.2017.41.27.41>, 2017.

512 Napolitano, P., and Fabbri, A.: Single-parameter sensitivity analysis for aquifer vulnerability
513 assessment using DRASTIC and SINTACS, Proceedings of the Vienna Conference,
514 Netherlands, 1996, 559-566,

515 Neshat, A., Pradhan, B., Pirasteh, S., and Shafri, H. Z. M.: Estimating groundwater vulnerability
516 to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran, Environ.
517 Earth. Sci., 71, 3119-3131, <https://doi.org/10.1007/s12665-013-2690-7>, 2014.

518 Neshat, A., and Pradhan, B.: Evaluation of groundwater vulnerability to pollution using
519 DRASTIC framework and GIS, Arabian. J. Geosci., 10, 2-8, <https://doi.org/10.1007/s12517-017-3292-6>, 2017.

521 Raju, N. J., Ram, P., and Gossel, W.: Evaluation of groundwater vulnerability in the lower
522 Varuna catchment area, Uttar Pradesh, India using AVI concept, J. Geol. Soc. India., 83, 273-
523 278, <https://doi.org/10.1007/s12594-014-0039-9>, 2014.

524 Saida, S., Tarik, H., Abdellah, A., Farid, H., and Hakim, B.: Assessment of groundwater
525 vulnerability to nitrate based on the optimised DRASTIC models in the GIS Environment (Case
526 of Sidi Rached Basin, Algeria), Geosciences, 7, 2-23,
527 <https://doi.org/10.3390/geosciences7020020>, 2017.

528 Saidi, S., Bouri, S., and Ben Dhia, H.: Sensitivity analysis in groundwater vulnerability
529 assessment based on GIS in the Mahdia-Ksour Essaf aquifer, Tunisia: a validation study, Hydro.
530 Sci. J., 56, 288-304, <https://doi.org/10.1080/02626667.2011.552886>, 2011.

531 Samake, M., Tang, Z., Hlaing, W., Mbue, I. N., Kasereka, K., and Balogun, W. O.: Groundwater
532 vulnerability assessment in shallow aquifer in Linfen Basin, Shanxi Province, China using
533 DRASTIC model, J. Sustain. Develop., 4, 53-71, <https://doi.org/10.5539/jsd.v4n1p53>, 2011.

534 Sarah, C., and Patricia I, C.: Ground water vulnerability assessment: Predicting relative
535 contamination potential under conditions of uncertainty, National Academies Press, USA, 1993.

536 Secunda, S., Collin, M., and Melloul, A. J.: Groundwater vulnerability assessment using a
537 composite model combining DRASTIC with extensive agricultural land use in Israel's Sharon
538 region, J. Environ. Manage., 54, 39-57, <https://doi.org/10.1006/jema.1998.0221>, 1998.

539 Shirazi, S. M., Imran, H., and Akib, S.: GIS-based DRASTIC method for groundwater
540 vulnerability assessment: a review, J. Risk. Res., 15, 991-1011,
541 <https://doi.org/10.1080/13669877.2012.686053>, 2012.

542 Singh, A., Srivastav, S., Kumar, S., and Chakrapani, G. J.: A modified-DRASTIC model
543 (DRASTICA) for assessment of groundwater vulnerability to pollution in an urbanized
544 environment in Lucknow, India, Environ. Earth. Sci., 74, 5475-5490,
545 <https://doi.org/10.1007/s12665-015-4558-5>, 2015.

546 Souleymane, K., and Tang, Z.: A novel method of sensitivity analysis testing by applying the
547 DRASTIC and fuzzy optimization methods to assess groundwater vulnerability to pollution: the
548 case of the Senegal River basin in Mali, Nat. Hazards. Earth. Sys. Sci., 17, 1375-1392,
549 <https://doi.org/10.5194/nhess-17-1375-2017>, 2017.

550 Srivastava, P. K., and Bhattacharya, A. K.: Groundwater assessment through an integrated
551 approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock
552 terrain, Int. J. Remote. Sens., 27, 4599-4620, <https://doi.org/10.1080/01431160600554983>,
553 2006.

554 Tilahun, K., and Merkel, B. J.: Assessment of groundwater vulnerability to pollution in Dire
555 Dawa, Ethiopia using DRASTIC, Environ. Earth. Sci., 59, 1485-1496,
556 <https://doi.org/10.1007/s12665-009-0134-1>, 2010.

557 Zghibi, A., Merzougui, A., Chenini, I., Ergaieg, K., Zouhri, L., and Tarhouni, J.: Groundwater
558 vulnerability analysis of Tunisian coastal aquifer: an application of DRASTIC index method in
559 GIS environment, Groundwater. Sustain. Develop., 2, 169-181,
560 <https://doi.org/10.1016/j.gsd.2016.10.001>, 2016.