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Abstract 1 

The run-up of random long wave ensemble (swell, storm surge and tsunami) on the constant-9 
slope beach is studied in the framework of the nonlinear shallow-water theory in the 11 
approximation of non-breaking waves. If the incident wave approaches the shore from deepest 11 
water, runup characteristics can be found in two stages: at the first stage, linear equations are 11 
solved and the wave characteristics at the fixed (undisturbed) shoreline are found, and, at the 11 
second stage, the nonlinear dynamics of the moving shoreline is studied by means of the 14 
Riemann (nonlinear) transformation of linear solutions. In the paper, detail results are obtained 11 
for quasi-harmonic (narrow-band) waves with random amplitude and phase. It is shown that the 11 
probabilistic characteristics of the runup extremes can be found from the linear theory, while the 11 
same ones of the moving shoreline - from the nonlinear theory. The role of wave breaking due to 11 
large-amplitude outliers is discussed, so that it becomes necessary to consider wave ensembles 19 
with non-Gaussian statistics within the framework of the analytical theory of non-breaking 11 
waves. The basic formulas for calculating the probabilistic characteristics of the moving 11 
shoreline and its velocity through the incident wave characteristics are given. They can be used 11 
for estimates of the flooding zone characteristics in marine natural hazards. 11 
 14 

Keywords: tsunami, storm surge, long wave runup, Carrier-Greenspan transform, statistical 11 
characteristics 11 

 11 

1. Introduction 11 

The flooded area size, the water flow depth and its speed on the coast, the coastal topography 19 

characteristics and the features of the coastal zone development determine the consequences of 11 

marine natural disasters on the coast. The catastrophic events of recent years are well known, 11 

when tsunami waves and storm surges caused significant damage on the coast and people’s 11 

death. It is worth saying that only in 2018 two catastrophic tsunamis occurred in Indonesia, 11 

leading to the death of several thousand people (on Sulawesi Island in September and in the 14 

Sunda Strait in December). The calculations of the coast flooding due to tsunamis and storm 11 

surges are mainly carried out within the framework of nonlinear shallow-water equations, taking 11 

into account the variable roughness coefficient for various areas of the coastal zone (Kaiser et al, 11 
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2011; Choi et al, 2012). The characteristics of the coastal destruction is determined either by 11 

using fragility curves (Macabuag et al, 2016; Park et al, 2017) or by using a direct calculation of 19 

the tsunami forces (Qi et al, 2014; Ozer et al, 2015a, b; Kian et al, 2016; Xiong et al., 2019). 41 

The computation accuracy was tested on a series of benchmarks, including the idealized 41 

problem of the wave run-up onto the impenetrable slope of a constant gradient without friction 41 

(Synolakis et al, 2008). The nonlinear shallow water equations for the bottom geometry of this 41 

kind are linearized by using the hodograph (Legendre) transformations. This step makes it 44 

possible to obtain a number of exact solutions describing the run-up on the coast. This approach, 41 

first suggested by Carrier and Greenspan (1958), was later on used to analyze the run-up of 41 

single and periodic waves of various shapes (Synolakis, 1987; Pelinovsky and Mazova, 1992; 41 

Carrier, 1995; Carrier et al, 2003; Tinti and Toniti, 2005; Madsen and Fuhrman, 2008; Madsen 41 

and Schaffer, 2010; Antuano and Brocchini, 2008, 2010; Didenkulova, 2009; Dobrokhotov et al, 49 

2015; Aydin and Kanoglu, 2017). Moreover, such approach made it possible to determine the 11 

conditions for the wave breaking. The latter means the presence of steep fronts (gradient 11 

catastrophe) within the hyperbolic shallow water equation framework. The Carrier-Greenspan 11 

transformation was further generalized for the case of waves in an inclined channel of an 11 

arbitrary variable cross section (Rybkin et al, 2013; Pedersen, 2016; Shimozone, 2016; Anderson 14 

et al, 2017; Raz et al, 2018). In a number of practical cases, its use proves to be more efficient 11 

than the direct numerical computation within the 2D shallow water equation framework (Harris 11 

et al, 2015, 2016). 11 

Due to bathymetry variability and shoreline complexity, diffraction and scattering effects 11 

lead to an irregular shape of the waves approaching the coast. Moreover, very often not the 19 

leading wave is not turns out to be the maximum one. Such typical tsunami wave records on 11 

tide-gauges are well known and are not shown here. It is applied even more to swell waves, 11 

which in some cases approach the coast without breaking (Huntley et al, 1977; Hughes et al, 11 

