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Abstract 8 

The run-up of random long wave ensemble (swell, storm surge and tsunami) on the constant-slope 9 
beach is studied in the framework of the nonlinear shallow-water theory in the approximation of 10 
non-breaking waves. If the incident wave approaches the shore from deepest water, runup 11 
characteristics can be found in two stages: at the first stage, linear equations are solved and the 12 
wave characteristics at the fixed (undisturbed) shoreline are found, and, at the second stage, the 13 
nonlinear dynamics of the moving shoreline is studied by means of the Riemann (nonlinear) 14 
transformation of linear solutions. In the paper, detail results are obtained for quasi-harmonic 15 
(narrow-band) waves with random amplitude and phase. It is shown that the probabilistic 16 
characteristics of the runup extremes can be found from the linear theory, while the same ones of 17 
the moving shoreline - from the nonlinear theory. The role of wave breaking due to large-amplitude 18 
outliers is discussed, so that it becomes necessary to consider wave ensembles with non-Gaussian 19 
statistics within the framework of the analytical theory of non-breaking waves. The basic formulas 20 
for calculating the probabilistic characteristics of the moving shoreline and its velocity through the 21 
incident wave characteristics are given. They can be used for estimates of the flooding zone 22 
characteristics in marine natural hazards. 23 
 24 
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 27 

1. Introduction 28 

The flooded area size, the water flow depth and its speed on the coast, the coastal topography 29 

characteristics and the features of the coastal zone development determine the consequences of 30 

marine natural disasters on the coast. The catastrophic events of recent years are well known, when 31 

tsunami waves and storm surges caused significant damage on the coast and people’s death. It is 32 

worth saying that only in 2018 two catastrophic tsunamis occurred in Indonesia, leading to the 33 

death of several thousand people (on Sulawesi Island in September and in the Sunda Strait in 34 

December). The calculations of the coast flooding due to tsunamis and storm surges are mainly 35 

carried out within the framework of nonlinear shallow-water equations, taking into account the 36 

variable roughness coefficient for various areas of the coastal zone (Kaiser et al, 2011; Choi et al, 37 
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2012). The characteristics of the coastal destruction is determined either by using fragility curves 38 

(Macabuag et al, 2016; Park et al, 2017) or by using a direct calculation of the tsunami forces (Qi 39 

et al, 2014; Ozer et al, 2015a, b; Kian et al, 2016; Xiong et al., 2019). 40 

The computation accuracy was tested on a series of benchmarks, including the idealized 41 

problem of the wave run-up onto the impenetrable slope of a constant gradient without friction 42 

(Synolakis et al, 2008). The nonlinear shallow water equations for the bottom geometry of this 43 

kind are linearized by using the hodograph (Legendre) transformations. This step makes it possible 44 

to obtain a number of exact solutions describing the run-up on the coast. This approach, first 45 

suggested by Carrier and Greenspan (1958), was later on used to analyze the run-up of single and 46 

periodic waves of various shapes (Synolakis, 1987; Pelinovsky and Mazova, 1992; Carrier, 1995; 47 

Carrier et al, 2003; Tinti and Toniti, 2005; Madsen and Fuhrman, 2008; Madsen and Schaffer, 48 

2010; Antuano and Brocchini, 2008, 2010; Didenkulova, 2009; Dobrokhotov et al, 2015; Aydin 49 

and Kanoglu, 2017). Moreover, such approach made it possible to determine the conditions for the 50 

wave breaking. The latter means the presence of steep fronts (gradient catastrophe) within the 51 

hyperbolic shallow water equation framework. The Carrier-Greenspan transformation was further 52 

generalized for the case of waves in an inclined channel of an arbitrary variable cross section 53 

(Rybkin et al, 2013; Pedersen, 2016; Shimozone, 2016; Anderson et al, 2017; Raz et al, 2018). In 54 

a number of practical cases, its use proves to be more efficient than the direct numerical 55 

computation within the 2D shallow water equation framework (Harris et al, 2015, 2016). 56 

Due to bathymetry variability and shoreline complexity, diffraction and scattering effects lead 57 

to an irregular shape of the waves approaching the coast. Moreover, very often not the leading 58 

wave is not turns out to be the maximum one. Such typical tsunami wave records on tide-gauges 59 

are well known and are not shown here. It is applied even more to swell waves, which in some 60 

cases approach the coast without breaking (Huntley et al, 1977; Hughes et al, 2010). As a result, 61 

statistical wave theory can be applied to such records and with their help, nonlinear shallow water 62 

equations in the random function class can be solved. This approach was used to describe the 63 

statistical moments of the long wave run-up characteristics in (Didenkulova et al, 2008, 2010, 64 

