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Abstract 8 

The run-up of random long wave ensemble (swell, storm surge and tsunami) on the constant-9 
slope beach is studied in the framework of the nonlinear shallow-water theory in the 10 
approximation of non-breaking waves. If the incident wave approaches the shore from deepest 11 
water, runup characteristics can be found in two stages: at the first stage, linear equations are 12 
solved and the wave characteristics at the fixed (undisturbed) shoreline are found, and, at the 13 
second stage, the nonlinear dynamics of the moving shoreline is studied by means of the 14 
Riemann (nonlinear) transformation of linear solutions. In the paper, detail results are obtained 15 
for quasi-harmonic (narrow-band) waves with random amplitude and phase. It is shown that the 16 
probabilistic characteristics of the runup extremes can be found from the linear theory, while the 17 
same ones of the moving shoreline - from the nonlinear theory. The role of wave breaking due to 18 
large-amplitude outliers is discussed, so that it becomes necessary to consider wave ensembles 19 
with non-Gaussian statistics within the framework of the analytical theory of non-breaking 20 
waves. The basic formulas for calculating the probabilistic characteristics of the moving 21 
shoreline and its velocity through the incident wave characteristics are given. They can be used 22 
for estimates of the flooding zone characteristics in marine natural hazards. 23 
 24 
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 27 

1. Introduction 28 

The flooded area size, the water flow depth and its speed on the coast, the coastal topography 29 

characteristics and the features of the coastal zone development determine the consequences of 30 

marine natural disasters on the coast. The catastrophic events of recent years are well known, 31 

when tsunami waves and storm surges caused significant damage on the coast and people’s 32 

death. It is worth saying that only in 2018 two catastrophic tsunamis occurred in Indonesia, 33 

leading to the death of several thousand people (on Sulawesi Island in September and in the 34 

Sunda Strait in December). The calculations of the coast flooding due to tsunamis and storm 35 

surges are mainly carried out within the framework of nonlinear shallow-water equations, taking 36 

into account the variable roughness coefficient for various areas of the coastal zone (Kaiser et al, 37 
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2011; Choi et al, 2012). The characteristics of the coastal destruction is determined either by 38 

using fragility curves (Macabuag et al, 2016; Park et al, 2017) or by using a direct calculation of 39 

the tsunami forces (Qi et al, 2014; Ozer et al, 2015a, b; Kian et al, 2016; Xiong et al., 2019). 40 

The computation accuracy was tested on a series of benchmarks, including the idealized 41 

problem of the wave run-up onto the impenetrable slope of a constant gradient without friction 42 

(Synolakis et al, 2008). The nonlinear shallow water equations for the bottom geometry of this 43 

kind are linearized by using the hodograph (Legendre) transformations. This step makes it 44 

possible to obtain a number of exact solutions describing the run-up on the coast. This approach, 45 

first suggested by Carrier and Greenspan (1958), was later on used to analyze the run-up of 46 

single and periodic waves of various shapes (Synolakis, 1987; Pelinovsky and Mazova, 1992; 47 

Carrier, 1995; Carrier et al, 2003; Tinti and Toniti, 2005; Madsen and Fuhrman, 2008; Madsen 48 

and Schaffer, 2010; Antuano and Brocchini, 2008, 2010; Didenkulova, 2009; Dobrokhotov et al, 49 

2015; Aydin and Kanoglu, 2017). Moreover, such approach made it possible to determine the 50 

conditions for the wave breaking. The latter means the presence of steep fronts (gradient 51 

catastrophe) within the hyperbolic shallow water equation framework. The Carrier-Greenspan 52 

transformation was further generalized for the case of waves in an inclined channel of an 53 

arbitrary variable cross section (Rybkin et al, 2013; Pedersen, 2016; Shimozone, 2016; Anderson 54 

et al, 2017; Raz et al, 2018). In a number of practical cases, its use proves to be more efficient 55 

than the direct numerical computation within the 2D shallow water equation framework (Harris 56 

et al, 2015, 2016). 57 

Due to bathymetry variability and shoreline complexity, diffraction and scattering effects 58 

lead to an irregular shape of the waves approaching the coast. Moreover, very often not the 59 

leading wave is not turns out to be the maximum one. Such typical tsunami wave records on 60 

tide-gauges are well known and are not shown here. It is applied even more to swell waves, 61 

which in some cases approach the coast without breaking (Huntley et al, 1977; Hughes et al, 62 