2010). As a result, statistical wave theory can be applied to such records and with their help, 11 

nonlinear shallow water equations in the random function class can be solved. This approach was 14 

used to describe the statistical moments of the long wave run-up characteristics in (Didenkulova 11 

et al, 2008, 2010, 2011). Special laboratory experiments were also conducted on irregular wave 11 

run-up on a flat slope, the results of which are not very well described by theoretical 11 

dependencies (Denissenko et al, 2011, 2013). As for field data, we are acquainted with two 11 

papers: (Huntley et al, 1977; Hughes et al, 2010), where the statistical characteristics of the 19 

moving shoreline on two Canadian and one Australian beaches were calculated. They confirmed 11 

the fact that the wave process on the coast is not Gaussian. In our opinion, the main problem in 11 
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the theoretical model of describing the irregular wave run-upon the shore is associated with the 11 

use of two hypotheses: 1) the small amplitude wave field (in the linear problem) is Gaussian; 2) 11 

waves run-up on the shore without breaking. It is obvious, however, that in the nonlinear wave 14 

field some broken waves can always be present. They affect the distribution function tails and, 11 

thus, the statistical moments of the run-up characteristics as well. 11 

The connection of the run-up parameters at the nonlinear stage with the linear field at a 11 

fixed point is described either in a parametric form or implicitly in a nonlinear equation 11 

(Didenkulova et al., 2010). This does not allow using the standard methods of random processes. 19 

At the same time, it is known, that this implicit equation is equivalent to a partial first-order 11 

differential equation (PDE), that is, to the simple (the Riemann wave) equation (Rudenko and 11 

Soluyan, 1977). In statistical problems, this equation arises in nonlinear acoustics. This equation 11 

or its generalization, the nonlinear diffusion equation called the Burgers equation (Burgers at al, 11 

1974) is the model equation in the hydrodynamic turbulence theory (Frisch, 1995). It should be 14 

noted that for the one-dimensional Burgers turbulence, as well as its three-dimensional version, 11 

used for the model description of the large-scale Universe structure (Gurbatov et al, 2012). It is 11 

possible to give an almost comprehensive statistical description for certain initial conditions 11 

(Gurbatov et al, 1991, 1997, 2011; Gurbatov and Saichev, 1993; Molchanov et al, 1995; Frisch, 11 

1995; Woyczynski, 1998; Frisch and Bec, 2001; Bec and Khanin, 2007). In particular, single-19 

point and two-point probability distributions of the velocity field and even N-point probability 91 

distributions and, accordingly, multi-point moment functions were found. This partially allows 91 

using a mathematical approach developed in statistical nonlinear acoustics. An experimental 91 

study of the nonlinear evolution of random quasi-monochromatic waves and the probability 91 

distributions and spectra analysis have been carried out in acoustics more than once. They 94 

confirmed theoretical conclusions; see, for example (Gurbatov et al, 2018, 2019). 91 

This paper is devoted to the analytical study of the probabilistic characteristics of the long 91 

narrow-band wave run-up on the coast. Section 2 gives the basic equations of nonlinear shallow 91 

water theory and the Carrier-Greenspan transformation, with the latter making it possible to 91 

linearize the nonlinear equations. Section 3 describes the moving shoreline dynamics when the 99 

deterministic sine wave approaches climbs the slope. The probability characteristics of the 111 

deformed sine oscillations of the moving shoreline with a random phase are described in Section 111 

4. Section 5 contains the probabilistic characteristics on the vertical displacement of the moving 111 

shoreline if the incident narrow-band wave has a random amplitude and phase. The discussion of 111 

the wave breaking effects and their influence on the distribution of the run-up characteristics is 114 

given in Section 6. The results obtained are summarized in Section 7. 111 
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2. Basic equations and transformations 111 

 

L(t) 

r(t) = α L(t) 

R(t) 

h 

α 
 111 

Fig. 1. The problem geometry 119 

 111 

Here we will consider the classical formulation of the problem of a long wave run-up on the 111 

constant-gradient slope in an ideal fluid (Fig. 1). The wave is one-dimensional and propagates 111 

along the x-axis directed onshore. The basin depth is a linear depth function: ( )h x xα= − , where 111 

α  is the inclination angle tangent and point x = 0 corresponds to a fixed unperturbed water 114 

shoreline. L(t) and r(t) describe the horizontal and vertical displacement of the moving shoreline, 111 

and R(t) is the water level oscillations at x = 0. The bottom and the shore are assumed 111 

impenetrable. The long wave dynamics is described by nonlinear shallow water equations: 111 