2011). Special laboratory experiments were also conducted on irregular wave run-up on a flat 65 

slope, the results of which are not very well described by theoretical dependencies (Denissenko et 66 

al, 2011, 2013). As for field data, we are acquainted with two papers: (Huntley et al, 1977; Hughes 67 

et al, 2010), where the statistical characteristics of the moving shoreline on two Canadian and one 68 

Australian beaches were calculated. They confirmed the fact that the wave process on the coast is 69 

not Gaussian. In our opinion, the main problem in the theoretical model of describing the irregular 70 

wave run-upon the shore is associated with the use of two hypotheses: 1) the small amplitude wave 71 
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field (in the linear problem) is Gaussian; 2) waves run-up on the shore without breaking. It is 72 

obvious, however, that in the nonlinear wave field some broken waves can always be present. They 73 

affect the distribution function tails and, thus, the statistical moments of the run-up characteristics 74 

as well. 75 

The connection of the run-up parameters at the nonlinear stage with the linear field at a 76 

fixed point is described either in a parametric form or implicitly in a nonlinear equation 77 

(Didenkulova et al., 2010). This does not allow using the standard methods of random processes. 78 

At the same time, it is known, that this implicit equation is equivalent to a partial first-order 79 

differential equation (PDE), that is, to the simple (the Riemann wave) equation (Rudenko and 80 

Soluyan, 1977). In statistical problems, this equation arises in nonlinear acoustics. This equation 81 

or its generalization, the nonlinear diffusion equation called the Burgers equation (Burgers at al, 82 

1974) is the model equation in the hydrodynamic turbulence theory (Frisch, 1995). It should be 83 

noted that for the one-dimensional Burgers turbulence, as well as its three-dimensional version, 84 

used for the model description of the large-scale Universe structure (Gurbatov et al, 2012). It is 85 

possible to give an almost comprehensive statistical description for certain initial conditions 86 

(Gurbatov et al, 1991, 1997, 2011; Gurbatov and Saichev, 1993; Molchanov et al, 1995; Frisch, 87 

1995; Woyczynski, 1998; Frisch and Bec, 2001; Bec and Khanin, 2007). In particular, single-point 88 

and two-point probability distributions of the velocity field and even N-point probability 89 

distributions and, accordingly, multi-point moment functions were found. This partially allows 90 

using a mathematical approach developed in statistical nonlinear acoustics. An experimental study 91 

of the nonlinear evolution of random quasi-monochromatic waves and the probability distributions 92 

and spectra analysis have been carried out in acoustics more than once. They confirmed theoretical 93 

conclusions; see, for example (Gurbatov et al, 2018, 2019). 94 

This paper is devoted to the analytical study of the probabilistic characteristics of the long 95 

narrow-band wave run-up on the coast. Section 2 gives the basic equations of nonlinear shallow 96 

water theory and the Carrier-Greenspan transformation, with the latter making it possible to 97 

linearize the nonlinear equations. Section 3 describes the moving shoreline dynamics when the 98 

deterministic sine wave approaches climbs the slope. The probability characteristics of the 99 

deformed sine oscillations of the moving shoreline with a random phase are described in Section 100 

4. Section 5 contains the probabilistic characteristics on the vertical displacement of the moving 101 

shoreline if the incident narrow-band wave has a random amplitude and phase. The discussion of 102 

the wave breaking effects and their influence on the distribution of the run-up characteristics is 103 

given in Section 6. The results obtained are summarized in Section 7. 104 

 105 
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2. Basic equations and transformations 106 

 107 

Fig. 1. The problem geometry 108 

 109 

Here we will consider the classical formulation of the problem of a long wave run-up on the 110 

constant-gradient slope in an ideal fluid (Fig. 1). The wave is one-dimensional and propagates 111 

along the x-axis directed onshore. The basin depth is a linear depth function: ( )h x xα= − , where 112 

α  is the inclination angle tangent and point x = 0 corresponds to a fixed unperturbed water 113 

shoreline. L(t) and r(t) describe the horizontal and vertical displacement of the moving shoreline, 114 

and R(t) is the water level oscillations at x = 0. The bottom and the shore are assumed impenetrable. 115 

The long wave dynamics is described by nonlinear shallow water equations: 116 

0u uu g
t x x

η∂ ∂ ∂
+ + =

∂ ∂ ∂
,                                               (2.1) 117 

[ ]( ) 0x u
t x
η α η∂ ∂
+ − + =

∂ ∂
.                                             (2.2) 118 

Here, η (x,t) is the free surface elevation above the undisturbed water level, and u(x,t) is the depth-119 

averaged flow velocity (within the shallow water theory, the flow velocity is the same on all 120 

horizons), and g is the gravity acceleration. Obviously, after introducing total depth 121 