2010). As a result, statistical wave theory can be applied to such records and with their help, 63 

nonlinear shallow water equations in the random function class can be solved. This approach was 64 

used to describe the statistical moments of the long wave run-up characteristics in (Didenkulova 65 

et al, 2008, 2010, 2011). Special laboratory experiments were also conducted on irregular wave 66 

run-up on a flat slope, the results of which are not very well described by theoretical 67 

dependencies (Denissenko et al, 2011, 2013). As for field data, we are acquainted with two 68 

papers: (Huntley et al, 1977; Hughes et al, 2010), where the statistical characteristics of the 69 

moving shoreline on two Canadian and one Australian beaches were calculated. They confirmed 70 

the fact that the wave process on the coast is not Gaussian. In our opinion, the main problem in 71 
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the theoretical model of describing the irregular wave run-upon the shore is associated with the 72 

use of two hypotheses: 1) the small amplitude wave field (in the linear problem) is Gaussian; 2) 73 

waves run-up on the shore without breaking. It is obvious, however, that in the nonlinear wave 74 

field some broken waves can always be present. They affect the distribution function tails and, 75 

thus, the statistical moments of the run-up characteristics as well. 76 

The connection of the run-up parameters at the nonlinear stage with the linear field at a 77 

fixed point is described either in a parametric form or implicitly in a nonlinear equation 78 

(Didenkulova et al., 2010). This does not allow using the standard methods of random processes. 79 

At the same time, it is known, that this implicit equation is equivalent to a partial first-order 80 

differential equation (PDE), that is, to the simple (the Riemann wave) equation (Rudenko and 81 

Soluyan, 1977). In statistical problems, this equation arises in nonlinear acoustics. This equation 82 

or its generalization, the nonlinear diffusion equation called the Burgers equation (Burgers at al, 83 

1974) is the model equation in the hydrodynamic turbulence theory (Frisch, 1995). It should be 84 

noted that for the one-dimensional Burgers turbulence, as well as its three-dimensional version, 85 

used for the model description of the large-scale Universe structure (Gurbatov et al, 2012). It is 86 

possible to give an almost comprehensive statistical description for certain initial conditions 87 

(Gurbatov et al, 1991, 1997, 2011; Gurbatov and Saichev, 1993; Molchanov et al, 1995; Frisch, 88 

1995; Woyczynski, 1998; Frisch and Bec, 2001; Bec and Khanin, 2007). In particular, single-89 

point and two-point probability distributions of the velocity field and even N-point probability 90 

distributions and, accordingly, multi-point moment functions were found. This partially allows 91 

using a mathematical approach developed in statistical nonlinear acoustics. An experimental 92 

study of the nonlinear evolution of random quasi-monochromatic waves and the probability 93 

distributions and spectra analysis have been carried out in acoustics more than once. They 94 

confirmed theoretical conclusions; see, for example (Gurbatov et al, 2018, 2019). 95 

This paper is devoted to the analytical study of the probabilistic characteristics of the long 96 

narrow-band wave run-up on the coast. Section 2 gives the basic equations of nonlinear shallow 97 

water theory and the Carrier-Greenspan transformation, with the latter making it possible to 98 

linearize the nonlinear equations. Section 3 describes the moving shoreline dynamics when the 99 

deterministic sine wave approaches climbs the slope. The probability characteristics of the 100 

deformed sine oscillations of the moving shoreline with a random phase are described in Section 101 

4. Section 5 contains the probabilistic characteristics on the vertical displacement of the moving 102 

shoreline if the incident narrow-band wave has a random amplitude and phase. The discussion of 103 

the wave breaking effects and their influence on the distribution of the run-up characteristics is 104 

given in Section 6. The results obtained are summarized in Section 7. 105 
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2. Basic equations and transformations 107 

 

L(t) 

r(t) = α L(t) 

R(t) 

h 

α 
 108 

Fig. 1. The problem geometry 109 

 110 

Here we will consider the classical formulation of the problem of a long wave run-up on the 111 

constant-gradient slope in an ideal fluid (Fig. 1). The wave is one-dimensional and propagates 112 

along the x-axis directed onshore. The basin depth is a linear depth function: ( )h x xα= − , where 113 

α  is the inclination angle tangent and point x = 0 corresponds to a fixed unperturbed water 114 

shoreline. L(t) and r(t) describe the horizontal and vertical displacement of the moving shoreline, 115 

and R(t) is the water level oscillations at x = 0. The bottom and the shore are assumed 116 

impenetrable. The long wave dynamics is described by nonlinear shallow water equations: 117 

0u uu g
t x x

η∂ ∂ ∂
+ + =

∂ ∂ ∂
,                                               (2.1) 118 

[ ]( ) 0x u
t x
η α η∂ ∂
+ − + =

∂ ∂
.                                             (2.2) 119 

Here, η (x,t) is the free surface elevation above the undisturbed water level, and u(x,t) is the 120 

depth-averaged flow velocity (within the shallow water theory, the flow velocity is the same on 121 

all horizons), and g is the gravity acceleration. Obviously, after introducing total depth 122 