0u uu g
t x x

η∂ ∂ ∂
+ + =

∂ ∂ ∂
,                                               (2.1) 111 

[ ]( ) 0x u
t x
η α η∂ ∂
+ − + =

∂ ∂
.                                             (2.2) 119 

Here, η (x,t) is the free surface elevation above the undisturbed water level, and u(x,t) is the 111 

depth-averaged flow velocity (within the shallow water theory, the flow velocity is the same on 111 

all horizons), and g is the gravity acceleration. Obviously, after introducing total depth 111 

( , ) ( , )H x t x x tα η= − + ,                                                    (2.3) 111 

equations (2.1) and (2.2) are a hyperbolic system with constant coefficients. This fact makes it 114 

possible to transform the system into a linear equation one by using a hodograph (Legendre) 111 
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transformation, which was done in the pioneering work (Carrier and Greenspan, 1958). As a 111 

result, the wave field is described by a linear wave equation in the ‘cylindrical’ coordinate 111 

system 111 

01
2

2

2

2

=
∂
Φ∂

−
∂
Φ∂

−
∂
Φ∂

σσσλ
,                                                   (2.4) 119 

and all variables are expressed in terms of an auxiliary wave function ( , )σ λΦ  using explicit 111 

formulas 111 







 −
∂
Φ∂

= 2

2
1 u
g λ

η ,                                                            (2.5) 111 

σσ ∂
Φ∂

=
1u ,                                                                  (2.6) 111 









−−

∂
Φ∂

=
22

1 2
2 σ

λα
u

g
x ,                                                        (2.7) 114 

( )u
g

t −= λ
α
1 .                                                                (2.8) 111 

It should be noted that the variable σ is proportional to the total water depth. 111 

2 2 ( )gH g xσ α η= = − + ,                                                     (2.9) 111 

so, the wave equation (2.4) is solved on the semi-axis 0σ ≥ , and this coordinate plays the radius 111 

role in the cylindrical coordinate system. We would like to emphasize that the point 0σ =119 

corresponds to a moving shoreline, and therefore, the original problem, solved in the area with a 141 

unknown boundary, is reduced to a fixed area problem. 141 

It is important to note that the hodograph transformation is valid if the Jacobian 141 

transformation is non-zero 141 

( , ) 0
( , )

x tJ
σ λ

∂
= ≠
∂

.                                                                (2.10) 144 

It is the case when a gradient catastrophe, identified in the framework of the shallow-water 141 

theory with the wave breaking, does not occur. The necessary condition for the wave breaking 141 

absence is the boundedness and smoothness of all solutions; this question will be discussed 141 

further on. 141 

 We will assume that the wave approaches the coast from the area far from the shoreline (149 

x →−∞ ), where the wave is linear. Then it is obvious that the function ( , )σ λΦ  can be 111 
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completely found from the linear theory. The difficulty in finding the wave field in the near-111 

shoreline area is due to the implicit transformation of the coordinates (x,t) to ( ,σ λ ). However, 111 

for the most interesting point of the moving shoreline 0σ = (its dynamics determines the size of 111 

the flooded area on the coast) all the formulas become explicit. In particular, from (2.5) and (2.6) 114 

follows 111 

2( ) ( )( )
2

u t u tr t R t
g gα

 
= + − 

 
 ,                                                        (2.11)  111 

( )( ) u tu t U t
gα

 
= + 

 
,                                                            (2.12) 111 

where r(t) and u(t) are the vertical displacement of the moving shoreline and its speed, and the 111 

functions R(t) and U(t) determine the field characteristics at the fixed point (x = 0) from the 119 

linear theory 111 

1 ( 0, )( )
2 gt

R t
g λ α

σ λ
λ =

∂Φ =
=

∂
,          

0,

1 ( , )( )
gt

U t
σ λ α

σ λ
σ σ = =

∂Φ
=

∂
.                   (2.13) 111 

Then we add the obvious kinematic relations for the vertical displacement and velocity of the last 111 

sea point along the slope. 111 

1 ( )( ) dr tu t
dtα

=  ,       
1 ( )( ) dR tU t

dtα
= .                                                 (2.14) 114 

Let us note that formula (2.12) is identical to the so-called Riemann wave or a simple 111 

wave in a nonlinear non-dispersive medium (in particular, in nonlinear acoustics), if we consider 111 

the parameter 1/ gα to be a ‘coordinate’; see, for example, (Rudenko and Soluyan, 1977, 111 

Gurbatov et al, 1991, 2011). Moreover, formula (2.13) describes the integral over the Riemann 111 

wave. This analogy proves to be very useful when transferring the already known results in the 119 

wave nonlinear theory to the run-up characteristics described by the formulas (2.11) and (2.12) 111 

ODE. 111 

Detailed calculations of the long wave run-up on the coast were carried out repeatedly; 111 

see, for example (Carrier and Greenspan, 1958; Synolakis, 1987; Pelinovsky and Mazova, 1992; 111 