( , ) ( , )H x t x x tα η= − + ,                                                    (2.3) 122 

equations (2.1) and (2.2) are a hyperbolic system with constant coefficients. This fact makes it 123 

possible to transform the system into a linear equation one by using a hodograph (Legendre) 124 



5 
 

transformation, which was done in the pioneering work (Carrier and Greenspan, 1958). As a result, 125 

the wave field is described by a linear wave equation in the ‘cylindrical’ coordinate system 126 

01
2

2

2

2

=
∂
Φ∂

−
∂
Φ∂

−
∂
Φ∂

σσσλ
,                                                   (2.4) 127 

and all variables are expressed in terms of an auxiliary wave function ( , )σ λΦ  using explicit 128 

formulas 129 







 −
∂
Φ∂

= 2

2
1 u
g λ

η ,                                                            (2.5) 130 

σσ ∂
Φ∂

=
1u ,                                                                  (2.6) 131 









−−

∂
Φ∂

=
22

1 2
2 σ

λα
u

g
x ,                                                        (2.7) 132 

( )u
g

t −= λ
α
1 .                                                                (2.8) 133 

It should be noted that the variable σ is proportional to the total water depth. 134 

2 2 ( )gH g xσ α η= = − + ,                                                     (2.9) 135 

so, the wave equation (2.4) is solved on the semi-axis 0σ ≥ , and this coordinate plays the radius 136 

role in the cylindrical coordinate system. We would like to emphasize that the point 0σ =137 

corresponds to a moving shoreline, and therefore, the original problem, solved in the area with a 138 

unknown boundary, is reduced to a fixed area problem. 139 

It is important to note that the hodograph transformation is valid if the Jacobian 140 

transformation is non-zero 141 

( , ) 0
( , )

x tJ
σ λ

∂
= ≠
∂

.                                                                (2.10) 142 

It is the case when a gradient catastrophe, identified in the framework of the shallow-water theory 143 

with the wave breaking, does not occur. The necessary condition for the wave breaking absence is 144 

the boundedness and smoothness of all solutions; this question will be discussed further on. 145 

 We will assume that the wave approaches the coast from the area far from the shoreline (146 

x →−∞ ), where the wave is linear. Then it is obvious that the function ( , )σ λΦ  can be completely 147 

found from the linear theory. The difficulty in finding the wave field in the near-shoreline area is 148 
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due to the implicit transformation of the coordinates (x,t) to ( ,σ λ ). However, for the most 149 

interesting point of the moving shoreline 0σ = (its dynamics determines the size of the flooded 150 

area on the coast) all the formulas become explicit. In particular, from (2.5) and (2.6) follows 151 

2( ) ( )( )
2

u t u tr t R t
g gα

 
= + − 

 
 ,                                                        (2.11)  152 

( )( ) u tu t U t
gα

 
= + 

 
,                                                            (2.12) 153 

where r(t) and u(t) are the vertical displacement of the moving shoreline and its speed, and the 154 

functions R(t) and U(t) determine the field characteristics at the fixed point (x = 0) from the linear 155 

theory 156 

1 ( 0, )( )
2 gt

R t
g λ α

σ λ
λ =

∂Φ =
=

∂
,          

0,

1 ( , )( )
gt

U t
σ λ α

σ λ
σ σ = =

∂Φ
=

∂
.                   (2.13) 157 

Then we add the obvious kinematic relations for the vertical displacement and velocity of the last 158 

sea point along the slope. 159 

1 ( )( ) dr tu t
dtα

=  ,       
1 ( )( ) dR tU t

dtα
= .                                                 (2.14) 160 

Let us note that formula (2.12) is identical to the so-called Riemann wave or a simple wave 161 

in a nonlinear non-dispersive medium (in particular, in nonlinear acoustics), if we consider the 162 

parameter 1/ gα to be a ‘coordinate’; see, for example, (Rudenko and Soluyan, 1977, Gurbatov et 163 

al, 1991, 2011). Moreover, formula (2.13) describes the integral over the Riemann wave. This 164 

analogy proves to be very useful when transferring the already known results in the wave nonlinear 165 

theory to the run-up characteristics described by the formulas (2.11) and (2.12) ODE. 166 

Detailed calculations of the long wave run-up on the coast were carried out repeatedly; see, 167 

for example (Carrier and Greenspan, 1958; Synolakis, 1987; Pelinovsky and Mazova, 1992; Tinti 168 

and Toniti, 2005; Madsen and Fuhrman, 2008; Madsen and Schaffer, 2010; Antuano and 169 