( , ) ( , )H x t x x tα η= − + ,                                                    (2.3) 123 

equations (2.1) and (2.2) are a hyperbolic system with constant coefficients. This fact makes it 124 

possible to transform the system into a linear equation one by using a hodograph (Legendre) 125 
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transformation, which was done in the pioneering work (Carrier and Greenspan, 1958). As a 126 

result, the wave field is described by a linear wave equation in the ‘cylindrical’ coordinate 127 

system 128 

01
2

2

2

2

=
∂
Φ∂

−
∂
Φ∂

−
∂
Φ∂

σσσλ
,                                                   (2.4) 129 

and all variables are expressed in terms of an auxiliary wave function ( , )σ λΦ  using explicit 130 

formulas 131 







 −
∂
Φ∂

= 2

2
1 u
g λ

η ,                                                            (2.5) 132 

σσ ∂
Φ∂

=
1u ,                                                                  (2.6) 133 









−−

∂
Φ∂

=
22

1 2
2 σ

λα
u

g
x ,                                                        (2.7) 134 

( )u
g

t −= λ
α
1 .                                                                (2.8) 135 

It should be noted that the variable σ is proportional to the total water depth. 136 

2 2 ( )gH g xσ α η= = − + ,                                                     (2.9) 137 

so, the wave equation (2.4) is solved on the semi-axis 0σ ≥ , and this coordinate plays the radius 138 

role in the cylindrical coordinate system. We would like to emphasize that the point 0σ =139 

corresponds to a moving shoreline, and therefore, the original problem, solved in the area with a 140 

unknown boundary, is reduced to a fixed area problem. 141 

It is important to note that the hodograph transformation is valid if the Jacobian 142 

transformation is non-zero 143 

( , ) 0
( , )

x tJ
σ λ

∂
= ≠
∂

.                                                                (2.10) 144 

It is the case when a gradient catastrophe, identified in the framework of the shallow-water 145 

theory with the wave breaking, does not occur. The necessary condition for the wave breaking 146 

absence is the boundedness and smoothness of all solutions; this question will be discussed 147 

further on. 148 

 We will assume that the wave approaches the coast from the area far from the shoreline (149 

x →−∞ ), where the wave is linear. Then it is obvious that the function ( , )σ λΦ  can be 150 
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completely found from the linear theory. The difficulty in finding the wave field in the near-151 

shoreline area is due to the implicit transformation of the coordinates (x,t) to ( ,σ λ ). However, 152 

for the most interesting point of the moving shoreline 0σ = (its dynamics determines the size of 153 

the flooded area on the coast) all the formulas become explicit. In particular, from (2.5) and (2.6) 154 

follows 155 

2( ) ( )( )
2

u t u tr t R t
g gα

 
= + − 

 
 ,                                                        (2.11)  156 

( )( ) u tu t U t
gα

 
= + 

 
,                                                            (2.12) 157 

where r(t) and u(t) are the vertical displacement of the moving shoreline and its speed, and the 158 

functions R(t) and U(t) determine the field characteristics at the fixed point (x = 0) from the 159 

linear theory 160 

1 ( 0, )( )
2 gt

R t
g λ α

σ λ
λ =

∂Φ =
=

∂
,          

0,

1 ( , )( )
gt

U t
σ λ α

σ λ
σ σ = =

∂Φ
=

∂
.                   (2.13) 161 

Then we add the obvious kinematic relations for the vertical displacement and velocity of the last 162 

sea point along the slope. 163 

1 ( )( ) dr tu t
dtα

=  ,       
1 ( )( ) dR tU t

dtα
= .                                                 (2.14) 164 

Let us note that formula (2.12) is identical to the so-called Riemann wave or a simple 165 

wave in a nonlinear non-dispersive medium (in particular, in nonlinear acoustics), if we consider 166 

the parameter 1/ gα to be a ‘coordinate’; see, for example, (Rudenko and Soluyan, 1977, 167 

Gurbatov et al, 1991, 2011). Moreover, formula (2.13) describes the integral over the Riemann 168 

wave. This analogy proves to be very useful when transferring the already known results in the 169 

wave nonlinear theory to the run-up characteristics described by the formulas (2.11) and (2.12) 170 

ODE. 171 

Detailed calculations of the long wave run-up on the coast were carried out repeatedly; 172 

see, for example (Carrier and Greenspan, 1958; Synolakis, 1987; Pelinovsky and Mazova, 1992; 173 