Tinti and Toniti, 2005; Madsen and Fuhrman, 2008; Madsen and Schaffer, 2010; Antuano and 114 

Brocchini, 2008, 2010; Didenkulova, 2009; Dobrokhotov et al, 2015; Aydin and Kanoglu, 2017). 111 

It is worth mentioning that the nonlinear time transformation in (2.11) and (2.12) leads to 111 

the shoreline oscillation distortion in comparison with the linear theory predictions. So, for large 111 
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amplitudes the wave shape becomes multi-valued (broken). The first moment of the wave 111 

breaking on the shoreline (the gradient catastrophe) is easily found from (2.12) by calculating the 119 

first derivative of the moving shoreline velocity 111 

/1

dUdu dt
dU dtdt

gα

=
−

,                                                                  (2.15) 111 

from it follows the wave breaking condition  111 

2 2

2

max( / ) max( / ) 1dU dt d R dtBr
g gα α

= = = ,                                                  (2.16) 111 

where we have introduced the breaking parameter Br to designate the left-hand side in (2.16), 114 

which characterizes the nonlinear wave properties on the shoreline. The condition (2.16) can be 111 

given a physical meaning, that the breaking occurs when the last sea particle acceleration (111 

1 2 2/d R dtα − ) exceeds the component of gravity acceleration along the shoreline ( gα ). As 111 

shown in (Didenkulova, 2009), condition (2.16) coincides with (2.10) for Jacobian. It is 111 

important to emphasize that the breaking condition is unequivocally found through solving the 119 

linear problem of the wave run-up on the shore. It is determined only by the particle acceleration 191 

value on the shoreline; but it is not determined separately by the shoreline displacement or its 191 

velocity. 191 

 A similar Carrier – Greenspan transformation is obtained for waves in narrow inclined 191 

channels, fjords, and bays (Rybkin et al, 2013; Pedersen, 2016; Anderson et al, 2017; Raz et al, 194 

2018); only the wave equation (2.4) and relations (2.5) - (2.8) change. However, the moving 191 

shoreline dynamics is still described by equations (2.11) and (2.12), valid for arbitrary cross-191 

section channels. 191 

 191 

3. The moving shoreline dynamics at an initially monochromatic wave run-up 199 

The monochromatic wave run-up on a flat slope by using the Carrier – Greenspan 111 

transformation has been studied in a number of papers cited above. Let us reproduce here the 111 

main features of the moving shoreline dynamics necessary for us to draw the statistical 111 

description further on. Mathematically, the monochromatic wave run-up is described by an 111 

elementary solution of equation (2.4) 114 

0( , ) ( ) cos( )QJ l lσ λ σ λΦ = ,                                                (3.1) 111 
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where Q and l are arbitrary constants, and J0 is the zero-order Bessel function. Far from the 111 

shoreline (σ →∞ ) the Bessel function decreases, so the wave function Φ becomes small. In this 111 

case, in (2.5) - (2.8) one can use approximate expressions (the ‘linear’ Carrier – Greenspan 111 

transformation) 119 

1
2g

η
λ

∂Φ
=

∂
,       

σσ ∂
Φ∂

=
1u ,     

2

4
x

g
σ
α

= − ,      t
g
λ
α

= ,                           (3.2) 111 

and using the asymptotic representation for the Bessel function, reduce (3.1) to the expression 111 

for the water surface displacement 111 

( , ) ( ) sin sin
4 4( ) ( )

dx dxx t a x t t
gh x gh x

π πη ω ω
        = − − + + +                     

∫ ∫  ,                    (3.3) 111 

where 114 

( )
2 ( )
Q la x
g gh xπ

=  ,               glω α=  .                                     (3.4) 111 

The wave field away from the shoreline is a superposition of two waves of the same frequency 111 

and a variable amplitude a (x), which together form a standing wave. It immediately shows that 111 

the wave amplitude varies with depth according to the Green law (h-1/4), as it should be far from 111 

the coast. The same asymptotic result follows from the exact solution of linear shallow water 119 

equations. 111 

2

0 0
4 | |( , ) sin( )xx t R J t

g
ωη ω
α

 
=   

 
,                                                 (3.5) 111 

where R0 is the wave amplitude at the fixed shoreline (x = 0), identified with the maximum run-111 

up height in the linear theory. By connecting (3.4) and (3.5), we obtain the formula for the run-111 

up height obtained through the incident wave amplitude far from the coast 114 

 0 2 ( )
( )
R h x

a x g
ω
α

=  .                                                               (3.6) 111 

Formula (3.6) allows working further with the run-up height R0 instead of the wave amplitude far 111 