Brocchini, 2008, 2010; Didenkulova, 2009; Dobrokhotov et al, 2015; Aydin and Kanoglu, 2017). 170 

It is worth mentioning that the nonlinear time transformation in (2.11) and (2.12) leads to 171 

the shoreline oscillation distortion in comparison with the linear theory predictions. So, for large 172 

amplitudes the wave shape becomes multi-valued (broken). The first moment of the wave breaking 173 

on the shoreline (the gradient catastrophe) is easily found from (2.12) by calculating the first 174 

derivative of the moving shoreline velocity 175 



7 
 

/1

dUdu dt
dU dtdt

gα

=
−

,                                                                  (2.15) 176 

from it follows the wave breaking condition  177 

2 2

2

max( / ) max( / ) 1dU dt d R dtBr
g gα α

= = = ,                                                  (2.16) 178 

where we have introduced the breaking parameter Br to designate the left-hand side in (2.16), 179 

which characterizes the nonlinear wave properties on the shoreline. The condition (2.16) can be 180 

given a physical meaning, that the breaking occurs when the last sea particle acceleration (181 

1 2 2/d R dtα − ) exceeds the component of gravity acceleration along the shoreline ( gα ). As shown 182 

in (Didenkulova, 2009), condition (2.16) coincides with (2.10) for Jacobian. It is important to 183 

emphasize that the breaking condition is unequivocally found through solving the linear problem 184 

of the wave run-up on the shore. It is determined only by the particle acceleration value on the 185 

shoreline; but it is not determined separately by the shoreline displacement or its velocity. 186 

 A similar Carrier – Greenspan transformation is obtained for waves in narrow inclined 187 

channels, fjords, and bays (Rybkin et al, 2013; Pedersen, 2016; Anderson et al, 2017; Raz et al, 188 

2018); only the wave equation (2.4) and relations (2.5) - (2.8) change. However, the moving 189 

shoreline dynamics is still described by equations (2.11) and (2.12), valid for arbitrary cross-190 

section channels. 191 

 192 

3. The moving shoreline dynamics at an initially monochromatic wave run-up 193 

The monochromatic wave run-up on a flat slope by using the Carrier – Greenspan 194 

transformation has been studied in a number of papers cited above. Let us reproduce here the main 195 

features of the moving shoreline dynamics necessary for us to draw the statistical description 196 

further on. Mathematically, the monochromatic wave run-up is described by an elementary 197 

solution of equation (2.4) 198 

0( , ) ( ) cos( )QJ l lσ λ σ λΦ = ,                                                (3.1) 199 

where Q and l are arbitrary constants, and J0 is the zero-order Bessel function. Far from the 200 

shoreline (σ →∞ ) the Bessel function decreases, so the wave function Φ becomes small. In this 201 

case, in (2.5) - (2.8) one can use approximate expressions (the ‘linear’ Carrier – Greenspan 202 

transformation) 203 
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1
2g

η
λ

∂Φ
=

∂
,       

σσ ∂
Φ∂

=
1u ,     

2

4
x

g
σ
α

= − ,      t
g
λ
α

= ,                           (3.2) 204 

and using the asymptotic representation for the Bessel function, reduce (3.1) to the expression for 205 

the water surface displacement 206 

( , ) ( ) sin sin
4 4( ) ( )

dx dxx t a x t t
gh x gh x

π πη ω ω
        = − − + + +                     

∫ ∫  ,                    (3.3) 207 

where 208 

( )
2 ( )
Q la x
g gh xπ

=  ,               glω α=  .                                     (3.4) 209 

The wave field away from the shoreline is a superposition of two waves of the same frequency 210 

and a variable amplitude a (x), which together form a standing wave. It immediately shows that 211 

the wave amplitude varies with depth according to the Green law (h-1/4), as it should be far from 212 

the coast. The same asymptotic result follows from the exact solution of linear shallow water 213 

equations. 214 

2

0 0
4 | |( , ) sin( )xx t R J t

g
ωη ω
α

 
=   

 
,                                                 (3.5) 215 

where R0 is the wave amplitude at the fixed shoreline (x = 0), identified with the maximum run-216 

up height in the linear theory. By connecting (3.4) and (3.5), we obtain the formula for the run-up 217 

height obtained through the incident wave amplitude far from the coast 218 

 0 2 ( )
( )
R h x

a x g
ω
α

=  .                                                               (3.6) 219 

Formula (3.6) allows working further with the run-up height R0 instead of the wave amplitude far 220 

from the coast a(x), considering it to be given. This run-up height will be considered as the given 221 

value. Having determined Q and l through the incident wave parameters, we can calculate the run-222 

up characteristics in the nonlinear theory, considering the limit of formula (3.1) with 0σ →  and 223 

using the Carrier – Greenspan transformation formulas (2.5) - (2.8). The moving shoreline 224 

movement is determined by the parametric dependence 225 

0
2 cosRt

g g g
ωλ ωλ

α α α
 

= −  
 

 ,                                              (3.7) 226 

2 2
20

0 2sin cos
2

Rr R
g g g

ωωλ ωλ
α α α
   

= −   
   

 .                                     (3.8) 227 
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It is convenient to introduce dimensionless variables 228 