Tinti and Toniti, 2005; Madsen and Fuhrman, 2008; Madsen and Schaffer, 2010; Antuano and 174 

Brocchini, 2008, 2010; Didenkulova, 2009; Dobrokhotov et al, 2015; Aydin and Kanoglu, 2017). 175 

It is worth mentioning that the nonlinear time transformation in (2.11) and (2.12) leads to 176 

the shoreline oscillation distortion in comparison with the linear theory predictions. So, for large 177 



7 
 

amplitudes the wave shape becomes multi-valued (broken). The first moment of the wave 178 

breaking on the shoreline (the gradient catastrophe) is easily found from (2.12) by calculating the 179 

first derivative of the moving shoreline velocity 180 

/1

dUdu dt
dU dtdt

gα

=
−

,                                                                  (2.15) 181 

from it follows the wave breaking condition  182 

2 2

2

max( / ) max( / ) 1dU dt d R dtBr
g gα α

= = = ,                                                  (2.16) 183 

where we have introduced the breaking parameter Br to designate the left-hand side in (2.16), 184 

which characterizes the nonlinear wave properties on the shoreline. The condition (2.16) can be 185 

given a physical meaning, that the breaking occurs when the last sea particle acceleration (186 

1 2 2/d R dtα − ) exceeds the component of gravity acceleration along the shoreline ( gα ). As 187 

shown in (Didenkulova, 2009), condition (2.16) coincides with (2.10) for Jacobian. It is 188 

important to emphasize that the breaking condition is unequivocally found through solving the 189 

linear problem of the wave run-up on the shore. It is determined only by the particle acceleration 190 

value on the shoreline; but it is not determined separately by the shoreline displacement or its 191 

velocity. 192 

 A similar Carrier – Greenspan transformation is obtained for waves in narrow inclined 193 

channels, fjords, and bays (Rybkin et al, 2013; Pedersen, 2016; Anderson et al, 2017; Raz et al, 194 

2018); only the wave equation (2.4) and relations (2.5) - (2.8) change. However, the moving 195 

shoreline dynamics is still described by equations (2.11) and (2.12), valid for arbitrary cross-196 

section channels. 197 

 198 

3. The moving shoreline dynamics at an initially monochromatic wave run-up 199 

The monochromatic wave run-up on a flat slope by using the Carrier – Greenspan 200 

transformation has been studied in a number of papers cited above. Let us reproduce here the 201 

main features of the moving shoreline dynamics necessary for us to draw the statistical 202 

description further on. Mathematically, the monochromatic wave run-up is described by an 203 

elementary solution of equation (2.4) 204 

0( , ) ( ) cos( )QJ l lσ λ σ λΦ = ,                                                (3.1) 205 
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where Q and l are arbitrary constants, and J0 is the zero-order Bessel function. Far from the 206 

shoreline (σ →∞ ) the Bessel function decreases, so the wave function Φ becomes small. In this 207 

case, in (2.5) - (2.8) one can use approximate expressions (the ‘linear’ Carrier – Greenspan 208 

transformation) 209 

1
2g

η
λ

∂Φ
=

∂
,       

σσ ∂
Φ∂

=
1u ,     

2

4
x

g
σ
α

= − ,      t
g
λ
α

= ,                           (3.2) 210 

and using the asymptotic representation for the Bessel function, reduce (3.1) to the expression 211 

for the water surface displacement 212 

( , ) ( ) sin sin
4 4( ) ( )

dx dxx t a x t t
gh x gh x

π πη ω ω
        = − − + + +                     

∫ ∫  ,                    (3.3) 213 

where 214 

( )
2 ( )
Q la x
g gh xπ

=  ,               glω α=  .                                     (3.4) 215 

The wave field away from the shoreline is a superposition of two waves of the same frequency 216 

and a variable amplitude a (x), which together form a standing wave. It immediately shows that 217 

the wave amplitude varies with depth according to the Green law (h-1/4), as it should be far from 218 

the coast. The same asymptotic result follows from the exact solution of linear shallow water 219 

equations. 220 

2

0 0
4 | |( , ) sin( )xx t R J t

g
ωη ω
α

 
=   

 
,                                                 (3.5) 221 

where R0 is the wave amplitude at the fixed shoreline (x = 0), identified with the maximum run-222 

up height in the linear theory. By connecting (3.4) and (3.5), we obtain the formula for the run-223 

up height obtained through the incident wave amplitude far from the coast 224 

 0 2 ( )
( )
R h x

a x g
ω
α

=  .                                                               (3.6) 225 

Formula (3.6) allows working further with the run-up height R0 instead of the wave amplitude far 226 

from the coast a(x), considering it to be given. This run-up height will be considered as the given 227 