from the coast a(x), considering it to be given. This run-up height will be considered as the given 111 

value. Having determined Q and l through the incident wave parameters, we can calculate the 111 

run-up characteristics in the nonlinear theory, considering the limit of formula (3.1) with 0σ →  119 

and using the Carrier – Greenspan transformation formulas (2.5) - (2.8). The moving shoreline 111 

movement is determined by the parametric dependence 111 
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0
2 cosRt

g g g
ωλ ωλ

α α α
 

= −  
 

 ,                                              (3.7) 111 

2 2
20

0 2sin cos
2

Rr R
g g g

ωωλ ωλ
α α α
   

= −   
   

 .                                     (3.8) 111 

It is convenient to introduce dimensionless variables 114 

0

rz
R

=  ,    tτ ω= .      
g

ωλϕ
α

= ,                                         (3.9) 111 

and calculate the breaking parameter 111 

2
0

2

RBr
g

ω
α

= ,                                                     (3.10) 111 

so the formulas (3.7) and (3.8) are finally rewritten in the form 111 

( )cosBrτ ϕ ϕ= −  ,                                                            (3.11) 119 

( ) ( )2sin cos
2

Brz ϕ ϕ= − ,                                                      (3.12) 141 

what is another expression record for the formulas (2.11) and (2.12), if we take 141 

0( ) sin( )R t R tω= ,                                                         (3.13) 141 

arising from (3.5) with x = 0. Let us note that the function ( , )z Brτ is set in a parametric form, 141 

but after expressing ϕ  from (3.12) and substituting it in (3.11), we can obtain the explicit 144 

expression for the function ( ; )z Brτ . In the paper, we will use both explicit and implicit 141 

expressions of the functions describing the moving shoreline dynamics. 141 

 Fig. 2 shows the moving shoreline dynamics at different wave height values in terms of 141 

the breaking parameter up to the limiting value (Br = 1). In the limit of small parameter values, 141 

the oscillations are close to sinusoidal (it is almost a linear problem). Then, with the increasing 149 

amplitude, the moving shoreline velocity gets a steep leading front, while at the moving 111 

shoreline vertical displacement a peculiar feature is formed at the wave run-down stage. As it is 111 

known, at the time of the Riemann wave breaking, a peculiarity like 1/3~u t  is formed 111 

(Pelinovsky et al, 2013). Then, in the integral over the Riemann wave (at the moving shoreline 111 

displacement), this peculiar feature will have the form 4/3~z t . Thus, with the wave amplitude 114 

increase, the first breaking occurs at sea (at the run-down stage), and not on the coast. Then the 111 

breaking zone expands and moves on to the coast, but at this stage, analytical solutions based on 111 

the Carrier-Greenspan transformation become inapplicable. 111 
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 111 

 119 

 111 

 111 

Fig. 2. The moving shoreline dynamics (top) and its velocity (below) in the case of the incident 111 
monochromatic wave for different breaking parameter values Br (0 – the dotted line, 0.5 – the 111 
dashed line and 1 – the solid line). 114 

 111 

4. Probabilistic characteristics of the initially sine wave run-up with a random phase 111 

Let us now consider the probabilistic characteristics of the initially sine wave run-up with a 111 

random phase on the shore, assuming it to be uniformly distributed over the interval [0 2 ]π− . 111 

These characteristics are found by using the geometric probability methods (Kendall and Stuart, 119 

1969), so that for ergodic processes the probability density of the moving shoreline vertical 111 
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displacement coincides with the relative location time of the function ( )z τ in the interval ( z , 111 

z dz+ )  111 

1

1( )
2

N
n

n

dW z
dz
τ

π =

= ∑ ,                                                               (4.1) 111 

where the summation takes place at all intersection levels ( )z τ . For harmonic disturbance, it is 114 

enough to restrict ourselves to considering the field on a half-period. So, for the moving 111 

shoreline vertical displacement in dimensionless variables, the derivative /d dzτ of the 111 

parametric curve (3.11) and (3.12) can be calculated through the ratio of the derivatives /d dτ ϕ111 

and /dz dϕ  111 

sin 1 1 sin 1( ; )
cos cos sin cosz

BrW z Br
Br

ϕ
π ϕ ϕ ϕ π ϕ

+
= =

+
 ,                                     (4.2) 119 

we indicated here that the probability density depends on Br as a parameter. Finding cosϕ  from 111 

the formula (3.12) for the vertical displacement, we obtain the final expression for the 111 

probability density 111 

sin

2
2

2

1 1( ; )
11 1 1 2

zW z Br
zBr Br

Br
π

=
 − − + + 

 ,                                      (4.3) 111 

which in the linear problem for a purely sinusoidal perturbation transforms into a well-known 114 

expression for the probability distribution of a harmonic signal with a random phase (Kendall 111 

and Stuart, 1969) 111 

sin

2

1 1( ;0)
1

zW z
zπ

=
−

.                                                                            (4.4) 111 

