
1 
 

Establishment and characteristics analysis of a crop-
drought vulnerability curve: a case study of European 
winter wheat 

Yanshen Wu1, Hao Guo1, Anyu Zhang1, Jing’ai Wang1,2 
1School of Geography, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, 5 
China; 
2Key Laboratory of Environmental Change and Natural Disaster, MOE, Beijing Normal University, 
Beijing 100875, China 

Correspondence to: Jing’ai Wang (jwang@bnu.edu.cn) 

Abstract. As an essential component of drought risk, crop-drought vulnerability refers to the degree of 10 

the adverse response of a crop to a drought event. Different drought intensities and environments can 

cause significant differences in crop yield losses. Therefore, quantifying the drought vulnerability and 

then identifying its spatial distribution pattern will contribute to understanding vulnerability and the 

development of risk-reduction strategies. We select the European winter wheat growing area as the study 

area and 0.5°×0.5° grids as the basic assessment units. Winter wheat drought vulnerability curves are 15 

established based on the Erosion-Productivity Impact Calculator model simulation. Their loss 

transmutation and loss extent characteristics are quantitatively analysed by the key points and cumulative 

loss rate, respectively, and are then synthetically identified VIA K-means clustering. The results show 

the following. (1) The regional yield loss rate starts to rapidly increase from 0.13 when the drought index 

reaches 0.18 and then converts to a relatively stable stage with the value of 0.74 when the drought index 20 

reaches 0.66. (2) The stage transitions of the vulnerability curve lag in the southern mountain area, 

indicating a stronger tolerance to drought in the system, in contrast to the Pod Plain. (3) According to the 

loss characteristics during the initial, development and attenuation stages, the vulnerability curves can be 

divided into five clusters, namely, Low-Low-Low, Low-Low-Medium, Medium-Medium-Medium, 

High-High-High and Low-Medium-High loss types, corresponding to the spatial distribution from low 25 

latitude to high latitude and from mountain to plain. It is recommended to improve the integrated 

mitigation capability in the Medium-Medium-Medium and High-High-High loss type areas and to 

develop the ability to mitigate droughts in the 0.3-0.6 intensity range, as non-engineering measures for 

the droughts greater than 0.6 intensity in Low-Medium-High loss type areas. 

1 Introduction 30 

Drought is a widespread natural disaster causing the largest agricultural losses in the world. More than 

one-half of the earth is susceptible to drought, including nearly all of the major agricultural areas (Kogan, 

1997). Under the context of climate change and globalisation, drought will pose a threat to future food 

security. How to assess and manage agricultural drought risks has become a focus of the world (Reid et 

al., 2006;Li et al., 2009;Mishra and Singh, 2010). As vulnerability is a key factor in determining risk, 35 

drought vulnerability assessment is an important foundation for drought risk assessment and management 
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(Xingming et al., 2015;Knutson C, 1998).  

Crop drought vulnerability assessment focuses on crops, particularly the biophysical factors closely 

related to crop growth processes (J et al., 2017;González Tánago et al., 2015). Affected by factors such 

as the natural environment and crop variety, there are regional differences in crop drought vulnerability 

(IPCC, 2012, 2014). Therefore, based on a quantitative assessment, analysing and mapping their 5 

characteristics can help identify the vulnerability distribution and local mitigation-oriented drought 

management (Wilhelmi and Wilhite, 2002).  

The commonly used crop drought vulnerability assessment methods mainly include the vulnerability 

index and vulnerability curve methods (Yuan-yuan et al., 2014;Jayanthi et al., 2014). The vulnerability 

index method identifies vulnerability indicators, determines their weights and then calculates a 10 

comprehensive value, visualising through thematic maps (Jain et al., 2014;Huang et al., 2012;Pandey et 

al., 2010). The indicators commonly include climate, topography, watershed location, soil, and water 

resource accessibility (González Tánago et al., 2015). This method can express the relative vulnerability 

level and the relative contribution of indicators in different regions, providing decision makers with 

potential means to reduce disasters (Wilhelmi and Wilhite, 2002). However, the exploration of the 15 

disaster-causing mechanism is not sufficiently comprehensive, and it is impossible to quantitatively 

predict losses. In addition, indicator selection and weight determination during the evaluation process 

have a certain subjectivity and uncertainty (Jianjun et al., 2010;Simelton et al., 2009). 