0

rz
R

=  ,    tτ ω= .      
g

ωλϕ
α

= ,                                         (3.9) 229 

and calculate the breaking parameter 230 

2
0

2

RBr
g

ω
α

= ,                                                     (3.10) 231 

so the formulas (3.7) and (3.8) are finally rewritten in the form 232 

( )cosBrτ ϕ ϕ= −  ,                                                            (3.11) 233 

( ) ( )2sin cos
2

Brz ϕ ϕ= − ,                                                      (3.12) 234 

what is another expression record for the formulas (2.11) and (2.12), if we take 235 

0( ) sin( )R t R tω= ,                                                         (3.13) 236 

arising from (3.5) with x = 0. Let us note that the function ( , )z Brτ is set in a parametric form, but 237 

after expressing ϕ  from (3.12) and substituting it in (3.11), we can obtain the explicit expression 238 

for the function ( ; )z Brτ . In the paper, we will use both explicit and implicit expressions of the 239 

functions describing the moving shoreline dynamics. 240 

 Fig. 2 shows the moving shoreline dynamics at different wave height values in terms of the 241 

breaking parameter up to the limiting value (Br = 1). In the limit of small parameter values, the 242 

oscillations are close to sinusoidal (it is almost a linear problem). Then, with the increasing 243 

amplitude, the moving shoreline velocity gets a steep leading front, while at the moving shoreline 244 

vertical displacement a peculiar feature is formed at the wave run-down stage. As it is known, at 245 

the time of the Riemann wave breaking, a peculiarity like 1/3~u t  is formed (Pelinovsky et al, 246 

2013). Then, in the integral over the Riemann wave (at the moving shoreline displacement), this 247 

peculiar feature will have the form 4/3~z t . Thus, with the wave amplitude increase, the first 248 

breaking occurs at sea (at the run-down stage), and not on the coast. Then the breaking zone 249 

expands and moves on to the coast, but at this stage, analytical solutions based on the Carrier-250 

Greenspan transformation become inapplicable. 251 
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 252 

 253 

 254 

 255 

Fig. 2. The moving shoreline dynamics (top) and its velocity (below) in the case of the incident 256 
monochromatic wave for different breaking parameter values Br (0 – the dotted line, 0.5 – the 257 
dashed line and 1 – the solid line). 258 

 259 

4. Probabilistic characteristics of the initially sine wave run-up with a random phase 260 

Let us now consider the probabilistic characteristics of the initially sine wave run-up with a 261 

random phase on the shore, assuming it to be uniformly distributed over the interval [0 2 ]π− . 262 

These characteristics are found by using the geometric probability methods (Kendall and Stuart, 263 

1969), so that for ergodic processes the probability density of the moving shoreline vertical 264 
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displacement coincides with the relative location time of the function ( )z τ in the interval ( z , 265 

z dz+ )  266 

1

1( )
2

N
n

n

dW z
dz
τ

π =

= ∑ ,                                                               (4.1) 267 

where the summation takes place at all intersection levels ( )z τ . For harmonic disturbance, it is 268 

enough to restrict ourselves to considering the field on a half-period. So, for the moving shoreline 269 

vertical displacement in dimensionless variables, the derivative /d dzτ of the parametric curve 270 

(3.11) and (3.12) can be calculated through the ratio of the derivatives /d dτ ϕ and /dz dϕ  271 

sin 1 1 sin 1( ; )
cos cos sin cosz

BrW z Br
Br

ϕ
π ϕ ϕ ϕ π ϕ

+
= =

+
 ,                                     (4.2) 272 

we indicated here that the probability density depends on Br as a parameter. Finding cosϕ  from 273 

the formula (3.12) for the vertical displacement, we obtain the final expression for the probability 274 

density 275 

sin

2
2

2

1 1( ; )
11 1 1 2

zW z Br
zBr Br

Br
π

=
 − − + + 

 ,                                      (4.3) 276 

which in the linear problem for a purely sinusoidal perturbation transforms into a well-known 277 

expression for the probability distribution of a harmonic signal with a random phase (Kendall and 278 