The probability distribution (4.3) for the three values of the parameter Br is shown in 111 

Fig.3. As you can see, the probability density becomes an asymmetric function with a greater 119 

probability in the area of positive values corresponding to the wave run-up on the coast than at 191 

the run-down stage. At the ends of the interval, the probability density is unlimited throughout 191 

the entire range change of Br, since the shoreline oscillations near the maximum have a zero 191 

derivative (the moving shoreline velocity in it becomes zero). 191 

The obtained probability density function can be used to calculate the statistical moments 194 

of the shoreline oscillations. Technically, however, it is easier to use the parametric equations 191 

(3.11) and (3.12) and calculate all the moments. 191 
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2 2

0 0

1 1( ) ( )
2 2

z n n
n

dM z d z d
d

π π ττ τ ϕ ϕ
π π ϕ

= =∫ ∫  .                                         (4.5) 191 

So, the first moment 191 

1 4
z BrM =                                                                  (4.6) 199 

determines the average water level rise on the coast when the waves approach the shore (set-up 111 

phenomenon), which is commonly observed (Dean and Walton, 2009). 111 

 111 

 111 

Fig. 3. The probability density of the moving shoreline vertical displacement for the initially sine 114 
wave run-up at Br = 0 (the dotted line), 0.5 (the dashed line) and 1 (the solid line). 111 

 111 

The second moment determines the dispersion 111 

2
2 2 2

1
0

1 1 3( )
2 2 32

zz M d Br
π

δ τ
π

= − = −∫ ,                                                   (4.7) 111 

characterizing the fluctuation range relative to the average value; it relatively weakly decreases 119 

with the growth of the parameter Br (less than 10% for non-breaking waves). 111 

Finally, the total flooding time and its drainage time are easy to find from (3.11) and 111 

(3.12), finding from the equation (3.12) mentioned last, the value φ, at which z = 0, and 111 

substituting the obtained values in (3.11) 111 

1.0 0.5 0.0 0.5 1.0
r

0.5

1.0

1.5

2.0
W
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2
21 12arcsin 2 2 1 1flood

BrT Br
Br

π
 + −

= − + + − 
  

, 114 

                       (4.9) 111 

2
21 12arcsin 2 2 1 1dry

BrT Br
Br

π
 + −

= + − + − 
  

, 111 

Both times change almost linearly with the increasing wave amplitude (parameter Br), see Fig. 4. 111 

 111 

Fig. 4. The total flooding time (the solid curve) and the drainage time (the dashed curve) 119 
depending on the parameter Br. 111 

 111 

It is worth noting that, in contrast to the vertical displacement, the moving shoreline 111 

velocity distribution [ 0( / )u R vω α= ], as it is easy to show, does not depend on the breaking 111 

parameter and probability density function is determined by the simple formula 114 

sin

2

1 1( )
1

vW v
vπ

=
−

.                                                       (4.10) 111 

The distribution independence on the degree of nonlinearity is well known for the Riemann 111 

waves and is explained by the compensation of compression and rare faction areas (Gurbatov et 111 

al, 1991, 2011). 111 

 119 

5. Probabilistic characteristics of a narrow-band wave run-up with a random amplitude 111 
and phase 111 

Let us consider the run-up of a quasi-harmonic wave with a random amplitude and phase 111 

on a flat slope. To do this, we will first rewrite formulas (4.3) and (4.10) for them to include the 111 

0.2 0.4 0.6 0.8 1.0
Br

2.5

3.0

3.5

4.0

T
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wave amplitude. It is convenient to enter the maximum height Rmax as the amplitude scales at 114 

which the breaking parameter turns into 1 111 

2
max

2 1RBr
g

ω
α

= = ,                                                                (5.1) 111 

and to use dimensionless displacement (y=r/Rmax). Then the dimensionless amplitude is 111 

0

max

1RA
R

= ≤  ,                                                                  (5.2) 111 

and formula (4.3) is converted to the form (-A <y <A) 119 

sin

2
2 2

1 1( ; )
1 1 2

yW y A
A y A

π
=

 − − + + 

 .                                             (5.3) 141 

Assuming now that the wave amplitude A is a random variable, we average (5.3) by using 141 

the amplitude distribution density WA(A) 141 

sin( ) ( ; ) W ( )y A
y

W y W y A A dA
∞

= ∫ .                                      (5.4)  141 

Formula (5.4) has an important practical meaning: by the measured distribution of the wave 144 

amplitudes far from the coast (re-computed on run-up amplitudes in the linear theory), it is 141 

possible to obtain the distribution of the wave run-up characteristics on the coast. The only 141 

requirement imposed on the wave ensemble is that it should not contain breaking waves, which 141 

should be somehow removed from the record. It immediately follows that the Gaussian field 141 

containing large amplitude tails does not fit this requirement, and it should be modified. 149 