The vulnerability curve method aims to quantify the crop yield response to different drought intensities. 

Rainfall anomalies, Standardized Precipitation Index, water stress and other indicators are often used to 20 

characterise drought intensity, yield or yield loss rate to characterise crop yield response (Yao and Jing'ai, 

2012;Todisco et al., 2012;Yuan-yuan et al., 2014). The data are mainly from observation, statistics or 

crop model simulation. Crop model simulations are based on the crop growth and development 

mechanism, using mathematical physics methods and computer technology to quantitatively describe the 

crop growth and yield formation process in specific environments, which can solve the problem of 25 

insufficient samples or limited precision in observational or statistical data to some extent (Palosuo et al., 

2011;Challinor et al., 2009). This method can provide ideas for the study of disaster-causing mechanisms 

and help to improve risk prediction (Papathoma-Köhle, 2016). However, because the curve is infinite 

dimensional data (James and Sugar, 2003), it is difficult to directly express the vulnerability and analyse 

the regional differences. Therefore, exploring the methods of key information mining and spatial analysis 30 

for the crop drought vulnerability curve is beneficial to improve the existing research deficiencies, which 

can not only quantify regional drought vulnerability based on the disaster-causing mechanism but also 

convey vulnerability information to decision makers from a risk visualisation perspective. 

As wheat is one of the three major grain crops in the world, we select the main wheat producing area, the 

European winter wheat growing area, as the research area, using the 0.5°× 0.5° grid as the basic 35 

assessment unit. The vulnerability curve of winter wheat drought was established based on Erosion-

Productivity Impact Calculator model (EPIC) simulation. Then, the loss extent and loss variation 

characteristics of the vulnerability curve are extracted to analyse the vulnerability characteristics to 

drought in various areas. By clustering the curve shapes, areas with similar vulnerability characteristics 

are identified for exploring their environment and providing scientific guidance regarding the 40 
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development of regional drought mitigation strategies.  

2 Data and methods 

2.1 Basic concept 

Crop drought vulnerability curve is a function of the relationship between drought intensity and loss. In 

theory, this function is monotonously increasing and non-linear, that is, the loss gradually increases with 5 

the increase in drought intensity (the first derivative of the curve is always greater than 0), and the growth 

rate of loss is phased. Restricted by ecosystem resistance, drought usually begins during the invisible 

accumulation period, then enters a rapid development period, and, finally, a stable end period (Chen et 

al., 2015). Therefore, the drought vulnerability curve should be S-shaped and can be divided into three 

stages as follows (Wang et al., 2013;Kucharavy and De Guio, 2011): (1) initial stage, corresponding to 10 

low drought intensity and slight loss, during which there is slow loss growth acceleration; (2) 

development stage, corresponding to moderate drought intensity and a rapid increase in loss, during 

which the loss growth rate continues to increase to reach a peak and then quickly falls; and (3) attenuation 

stage, corresponding to high drought intensity and stable high loss, during which the loss growth rate 

slowly decays (Fig. 1).  15 

In different environments, the drought vulnerability curve presents different shapes (Yue et al., 2015;Guo 

et al., 2016;Wang et al., 2013) and the core lies in the difference in loss extent and loss variation (Wang 

et al., 2013;Hu et al., 2012;Gottschalk and Dunn, 2005). Therefore, the key points of the curve—the 

turning point of the stages (the third order is 0) and the turning point of the increasing speed (the second 

order is 0) are used to describe the loss variation characteristics, the cumulative loss to the loss extent 20 

characteristics, and the morphological classification to the integrated description. 