Stuart, 1969) 279 

sin

2

1 1( ;0)
1

zW z
zπ

=
−

.                                                                            (4.4) 280 

The probability distribution (4.3) for the three values of the parameter Br is shown in Fig.3. 281 

As you can see, the probability density becomes an asymmetric function with a greater probability 282 

in the area of positive values corresponding to the wave run-up on the coast than at the run-down 283 

stage. At the ends of the interval, the probability density is unlimited throughout the entire range 284 

change of Br, since the shoreline oscillations near the maximum have a zero derivative (the moving 285 

shoreline velocity in it becomes zero). 286 

The obtained probability density function can be used to calculate the statistical moments 287 

of the shoreline oscillations. Technically, however, it is easier to use the parametric equations 288 

(3.11) and (3.12) and calculate all the moments. 289 

2 2

0 0

1 1( ) ( )
2 2

z n n
n

dM z d z d
d

π π ττ τ ϕ ϕ
π π ϕ

= =∫ ∫  .                                         (4.5) 290 
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So, the first moment 291 

1 4
z BrM =                                                                  (4.6) 292 

determines the average water level rise on the coast when the waves approach the shore (set-up 293 

phenomenon), which is commonly observed (Dean and Walton, 2009). 294 

 295 

 296 

Fig. 3. The probability density of the moving shoreline vertical displacement for the initially sine 297 
wave run-up at Br = 0 (the dotted line), 0.5 (the dashed line) and 1 (the solid line). 298 

 299 

The second moment determines the dispersion 300 

2
2 2 2

1
0

1 1 3( )
2 2 32

zz M d Br
π

δ τ
π

= − = −∫ ,                                                   (4.7) 301 

characterizing the fluctuation range relative to the average value; it relatively weakly decreases 302 

with the growth of the parameter Br (less than 10% for non-breaking waves). 303 

Finally, the total flooding time and its drainage time are easy to find from (3.11) and (3.12), 304 

finding from the equation (3.12) mentioned last, the value φ, at which z = 0, and substituting the 305 

obtained values in (3.11) 306 

2
21 12arcsin 2 2 1 1flood

BrT Br
Br

π
 + −

= − + + − 
  

, 307 

                       (4.9) 308 

1.0 0.5 0.0 0.5 1.0
r

0.5

1.0

1.5

2.0
W
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2
21 12arcsin 2 2 1 1dry

BrT Br
Br

π
 + −

= + − + − 
  

, 309 

Both times change almost linearly with the increasing wave amplitude (parameter Br), see Fig. 4. 310 

 311 

Fig. 4. The total flooding time (the solid curve) and the drainage time (the dashed curve) depending 312 
on the parameter Br. 313 

 314 

It is worth noting that, in contrast to the vertical displacement, the moving shoreline 315 

velocity distribution [ 0( / )u R vω α= ], as it is easy to show, does not depend on the breaking 316 

parameter and probability density function is determined by the simple formula 317 

sin

2

1 1( )
1

vW v
vπ

=
−

.                                                       (4.10) 318 

The distribution independence on the degree of nonlinearity is well known for the Riemann waves 319 

and is explained by the compensation of compression and rare faction areas (Gurbatov et al, 1991, 320 

2011). 321 

 322 

5. Probabilistic characteristics of a narrow-band wave run-up with a random amplitude 323 
and phase 324 

Let us consider the run-up of a quasi-harmonic wave with a random amplitude and phase 325 

on a flat slope. To do this, we will first rewrite formulas (4.3) and (4.10) for them to include the 326 

wave amplitude. It is convenient to enter the maximum height Rmax as the amplitude scales at which 327 

the breaking parameter turns into 1 328 

2
max

2 1RBr
g

ω
α

= = ,                                                                (5.1) 329 

0.2 0.4 0.6 0.8 1.0
Br

2.5

3.0

3.5

4.0

T



14 
 

and to use dimensionless displacement (y=r/Rmax). Then the dimensionless amplitude is 330 