Therefore, we assume the amplitude distribution to be finite for A<Amax = 1. The narrow-band 111 

random wave field contains sine waves with almost constant frequency and random amplitude 111 

and phase. It means that if the wave amplitude is below the “breaking amplitude” Amax = 1, the 111 

breaking will not be implemented in any way, and the random wave run-up will take place 111 

without any breaking. Further calculations depend on the specific type of the amplitude 114 

distribution. 111 

Let us construct the finite amplitude distribution at which the linear field distribution is 111 

close to the Gaussian form and modify the Rayleigh distribution for wave heights in the area 111 

A<Amax =1 (Fig. 5) 111 

2

max 2 2 2 2
max

1 4( ; , ) exp 2
1 exp( 2 / )A s

s s s

A AW A A A
A A A A

 
= − − −  

, maxA A≤ ,               (5.5) 119 
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to make the density function distribution normalized. Here, As is the so-called significant wave 111 

run-up height (an averaged value of 1/3 highest amplitudes). We would like to note here, that it 111 

follows from (2.11) and (2.12) that the extremal run-up characteristics in the nonlinear theory 111 

remain the same as in the linear theory. This means that the significant wave run-up height 111 

remains the same as in the nonlinear theory. 114 

 111 

 111 

Fig. 5. The modified Rayleigh distribution (5.5) for different distribution values As/Amax; 111 
0.5 – the dotted curve, 0.7 – the dashed line, 1 – the solid line. 111 

 119 

When As<<Amax = 1, distribution (5.5) transforms into the Rayleigh one, which is 111 

characteristic of the Gaussian initial distribution of a narrow-band random signal. With the help 111 

of (5.5), it becomes possible to calculate the distribution function of shoreline oscillations for the 111 

various wave energy. So, with the incident wave small amplitude (As<<1), distribution (5.3) can 111 

be replaced by a simpler expression (4.4) and the answer is the run-up distribution characteristics 114 

in the linear theory: 111 

max 2

max 2 2 2 22 2
max

4(y; , ) exp 2
[1 exp( 2 / )]

A

lin s
s s sy

A AW A A dA
A A A AA yπ

 
= − − − −  

∫ .              (5.6) 111 

Besides, if As<<Amax = 1, the integral (5.6) is reduced to the Gaussian distribution 111 

2

2

2( ; ) exp 2
2lin s

ss

yW y A
AAπ

 
= − 

 
,                                               (5.7) 111 

where, 2s yA σ= , and 2
yσ is the moving shoreline oscillation dispersion. 119 

Fig. 6 shows the distribution of the run-up characteristics for different ratios of As/Amax 111 

values by formulas (5.4) and (5.5); they are shown in solid lines. Here the dashed lines show the 111 
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calculation results according to the linear theory (5.6). As one can see, with As/Amax = 0.5 (the top 111 

panel) and 0.7 (the middle panel), the linear distribution is close to the Gaussian one. 111 

Nonlinearity leads to the asymmetry of the distribution function density in the direction of 114 

positive values corresponding to the wave characteristics on the coast. If the undisturbed wave 111 

ensemble is made of relatively large waves (As/Amax = 1), their distribution is far from the 111 

Gaussian, both in the linear and in the nonlinear approximation. 111 

 111 

 119 
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 191 

Fig. 6. The probabilistic density function of the vertical shoreline displacement in the 191 
nonlinear theory (solid lines) and in the linear theory (dashed lines) for different As/Amax: 0.5 191 
values: (the upper panel), 0.7 (the middle panel) and 1 (the lower panel). 191 

 194 

The finite (A<Amax) power-law distribution concentrated mainly near the maximum 191 

amplitude Amax can be considered as another example of undisturbed large-amplitude waves. 191 

5

6
max

6( )A
AW A

A
= .                                                                (5.8) 191 

Fig. 7 shows the graphs of the probabilistic density function of the moving shoreline 191 

displacement calculated by using formulas (5.4) and (4.4) in the linear theory and (5.3) in the 199 

nonlinear theory. It is also seen in the figure that nonlinear effects lead to a strong asymmetry 411 

towards the positive values, that is, to the wave amplification at the run-up up stage than at the 411 

run-down stage. 411 
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 411 

Fig. 7. Probabilistic density function of the shoreline vertical displacement in the linear 414 
theory (the dashed line) and non-linear theory (the solid line) 411 