 

Figure 1: The relationship between drought intensity and (a) loss and (b) loss growth rate as shown by the S-
shape drought vulnerability curve. 

2.2 Database construction 25 

The study area is the European wheat harvested area provided by the Center for Sustainability and the 

Global Environment, University of Wisconsin-Madison (Monfreda et al., 2008), and further screened by 

the wheat planting habit distribution map of CIMMYT (Lantican et al., 2005) for winter wheat 

distribution. Distributed in the range of 10° W-50° E and 42° N-59° N, this area is one of the world's 

major wheat-producing areas. 30 

The EPIC model is used to simulate the growth process of winter wheat, which can simulate the crop 
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growth process and crop yield in a variety of climatic, environmental and management conditions with 

high precision, being widely used in many countries and regions (Zhi-qiang et al., 2008;Williams et al., 

1984). It’s inputs include topography, soil, meteorological, and field management data ( 

Table 1). The soil data in this study are provided by the International Soil Reference and Information 

Centre (Batjes, 2012), including soil type distribution raster maps and soil physical and chemical 5 

properties lookup tables (soil bulk density, soil water content, grit content, clay content, organic carbon 

content, pH, etc.). The daily meteorological data are derived from HadGEM2-ES model data (Hempel et 

al., 2013) from 2000 to 2004, which are based on meteorological observations including solar radiation, 

maximum temperature, minimum temperature, average temperature, precipitation, relative humidity and 

average wind speed. All the original input data are processed onto 0.5° × 0.5° grids, which are the basic 10 

units for the yield simulation and vulnerability assessment.  

Table 1: Basic database 

Category Name Source 
Spatial 

resolution 

Distribution range 

data 

Harvested area of wheat 

Sustainability and the Global Environment, 

University of Wisconsin-Madison 

(Monfreda et al., 2008) 

5’×5′ 

Distribution of wheat 

planting habit 
CIMMYT (Lantican et al., 2005) Site unit 

Environmental 

data 

DEM United States Geological Survey (1996)  0.5’×0.5′ 

Slope 

Food and Agriculture Organization of the 

United Nations / International Institute for 

Applied Systems Analysis (2000) 

5’×5′ 

Soil 
International Soil Reference and 

Information Centre (Batjes, 2012) 
5’×5′ 

Historical daily 

meteorological data 

(2000~2004) 

German Federal Ministry of Education and 

Research: the ISIMIP Fast Track project 

(Hempel et al., 2013) 

0.5°×0.5° 

Management data 

Growth period of winter 

wheat 

University of Wisconsin-Madison 

Sustainability and the Global Environment 

(Sacks et al., 2010) 

0.5°×0.5° 

Irrigation 
OKI Laboratory, University of Tokyo  

(Oki, 2002) 
0.5°×0.5° 

Fertiliser 
Land Use and the Global Environment 

(Potter et al., 2010) 
0.5°×0.5° 

Statistical yield 

data 

Statistical yield for 

calibration (2000) 
Food and Agriculture Organization of the 

United Nations (http://faostat.fao.org) 

National

（regional）

unit 

Statistical yield for 

verification 

(2001~2004) 

 

The statistical yield data are not required for EPIC model input but for the localisation of crop parameters 

https://doi.org/10.5194/nhess-2019-175
Preprint. Discussion started: 12 August 2019
c© Author(s) 2019. CC BY 4.0 License.



5 
 

in the model and accuracy verification of simulated yields. They are derived from the Food and 

Agriculture Organization (FAO) and are country-based statistics. We use statistical yields of 2000 for 

model localisation, and yields of 2001-2004 for accuracy verification, to match with the years of 

meteorological data.  

2.3 Research method  5 

This study consists of the following three parts. (1) Calibrate the EPIC model; localise critical crop 

parameters in the model to improve the simulation accuracy at different locations. (2) Construct the 

winter wheat drought vulnerability curves based on the calibrated EPIC model simulation. For each grid 

unit, define series water supply scenario data and input them into the calibrated EPIC model to generate 

water stress and yield scenario values, thereby calculating the disaster intensity and yield loss rate, and 10 

construct a vulnerability curve. (3) Analyse the characteristics of the vulnerability curves. Extract their 

loss extent and loss variation characteristics and cluster morphologically similar curves, and then perform 

spatial analysis (Fig. 2).  