0

max

1RA
R

= ≤  ,                                                                  (5.2) 331 

and formula (4.3) is converted to the form (-A <y <A) 332 

sin

2
2 2

1 1( ; )
1 1 2

yW y A
A y A

π
=

 − − + + 

 .                                             (5.3) 333 

Assuming now that the wave amplitude A is a random variable, we average (5.3) by using 334 

the amplitude distribution density WA(A) 335 

sin( ) ( ; ) W ( )y A
y

W y W y A A dA
∞

= ∫ .                                      (5.4)  336 

Formula (5.4) has an important practical meaning: by the measured distribution of the wave 337 

amplitudes far from the coast (re-computed on run-up amplitudes in the linear theory), it is possible 338 

to obtain the distribution of the wave run-up characteristics on the coast. The only requirement 339 

imposed on the wave ensemble is that it should not contain breaking waves, which should be 340 

somehow removed from the record. It immediately follows that the Gaussian field containing large 341 

amplitude tails does not fit this requirement, and it should be modified. Therefore, we assume the 342 

amplitude distribution to be finite for A<Amax = 1. The narrow-band random wave field contains 343 

sine waves with almost constant frequency and random amplitude and phase. It means that if the 344 

wave amplitude is below the “breaking amplitude” Amax = 1, the breaking will not be implemented 345 

in any way, and the random wave run-up will take place without any breaking. Further calculations 346 

depend on the specific type of the amplitude distribution. 347 

Let us construct the finite amplitude distribution at which the linear field distribution is 348 

close to the Gaussian form and modify the Rayleigh distribution for wave heights in the area 349 

A<Amax =1 (Fig. 5) 350 

2

max 2 2 2 2
max

1 4( ; , ) exp 2
1 exp( 2 / )A s

s s s

A AW A A A
A A A A

 
= − − −  

, maxA A≤ ,               (5.5) 351 

to make the density function distribution normalized. Here, As is the so-called significant wave 352 

run-up height (an averaged value of 1/3 highest amplitudes). We would like to note here, that it 353 

follows from (2.11) and (2.12) that the extremal run-up characteristics in the nonlinear theory 354 

remain the same as in the linear theory. This means that the significant wave run-up height remains 355 

the same as in the nonlinear theory. 356 
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 357 

 358 

Fig. 5. The modified Rayleigh distribution (5.5) for different distribution values As/Amax; 359 
0.5 – the dotted curve, 0.7 – the dashed line, 1 – the solid line. 360 

 361 

When As<<Amax = 1, distribution (5.5) transforms into the Rayleigh one, which is 362 

characteristic of the Gaussian initial distribution of a narrow-band random signal. With the help of 363 

(5.5), it becomes possible to calculate the distribution function of shoreline oscillations for the 364 

various wave energy. So, with the incident wave small amplitude (As<<1), distribution (5.3) can 365 

be replaced by a simpler expression (4.4) and the answer is the run-up distribution characteristics 366 

in the linear theory: 367 

max 2

max 2 2 2 22 2
max

4(y; , ) exp 2
[1 exp( 2 / )]

A

lin s
s s sy

A AW A A dA
A A A AA yπ

 
= − − − −  

∫ .              (5.6) 368 

Besides, if As<<Amax = 1, the integral (5.6) is reduced to the Gaussian distribution 369 

2

2

2( ; ) exp 2
2lin s

ss

yW y A
AAπ

 
= − 

 
,                                               (5.7) 370 

where, 2s yA σ= , and 2
yσ is the moving shoreline oscillation dispersion. 371 

Fig. 6 shows the distribution of the run-up characteristics for different ratios of As/Amax 372 

values by formulas (5.4) and (5.5); they are shown in solid lines. Here the dashed lines show the 373 

calculation results according to the linear theory (5.6). As one can see, with As/Amax = 0.5 (the top 374 

panel) and 0.7 (the middle panel), the linear distribution is close to the Gaussian one. Nonlinearity 375 

leads to the asymmetry of the distribution function density in the direction of positive values 376 

corresponding to the wave characteristics on the coast. If the undisturbed wave ensemble is made 377 

of relatively large waves (As/Amax = 1), their distribution is far from the Gaussian, both in the linear 378 

and in the nonlinear approximation. 379 
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 380 

 381 

 382 

Fig. 6. The probabilistic density function of the vertical shoreline displacement in the 383 
nonlinear theory (solid lines) and in the linear theory (dashed lines) for different As/Amax: 0.5 384 
values: (the upper panel), 0.7 (the middle panel) and 1 (the lower panel). 385 
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The finite (A<Amax) power-law distribution concentrated mainly near the maximum 387 

amplitude Amax can be considered as another example of undisturbed large-amplitude waves. 388 

5

6
max

6( )A
AW A

A
= .                                                                (5.8) 389 

Fig. 7 shows the graphs of the probabilistic density function of the moving shoreline displacement 390 

calculated by using formulas (5.4) and (4.4) in the linear theory and (5.3) in the nonlinear theory. 391 

It is also seen in the figure that nonlinear effects lead to a strong asymmetry towards the positive 392 

values, that is, to the wave amplification at the run-up up stage than at the run-down stage. 393 