 411 

6. The wave breaking effect on probabilistic run-up characteristics 411 

The theory described above is valid for non-breaking waves. The mentioned wave ensemble, 411 

strictly speaking, cannot be the Gaussian one, as it always has unlimited tails in the probability 419 

density function. Let us briefly discuss what the formulas obtained for non-breaking waves lead 411 

to in the presence of broken waves. Fig. 8 shows the parametric curve (3.11) - (3.12) when Br = 411 

2. Formally, the curve became multi-valued in the range of negative values corresponding to the 411 

maximum water outflow from the coast. We have already indicated that the probability density 411 

function of the moving shoreline vertical displacement ( )W ξ coincides with the relative 414 

residence time ( )tξ  of the function in the interval (ξ , dξ ξ+ ), which is calculated by formula 411 

(3.1). In contrast to negative cut-off bias values, in the area of positive values there is no 411 

ambiguity, and, therefore, all the calculations can be carried out by using the formulas described 411 

above. An example of such calculation with Br = 2 and r> -0.5 (in the zone of one-value 411 

solution) is shown in Fig. 9. 419 

 411 
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 411 

Fig. 8. The parametric curve (3.11) - (3.12) with Br = 2 (the solid curve) in comparison with the 411 
linear problem with Br = 0 (the dashed line) 411 

 414 

Fig. 9. The probability density function at Br = 2, constructed by formulas (5.3), (5.4) and (5.5) 411 
(the solid line) in comparison with the linear distribution (5.6) is the dotted line. As/Amax = 0.7. 411 

 411 

However, these results should be treated with caution. If Br > 1 the Jacobian breaks down 411 

seawards of the shoreline. This may affect the probabilistic distribution on the positive side. This 419 

important issue requires going beyond the theory discussed in this article. 411 

 411 

 411 

 411 

7. Discussion and conclusion 414 

In this paper, we study the run-up of irregular narrow-band waves with a random 411 

envelope (swell, storm surges, and tsunami) on a beach of a constant slope. The work was 411 

carried out in the framework of the nonlinear wave theory with one important assumption: there 411 

should be no breaking waves in the wave ensemble. This restriction is quite strict for field and 411 

laboratory conditions, but nevertheless, there are cases when it is performed. For instance, 75% 419 

of historical tsunami waves climbed on the coast with no breaking (Mazova et al, 1983). In the 441 

experiments performed in the Warwick University tank and in the Large Tank in Hannover 441 

(Denissenko et al, 2011, 2013), this condition was fulfilled.  441 
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The wave nonlinearity at the run-up stage leads to increased deviations from Gaussianity, as 441 

might be expected from general considerations. Nevertheless, it is shown that the probability 444 

distribution of the moving shoreline velocity does not depend on the wave nonlinearity and can 441 

be calculated within the linear theory framework. The same conclusion can be drawn about the 441 

distribution of the extreme run-up characteristics (the moving shoreline displacement and speed), 441 

which, in fact, has already been discussed earlier (Didenkulova et al, 2008). However, the 441 

probabilistic density function of the moving shoreline displacement differs from that predicted 449 

one in the linear theory framework. It is described by formula (5.4) by using either the 411 

theoretical or the measured distribution of the incident wave amplitudes. The paper gives the 411 

calculation results of the probable run-up characteristics with a modified Rayleigh distribution 411 

for wave amplitudes. 411 

The wave breaking leads to the inapplicability of the wave run-up theory based on the 414 

Carrier-Greenspan transformation. If, nevertheless, the share of large amplitude waves is small, 411 

the breaking occurs mainly at the run-down stage, having little effect on the long-wave coast 411 

flooding characteristics (see Section 6). This question, however, requires a special study based 411 

on direct numerical solutions of the shallow-water equations or their nonlinear-dispersive 411 

generalizations. 419 

Finally, it is worth noting that we considered the narrow-band wave run-up with a 411 

random amplitude and phase; as for the random waves with a wide spectrum – it is the problem 411 

of further consideration. 411 

The obtained probability density functions of the vertical displacement of the moving 411 

shoreline are useful to compute statistical characteristics of flooding time and force on coasts and 414 

constructions, which are necessity for the mitigation of natural marine hazards. 411 

Now in practice various generalizations of shallow-water equations are used to analyze 411 

tsunami runup including wave dispersion, see for instance (Lovholt et al, 2012). Wave dispersion 411 

as a quadratic dissipative term that prevents us from getting analytical results, so their influence 411 

on statistical characteristics should be investigated in future. 419 
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