Calibration 
data

Irrigation 
scenario

Vulnerability curve

Topography, soil,
precipitation and 

temperature during 
growing period

Calibrated
EPIC
model

EPIC
model

Loss variation 
characteristics

Management
data

Environmental
data Calibration

Loss extent 
characteristics

Water 
stress

Yield

K-means
clustering

Intergrated 
characteristics

ClassificationSequence 
of Lr and 
Lr’ under 
fixed Di

Correlation analysis 

Drought 
index 
(Di)

Loss rate
(Lr)

Key point P1

Key point P2

Key point  P3

Cumulative 
loss rate

(CLr)

 

Figure 2: Basic research framework. 15 

2.3.1 Calibration and accuracy verification of the EPIC model 

The calibration method refers to the research of Guo et al. (2016). Four key parameters of WA (biomass-

energy ratio), HI (harvest index), DLMA (maximum potential leaf area index), and DLAI (fraction of the 

growing season when the leaf area decreases) are selected for calibration (Barros et al., 2005;Wang and 

Li, 2010;Wang et al., 2011) .  20 

In view of the model calibration cost, we consider that the grid units in the same country are homogeneous 

in the winter wheat variety, that is, they have the same set of crop parameters, which is acceptable for 

European countries with not large national land areas. Therefore, for all grid units within each country, 

the default value of the crop parameters in the EPIC model is taken as the initial value, and the actual 

geographical environmental, field management and meteorological data of 2000 are input to obtain the 25 

simulated yields of 2000. Then, the root mean square error (RMSE) between them and the statistical 

yields of 2000 are calculated. Next, we adjust the four key parameters on these grid units for another 

round of yield simulation and RMSE calculation. The smaller of the two RMSE values determines the 

following parameters adjustment direction. The parameters adjustment, yield simulation and RMSE 

calculation will continue in this manner until the last RMSE is less than the threshold or the number of 30 

simulations exceeds the threshold, then the adjustment work is completed.  
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The goal of EPIC model calibration is to make the simulation yield as near as possible to the statistical 

yield, which is also the criterion for the model accuracy. Thus, to evaluate model calibration results, we 

generate the simulated yields for 2001-2004 based on the calibrated EPIC model and calculate the 

national average simulated yields to compare to the statistical yields. 

2.3.2 Vulnerability curve construction based on the calibrated EPIC model 5 

(1) Generation of water stress and yields under different irrigation scenarios 

After parameter localisation, the EPIC model can be used to simulate the winter wheat yields under 

different drought scenarios, providing samples of water stress (WS) and yields for the construction of 

vulnerability curves to drought.  

To eliminate the impact of other factors on yields, we maintain the meteorological data, growth period 10 

and fertiliser addition rate constant and control the water supply condition by setting 20 irrigation 

scenarios for each grid evaluation unit, in which the irrigation amount uniformly increases from 0 to the 

optimum (the maximum irrigation amount without water stress). The optimal value is determined by pre-

testing. Consequently, we obtain the outputs of 20 groups of WS and yield. 

(2) Calculation of drought index and yield loss rate index 15 

WS is an index in the EPIC model that reflects the relationship between water supply and crop water 

demand. The larger the value is, the more serious the water shortage will be. We normalise it to obtain 

the drought index (Di) as follows (Eq. (1), (2)), which can reflect both water stress intensity and stress 

duration: 

𝐷𝑖௜ =
ுூ೔

୫ୟ୶(ுூ)
 , (1) 

𝐻𝐼௜ = ∑ (𝑊𝑆௞)௡
ௗୀଵ  , (2) 

where Dii is the drought index of a grid unit under the irrigation scenario i, ranging from 0-1; HIi is the 20 

cumulative value of water stress during the growth period under this scenario; max(HI) is the maximum 

value of HIi under all irrigation scenarios; WSk is the water stress value on day k of the growth period; 

and n is the number of days affected by water stress during the growth period. 