value. Having determined Q and l through the incident wave parameters, we can calculate the 228 

run-up characteristics in the nonlinear theory, considering the limit of formula (3.1) with 0σ →  229 

and using the Carrier – Greenspan transformation formulas (2.5) - (2.8). The moving shoreline 230 

movement is determined by the parametric dependence 231 
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0
2 cosRt

g g g
ωλ ωλ

α α α
 

= −  
 

 ,                                              (3.7) 232 

2 2
20

0 2sin cos
2

Rr R
g g g

ωωλ ωλ
α α α
   

= −   
   

 .                                     (3.8) 233 

It is convenient to introduce dimensionless variables 234 

0

rz
R

=  ,    tτ ω= .      
g

ωλϕ
α

= ,                                         (3.9) 235 

and calculate the breaking parameter 236 

2
0

2

RBr
g

ω
α

= ,                                                     (3.10) 237 

so the formulas (3.7) and (3.8) are finally rewritten in the form 238 

( )cosBrτ ϕ ϕ= −  ,                                                            (3.11) 239 

( ) ( )2sin cos
2

Brz ϕ ϕ= − ,                                                      (3.12) 240 

what is another expression record for the formulas (2.11) and (2.12), if we take 241 

0( ) sin( )R t R tω= ,                                                         (3.13) 242 

arising from (3.5) with x = 0. Let us note that the function ( , )z Brτ is set in a parametric form, 243 

but after expressing ϕ  from (3.12) and substituting it in (3.11), we can obtain the explicit 244 

expression for the function ( ; )z Brτ . In the paper, we will use both explicit and implicit 245 

expressions of the functions describing the moving shoreline dynamics. 246 

 Fig. 2 shows the moving shoreline dynamics at different wave height values in terms of 247 

the breaking parameter up to the limiting value (Br = 1). In the limit of small parameter values, 248 

the oscillations are close to sinusoidal (it is almost a linear problem). Then, with the increasing 249 

amplitude, the moving shoreline velocity gets a steep leading front, while at the moving 250 

shoreline vertical displacement a peculiar feature is formed at the wave run-down stage. As it is 251 

known, at the time of the Riemann wave breaking, a peculiarity like 1/3~u t  is formed 252 

(Pelinovsky et al, 2013). Then, in the integral over the Riemann wave (at the moving shoreline 253 

displacement), this peculiar feature will have the form 4/3~z t . Thus, with the wave amplitude 254 

increase, the first breaking occurs at sea (at the run-down stage), and not on the coast. Then the 255 

breaking zone expands and moves on to the coast, but at this stage, analytical solutions based on 256 

the Carrier-Greenspan transformation become inapplicable. 257 
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 258 

 259 

 260 

 261 

Fig. 2. The moving shoreline dynamics (top) and its velocity (below) in the case of the incident 262 
monochromatic wave for different breaking parameter values Br (0 – the dotted line, 0.5 – the 263 
dashed line and 1 – the solid line). 264 

 265 

4. Probabilistic characteristics of the initially sine wave run-up with a random phase 266 

Let us now consider the probabilistic characteristics of the initially sine wave run-up with a 267 

random phase on the shore, assuming it to be uniformly distributed over the interval [0 2 ]π− . 268 

These characteristics are found by using the geometric probability methods (Kendall and Stuart, 269 

1969), so that for ergodic processes the probability density of the moving shoreline vertical 270 
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displacement coincides with the relative location time of the function ( )z τ in the interval ( z , 271 

z dz+ )  272 

1

1( )
2

N
n

n

dW z
dz
τ

π =

= ∑ ,                                                               (4.1) 273 

where the summation takes place at all intersection levels ( )z τ . For harmonic disturbance, it is 274 

enough to restrict ourselves to considering the field on a half-period. So, for the moving 275 

shoreline vertical displacement in dimensionless variables, the derivative /d dzτ of the 276 

parametric curve (3.11) and (3.12) can be calculated through the ratio of the derivatives /d dτ ϕ277 

and /dz dϕ  278 

sin 1 1 sin 1( ; )
cos cos sin cosz

BrW z Br
Br

ϕ
π ϕ ϕ ϕ π ϕ

+
= =

+
 ,                                     (4.2) 279 

we indicated here that the probability density depends on Br as a parameter. Finding cosϕ  from 280 

the formula (3.12) for the vertical displacement, we obtain the final expression for the 281 

probability density 282 

sin

2
2

2

1 1( ; )
11 1 1 2

zW z Br
zBr Br

Br
π

=
 − − + + 

 ,                                      (4.3) 283 

which in the linear problem for a purely sinusoidal perturbation transforms into a well-known 284 

expression for the probability distribution of a harmonic signal with a random phase (Kendall 285 

and Stuart, 1969) 286 

sin

2

1 1( ;0)
1

zW z
zπ

=
−

.                                                                            (4.4) 287 