 394 

Fig. 7. Probabilistic density function of the shoreline vertical displacement in the linear 395 
theory (the dashed line) and non-linear theory (the solid line) 396 

 397 

6. The wave breaking effect on probabilistic run-up characteristics 398 

The theory described above is valid for non-breaking waves. The mentioned wave ensemble, 399 

strictly speaking, cannot be the Gaussian one, as it always has unlimited tails in the probability 400 

density function. Let us briefly discuss what the formulas obtained for non-breaking waves lead 401 

to in the presence of broken waves. Fig. 8 shows the parametric curve (3.11) - (3.12) when Br = 402 

2. Formally, the curve became multi-valued in the range of negative values corresponding to the 403 

maximum water outflow from the coast. We have already indicated that the probability density 404 

function of the moving shoreline vertical displacement ( )W ξ coincides with the relative residence 405 

time ( )tξ  of the function in the interval (ξ , dξ ξ+ ), which is calculated by formula (3.1). In 406 

contrast to negative cut-off bias values, in the area of positive values there is no ambiguity, and, 407 
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therefore, all the calculations can be carried out by using the formulas described above. An 408 

example of such calculation with Br = 2 and r> -0.5 (in the zone of one-value solution) is shown 409 

in Fig. 9. However, these results should be treated with caution. If Br > 1 the Jacobian breaks 410 

down seawards of the shoreline. This may affect the probabilistic distribution on the positive side. 411 

This important issue requires going beyond the theory discussed in this article. 412 

 413 

 414 

Fig. 8. The parametric curve (3.11) - (3.12) with Br = 2 (the solid curve) in comparison with the 415 
linear problem with Br = 0 (the dashed line) 416 

 417 

 418 

Fig. 9. The probability density function at Br = 2, constructed by formulas (5.3), (5.4) and (5.5) 419 
(the solid line) in comparison with the linear distribution (5.6) is the dotted line. As/Amax = 0.7. 420 

 421 

7. Discussion and conclusion 422 

In this paper, we study the run-up of irregular narrow-band waves with a random envelope 423 

(swell, storm surges, and tsunami) on a beach of a constant slope. The work was carried out in the 424 

framework of the nonlinear wave theory with one important assumption: there should be no 425 
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breaking waves in the wave ensemble. This restriction is quite strict for field and laboratory 426 

conditions, but nevertheless, there are cases when it is performed. For instance, 75% of historical 427 

tsunami waves climbed on the coast with no breaking (Mazova et al, 1983). In the experiments 428 

performed in the Warwick University tank and in the Large Tank in Hannover (Denissenko et al, 429 

2011, 2013), this condition was fulfilled.  430 

The wave nonlinearity at the run-up stage leads to increased deviations from Gaussianity, as might 431 

be expected from general considerations. Nevertheless, it is shown that the probability distribution 432 

of the moving shoreline velocity does not depend on the wave nonlinearity and can be calculated 433 

within the linear theory framework. The same conclusion can be drawn about the distribution of 434 

the extreme run-up characteristics (the moving shoreline displacement and speed), which, in fact, 435 

has already been discussed earlier (Didenkulova et al, 2008). However, the probabilistic density 436 

function of the moving shoreline displacement differs from that predicted one in the linear theory 437 

framework. It is described by formula (5.4) by using either the theoretical or the measured 438 

distribution of the incident wave amplitudes. The paper gives the calculation results of the probable 439 

run-up characteristics with a modified Rayleigh distribution for wave amplitudes. 440 

The wave breaking leads to the inapplicability of the wave run-up theory based on the 441 

Carrier-Greenspan transformation. If, nevertheless, the share of large amplitude waves is small, 442 

the breaking occurs mainly at the run-down stage, having little effect on the long-wave coast 443 

flooding characteristics (see Section 6). This question, however, requires a special study based on 444 

direct numerical solutions of the shallow-water equations or their nonlinear-dispersive 445 

generalizations. 446 

Finally, it is worth noting that we considered the narrow-band wave run-up with a random 447 

amplitude and phase; as for the random waves with a wide spectrum – it is the problem of further 448 

consideration. 449 

The obtained probability density functions of the vertical displacement of the moving 450 

shoreline are useful to compute statistical characteristics of flooding time and force on coasts and 451 

constructions, which are necessity for the mitigation of natural marine hazards. 452 

Now in practice various generalizations of shallow-water equations are used to analyze 453 

tsunami runup including wave dispersion, see for instance (Lovholt et al, 2012). Wave dispersion 454 

as a quadratic dissipative term that prevents us from getting analytical results, so their influence 455 

on statistical characteristics should be investigated in future. 456 

 457 
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