The yield loss rate (Lr) is used to express the response of the yield to drought effects, calculated following 

Eq. (3): 25 

𝐿𝑟௜ =
୫ୟ୶(௬)ି௬೔

୫ୟ୶(௬)
 , (3) 

where Lri is the yield loss rate of a grid unit under irrigation scenario i, yi is the yield under this scenario 

and max(y) is the maximum yield under the optimal irrigation scenario. 

(3) Fitting of drought vulnerability curves 

The aforementioned Di - Lr samples were fitted by a logistical curve to obtain the vulnerability curve 

on each grid unit as follows (Eq. (4)): 30 

Lr =
ୟ

ଵାୠ×௘೎×ವ೔ + 𝑑 , (4) 

where a, b, c, and d are constant parameters. 

2.3.3 Feature extraction and spatial analysis of vulnerability curves 

(1) Identification of key points 
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According to the analysis in Section 2.1, taking the derivative of Eq. (4), and setting the second and third 

derivatives equal to 0, the coordinates of the key points can be obtained to characterise the phase change 

of the vulnerability curve (Table 2). 

Table 2: Key point coordinates of the vulnerability curve 

 
The starting point of rapid 

loss growth (P1) 

The inflection point of rapid loss 

growth (P2) 

The end point of rapid loss growth 

(P3) 

Di −
୪୬൫ଶି√ଷ൯௕

௖
  −

୪୬ ௕

௖
  −

୪୬൫ଶା√ଷ൯௕

௖
  

Lr ൫ଷି√ଷ൯௔

଺
+ 𝑑  

௔

ଶ
+ 𝑑  

൫ଷା√ଷ൯௔

଺
+ 𝑑  

(2) Calculation of cumulative loss rate  5 

The cumulative loss rate (CLr) is obtained by the integral of Equation 4 on the Di interval of [0,1] for 

describing the overall vulnerability. All CLr values are divided into five levels by natural breakpoint 

method: extremely low, low, moderate, high, and extremely high. 

(3) Clustering of vulnerability curves 

To identify the morphological characteristics of the vulnerability curves, the curves are divided into some 10 

categories by clustering. The first step is to filter the infinite dimensional curve data to a finite set of 

representative parameters (James and Sugar, 2003). A set of Lr and Lr' under the fixed Di value is selected 

to preserve both the loss extent and variation characteristics (Di=0.2, 0.4, 0.6, and 0.8, when Di=0 or 1, 

there is little difference in the value of Lr and Lr’ between the curves). The 8 elements are separately 

normalised following Eq. (5) for the second step of clustering. We use the K-means clustering method to 15 

compare the distance or dissimilarity between the curves (Jacques and Preda, 2014). After clustering, the 

further category vulnerability curves are fitted by the Di-Lr samples of the corresponding grid 

vulnerability curves. 

𝑁(𝐿𝑟஽௜ୀ௫)௧ =
(௅௥ವ೔సೣ)೟

ୗୈ(௅௥ವ೔సೣ)
 , (5) 

where (Lrୈ୧ୀ୶)୲ is the value of Lr (Lr’) when Di=x for the vulnerability curve t, and x=0.2, 0.4, 0.6, 

and 0.8; SD(Lrୈ୧ୀ୶) is the standard deviation of Lr (Lr’) when Di=x for all vulnerability curves; and 20 

N(Lrୈ୧ୀ୶)୲ is the normalised value. 

3 Results and analysis 

3.1 Verification of EPIC model simulation results 

From the simulation results of the country (region) winter wheat yield from 2001 to 2004, the simulated 

yields are slightly lower than the statistical yields. However, there is a high degree of consistency between 25 

the two (Fig. 3). The regression equation has an R2 between 0.89 and 0.93 and passes the test with a 

confidence of 0.01, indicating that the EPIC model works well in various regions and during various 

years. 
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Figure 3: Regression relationship between statistical winter wheat yield and simulated yield based on country 
units during (a) 2001; (b) 2002; (c) 2003; and (d) 2004. 