The probability distribution (4.3) for the three values of the parameter Br is shown in 288 

Fig.3. As you can see, the probability density becomes an asymmetric function with a greater 289 

probability in the area of positive values corresponding to the wave run-up on the coast than at 290 

the run-down stage. At the ends of the interval, the probability density is unlimited throughout 291 

the entire range change of Br, since the shoreline oscillations near the maximum have a zero 292 

derivative (the moving shoreline velocity in it becomes zero). 293 

The obtained probability density function can be used to calculate the statistical moments 294 

of the shoreline oscillations. Technically, however, it is easier to use the parametric equations 295 

(3.11) and (3.12) and calculate all the moments. 296 
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2 2

0 0

1 1( ) ( )
2 2

z n n
n

dM z d z d
d

π π ττ τ ϕ ϕ
π π ϕ

= =∫ ∫  .                                         (4.5) 297 

So, the first moment 298 

1 4
z BrM =                                                                  (4.6) 299 

determines the average water level rise on the coast when the waves approach the shore (set-up 300 

phenomenon), which is commonly observed (Dean and Walton, 2009). 301 

 302 

 303 

Fig. 3. The probability density of the moving shoreline vertical displacement for the initially sine 304 
wave run-up at Br = 0 (the dotted line), 0.5 (the dashed line) and 1 (the solid line). 305 

 306 

The second moment determines the dispersion 307 

2
2 2 2

1
0

1 1 3( )
2 2 32

zz M d Br
π

δ τ
π

= − = −∫ ,                                                   (4.7) 308 

characterizing the fluctuation range relative to the average value; it relatively weakly decreases 309 

with the growth of the parameter Br (less than 10% for non-breaking waves). 310 

Finally, the total flooding time and its drainage time are easy to find from (3.11) and 311 

(3.12), finding from the equation (3.12) mentioned last, the value φ, at which z = 0, and 312 

substituting the obtained values in (3.11) 313 

1.0 0.5 0.0 0.5 1.0
r

0.5

1.0

1.5

2.0
W
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2
21 12arcsin 2 2 1 1flood

BrT Br
Br

π
 + −

= − + + − 
  

, 314 

                       (4.9) 315 

2
21 12arcsin 2 2 1 1dry

BrT Br
Br

π
 + −

= + − + − 
  

, 316 

Both times change almost linearly with the increasing wave amplitude (parameter Br), see Fig. 4. 317 

 318 

Fig. 4. The total flooding time (the solid curve) and the drainage time (the dashed curve) 319 
depending on the parameter Br. 320 

 321 

It is worth noting that, in contrast to the vertical displacement, the moving shoreline 322 

velocity distribution [ 0( / )u R vω α= ], as it is easy to show, does not depend on the breaking 323 

parameter and probability density function is determined by the simple formula 324 

sin

2

1 1( )
1

vW v
vπ

=
−

.                                                       (4.10) 325 

The distribution independence on the degree of nonlinearity is well known for the Riemann 326 

waves and is explained by the compensation of compression and rare faction areas (Gurbatov et 327 

al, 1991, 2011). 328 

 329 

5. Probabilistic characteristics of a narrow-band wave run-up with a random amplitude 330 
and phase 331 

Let us consider the run-up of a quasi-harmonic wave with a random amplitude and phase 332 

on a flat slope. To do this, we will first rewrite formulas (4.3) and (4.10) for them to include the 333 

0.2 0.4 0.6 0.8 1.0
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wave amplitude. It is convenient to enter the maximum height Rmax as the amplitude scales at 334 

which the breaking parameter turns into 1 335 

2
max

2 1RBr
g

ω
α

= = ,                                                                (5.1) 336 

and to use dimensionless displacement (y=r/Rmax). Then the dimensionless amplitude is 337 

0

max

1RA
R

= ≤  ,                                                                  (5.2) 338 

and formula (4.3) is converted to the form (-A <y <A) 339 

sin

2
2 2

1 1( ; )
1 1 2

yW y A
A y A

π
=

 − − + + 

 .                                             (5.3) 340 

Assuming now that the wave amplitude A is a random variable, we average (5.3) by using 341 

the amplitude distribution density WA(A) 342 

sin( ) ( ; ) W ( )y A
y

W y W y A A dA
∞

= ∫ .                                      (5.4)  343 

Formula (5.4) has an important practical meaning: by the measured distribution of the wave 344 

amplitudes far from the coast (re-computed on run-up amplitudes in the linear theory), it is 345 

possible to obtain the distribution of the wave run-up characteristics on the coast. The only 346 

requirement imposed on the wave ensemble is that it should not contain breaking waves, which 347 

should be somehow removed from the record. It immediately follows that the Gaussian field 348 

containing large amplitude tails does not fit this requirement, and it should be modified. 349 

Therefore, we assume the amplitude distribution to be finite for A<Amax = 1. The narrow-band 350 

random wave field contains sine waves with almost constant frequency and random amplitude 351 

and phase. It means that if the wave amplitude is below the “breaking amplitude” Amax = 1, the 352 

breaking will not be implemented in any way, and the random wave run-up will take place 353 

without any breaking. Further calculations depend on the specific type of the amplitude 354 

distribution. 355 

Let us construct the finite amplitude distribution at which the linear field distribution is 356 

close to the Gaussian form and modify the Rayleigh distribution for wave heights in the area 357 

A<Amax =1 (Fig. 5) 358 

2

max 2 2 2 2
max

1 4( ; , ) exp 2
1 exp( 2 / )A s

s s s

A AW A A A
A A A A

 
= − − −  

, maxA A≤ ,               (5.5) 359 
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to make the density function distribution normalized. Here, As is the so-called significant wave 360 

run-up height (an averaged value of 1/3 highest amplitudes). We would like to note here, that it 361 

follows from (2.11) and (2.12) that the extremal run-up characteristics in the nonlinear theory 362 

remain the same as in the linear theory. This means that the significant wave run-up height 363 

remains the same as in the nonlinear theory. 364 

 365 

 366 

Fig. 5. The modified Rayleigh distribution (5.5) for different distribution values As/Amax; 367 
0.5 – the dotted curve, 0.7 – the dashed line, 1 – the solid line. 368 

 369 

When As<<Amax = 1, distribution (5.5) transforms into the Rayleigh one, which is 370 

characteristic of the Gaussian initial distribution of a narrow-band random signal. With the help 371 

of (5.5), it becomes possible to calculate the distribution function of shoreline oscillations for the 372 

various wave energy. So, with the incident wave small amplitude (As<<1), distribution (5.3) can 373 

be replaced by a simpler expression (4.4) and the answer is the run-up distribution characteristics 374 

in the linear theory: 375 

max 2

max 2 2 2 22 2
max

4(y; , ) exp 2
[1 exp( 2 / )]

A

lin s
s s sy

A AW A A dA
A A A AA yπ

 
= − − − −  

∫ .              (5.6) 376 

Besides, if As<<Amax = 1, the integral (5.6) is reduced to the Gaussian distribution 377 

2

2

2( ; ) exp 2
2lin s

ss

yW y A
AAπ

 
= − 

 
,                                               (5.7) 378 

where, 2s yA σ= , and 2
yσ is the moving shoreline oscillation dispersion. 379 

Fig. 6 shows the distribution of the run-up characteristics for different ratios of As/Amax 380 

values by formulas (5.4) and (5.5); they are shown in solid lines. Here the dashed lines show the 381 

0.2 0.4 0.6 0.8 1.0
A

0.5

1.0

1.5

2.0

2.5
W rel



16 
 

calculation results according to the linear theory (5.6). As one can see, with As/Amax = 0.5 (the top 382 

panel) and 0.7 (the middle panel), the linear distribution is close to the Gaussian one. 383 

Nonlinearity leads to the asymmetry of the distribution function density in the direction of 384 

positive values corresponding to the wave characteristics on the coast. If the undisturbed wave 385 

ensemble is made of relatively large waves (As/Amax = 1), their distribution is far from the 386 

Gaussian, both in the linear and in the nonlinear approximation. 387 

 388 
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 390 

Fig. 6. The probabilistic density function of the vertical shoreline displacement in the 391 
nonlinear theory (solid lines) and in the linear theory (dashed lines) for different As/Amax: 0.5 392 
values: (the upper panel), 0.7 (the middle panel) and 1 (the lower panel). 393 

 394 

The finite (A<Amax) power-law distribution concentrated mainly near the maximum 395 

amplitude Amax can be considered as another example of undisturbed large-amplitude waves. 396 

5

6
max

6( )A
AW A

A
= .                                                                (5.8) 397 

Fig. 7 shows the graphs of the probabilistic density function of the moving shoreline 398 

displacement calculated by using formulas (5.4) and (4.4) in the linear theory and (5.3) in the 399 

nonlinear theory. It is also seen in the figure that nonlinear effects lead to a strong asymmetry 400 

towards the positive values, that is, to the wave amplification at the run-up up stage than at the 401 

run-down stage. 402 
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 403 

Fig. 7. Probabilistic density function of the shoreline vertical displacement in the linear 404 
theory (the dashed line) and non-linear theory (the solid line) 405 