3.2 European winter wheat drought vulnerability curves and characteristics analysis 

3.2.1 Winter wheat drought vulnerability curves 5 

Figure 4a shows the winter wheat drought vulnerability curves of the 2010 grid assessment unit in Europe. 

Their R2 are greater than 0.94, indicating a high overall goodness of fit. They are quite different in 

morphology and can be classified into several types via curve clustering (Appendix A). 

The regional starting point, inflection point and end point of the rapid loss growth is corresponding to a 

Di of 0.27, 0.47 and 0.68 and a Lr of 0.17, 0.43 and 0.75 (Fig. 4b), respectively. For most grids, the Di 10 

at three key points is mainly distributed between 0.15-0.55, 0.35-0.7 and 0.4-0.8 and the Lr between 0.1-

0.2, 0.4-0.5 and 0.7-0.8, respectively, with a relatively insignificant difference. Therefore, the Di of key 

points can be used to compare the difference in the stage transitions of the vulnerability curve. The larger 

the Di, the later the qualitative change of Lr, and the greater the tolerance to drought disturbance. 
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Figure 4: Distribution of (a) regional and grid vulnerability curves and (b) their key points. The regional 
vulnerability curve is fitted by all drought index -loss rate sample data in the region. 

3.2.2 Spatial distribution of characteristic value 

In terms of spatial distribution, the Di at key points to the south are higher than that to the north (Fig. 5). 5 

In the southern areas, the Di at the starting points, inflection points and end points, respectively, reach 

0.4-0.5, 0.5-0.7 and greater than 0.7. The stage transitions of Lr are lagging, and the tolerance to drought 

disturbance is higher. In the north-central areas, the Di are respectively concentrated at less than 0.2, 0.3-

0.5 and 0.5-0.7, respectively, the stages of Lr change earlier and the tolerance to drought disturbance is 

weaker. In the northeast, the Di at the start and end points is within the range of 0.2-0.4 and 0.4-0.6, 10 

respectively, indicating that the Lr has drastically changed during short development stages, when the 

areas are particularly susceptive to drought. 

The CLr representing the total vulnerability shows an opposite distribution of low in the south and high 

in the north. Though both the north-central areas and the northeast areas have extremely high CLr values, 

the loss rate stages in the two areas are different. The CLr integrates the characteristics of the key points, 15 

but shows information loss in the characteristics of the loss rate transitions. 
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Figure 5: Spatial distributions of drought index (Di) at the (a) starting points, (b) inflection points and (c) end 
points, and (d) spatial distribution of level of the cumulative loss rate (CLr) of vulnerability curves. 

3.3 Categories of winter wheat drought vulnerability curves  

Based on the characteristics of loss extent and variation, the winter wheat vulnerability curves to drought 5 

in Europe can be divided into five types for a relatively uniform distribution, such that the results are not 

over-concentrated or over-classified (Appendix B). Comparing to the regional loss characteristics during 

the initial, development and attenuation stages, these types of vulnerability curves are defined as Low-

Low-Low (L-L-L), Low-Low-Medium (L-L-M), Medium-Medium-Medium (M-M-M), High-High-

High (H-H-H) and Low-Medium-High (L-M-H) loss-type vulnerability curves (Fig. 6). 10 

The Lr of the L-L-L loss-type vulnerability curve is lower than the regional level under the same Di, and 

the category CLr is only 0.33, which is the lowest value of the five category vulnerability curves 

(Appendix C). This type of vulnerability curve is mainly distributed in mountain areas such as the Alps 

and the Dinara and Caucasus mountains, accounting for 10.0 % of the winter wheat planting area in 