 406 

6. The wave breaking effect on probabilistic run-up characteristics 407 

The theory described above is valid for non-breaking waves. The mentioned wave ensemble, 408 

strictly speaking, cannot be the Gaussian one, as it always has unlimited tails in the probability 409 

density function. Let us briefly discuss what the formulas obtained for non-breaking waves lead 410 

to in the presence of broken waves. Fig. 8 shows the parametric curve (3.11) - (3.12) when Br = 411 

2. Formally, the curve became multi-valued in the range of negative values corresponding to the 412 

maximum water outflow from the coast. We have already indicated that the probability density 413 

function of the moving shoreline vertical displacement ( )W ξ coincides with the relative 414 

residence time ( )tξ  of the function in the interval (ξ , dξ ξ+ ), which is calculated by formula 415 

(3.1). In contrast to negative cut-off bias values, in the area of positive values there is no 416 

ambiguity, and, therefore, all the calculations can be carried out by using the formulas described 417 

above. An example of such calculation with Br = 2 and r> -0.5 (in the zone of one-value 418 

solution) is shown in Fig. 9. 419 
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 421 

Fig. 8. The parametric curve (3.11) - (3.12) with Br = 2 (the solid curve) in comparison with the 422 
linear problem with Br = 0 (the dashed line) 423 

 424 

Fig. 9. The probability density function at Br = 2, constructed by formulas (5.3), (5.4) and (5.5) 425 
(the solid line) in comparison with the linear distribution (5.6) is the dotted line. As/Amax = 0.7. 426 

 427 

However, these results should be treated with caution. If Br > 1 the Jacobian breaks down 428 

seawards of the shoreline. This may affect the probabilistic distribution on the positive side. This 429 

important issue requires going beyond the theory discussed in this article. 430 

 431 

 432 

 433 

7. Discussion and conclusion 434 

In this paper, we study the run-up of irregular narrow-band waves with a random 435 

envelope (swell, storm surges, and tsunami) on a beach of a constant slope. The work was 436 

carried out in the framework of the nonlinear wave theory with one important assumption: there 437 

should be no breaking waves in the wave ensemble. This restriction is quite strict for field and 438 

laboratory conditions, but nevertheless, there are cases when it is performed. For instance, 75% 439 

of historical tsunami waves climbed on the coast with no breaking (Mazova et al, 1983). In the 440 

experiments performed in the Warwick University tank and in the Large Tank in Hannover 441 

(Denissenko et al, 2011, 2013), this condition was fulfilled.  442 
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The wave nonlinearity at the run-up stage leads to increased deviations from Gaussianity, as 443 

might be expected from general considerations. Nevertheless, it is shown that the probability 444 

distribution of the moving shoreline velocity does not depend on the wave nonlinearity and can 445 

be calculated within the linear theory framework. The same conclusion can be drawn about the 446 

distribution of the extreme run-up characteristics (the moving shoreline displacement and speed), 447 

which, in fact, has already been discussed earlier (Didenkulova et al, 2008). However, the 448 

probabilistic density function of the moving shoreline displacement differs from that predicted 449 

one in the linear theory framework. It is described by formula (5.4) by using either the 450 

theoretical or the measured distribution of the incident wave amplitudes. The paper gives the 451 

calculation results of the probable run-up characteristics with a modified Rayleigh distribution 452 

for wave amplitudes. 453 

The wave breaking leads to the inapplicability of the wave run-up theory based on the 454 

Carrier-Greenspan transformation. If, nevertheless, the share of large amplitude waves is small, 455 

the breaking occurs mainly at the run-down stage, having little effect on the long-wave coast 456 

flooding characteristics (see Section 6). This question, however, requires a special study based 457 

on direct numerical solutions of the shallow-water equations or their nonlinear-dispersive 458 

generalizations. 459 

Finally, it is worth noting that we considered the narrow-band wave run-up with a 460 

random amplitude and phase; as for the random waves with a wide spectrum – it is the problem 461 

of further consideration. 462 

The obtained probability density functions of the vertical displacement of the moving 463 

shoreline are useful to compute statistical characteristics of flooding time and force on coasts and 464 

constructions, which are necessity for the mitigation of natural marine hazards. 465 

Now in practice various generalizations of shallow-water equations are used to analyze 466 

tsunami runup including wave dispersion, see for instance (Lovholt et al, 2012). Wave dispersion 467 

as a quadratic dissipative term that prevents us from getting analytical results, so their influence 468 

on statistical characteristics should be investigated in future. 469 
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