Europe. 15 

The L-L-M loss-type vulnerability curves have a relatively low loss rate and are susceptible to drought 

within the range of 0.4-0.7. When the Di reaches approximately 0.4, the loss rates begin to rapidly 

increase; when the Di values are greater than 0.6-0.7, the loss rates are near the regional level. The 

category CLr is 0.42. It is mainly found in the Danube river basins, including hilly areas and plains, 

accounting for 20.4 % of the winter wheat planting area in Europe. 20 

The M-M-M loss-type vulnerability curves are near the regional vulnerability curve with a category CLr 
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of 0.50, and mainly occur in the Western European Plains, the Pod Plains, Donets Ridge and surrounding 

highlands and lowlands. They have the widest distribution accounting for 33.9 % of the winter wheat 

planting area in Europe. 

The Lr of the H-H-H loss-type vulnerability curve is higher than the regional level, and the category CLr 

reaches up to 0.57. This loss type is concentrated in patches on the Pod Plain, Polesi and in lowland areas 5 

along the Black Sea and Eastern Great Britain, at approximately the same latitude zone as that of the M-

M-M loss-type, and it accounts for 23.4 % of the winter wheat planting area in Europe.  

The L-M-H loss-type vulnerability curves show high susceptibility to drought in the range of 0.3-0.6, 

where the loss rate rapidly increases and reaches the regional level with the increase in Di. When Di 

values are greater than 0.6 and continue to increase, the loss rates maintain relatively stable high values; 10 

when Di values are less than 0.3, the yield losses are slight. The category CLr is 0.53. These curves are 

mainly distributed on the east European plain, accounting for 12.2 % of the winter wheat planting area 

in Europe. 

On the whole, the spatial distributions of the five types of vulnerability curves are obviously latitudinal 

and consistent with the geographical pattern of Europe, where plains and mountains mostly extend from 15 

the east to the west in the mainland and extend from north to south in the British Isles. From south to 

north, and from mountain to plain, the vulnerability curves transition from concave to convex, and the 

CLrs show an upward trend, indicating increasing vulnerability. The heat difference at different latitudes 

and the water and heat difference at different altitudes may be the root cause of the type distribution.  

 20 
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Figure 6: Five types of European winter wheat vulnerability curves to drought: (a) Low-Low-Low, (b) Low-
Low-Medium, (c) Medium-Medium-Medium, (d) High-High-High and (e) Low-Medium-High loss type 
vulnerability curves, and (f) their spatial distributions. 

4 Discussion 

4.1 Relationship between vulnerability characteristics and environmental variables 5 

To further explore the relationship between the vulnerability characteristics parameter distribution and 

environmental variables, Spearman correlation analysis is performed between the vulnerability 

characteristics parameters (Di1, Di2, Di3, and CLr) and environmental variables (elevation, slope, soil 

sand content, precipitation during growth period, average temperature during growth period, and relative 

humidity during growth period). The results all passed the significance test at the level of 0.01 (Table 3). 10 

The Di1 value is positively correlated with relative humidity and elevation, and the correlation coefficient 

is 0.41 and 0.40, respectively. That is, in areas with high relative humidity or altitude, only when the 

drought develops to a rather serious extent does it begin to have a significant impact on winter wheat 

yield. The L-L-L, L-L-M and L-M-H loss-type areas with high Di1 values have the characteristics of high 

elevation or high relative humidity (Appendix D).  15 

The four characteristic parameters are highly correlated with elevation, slope, temperature and soil sand 

content and the environmental variables with latitudinal zonality. This verifies the inference of the 

distribution law of characteristic parameters previously mentioned. The Di1, Di2 and Di3 values 

characterising drought tolerance are positively correlated with elevation, slope and temperature, and 

negatively correlated with soil sandy content, while the CLr value characterising the comprehensive 20 

vulnerability is the opposite. The H-H-H loss-type areas with high vulnerability have typical 

characteristics of low elevation, slope, temperature and high soil sandy content. 

From the perspective of an influencing mechanism, when the soil sandy content is high, the soil drainage 

ability is high, and the crop is more vulnerable to drought, exhibiting low Di1, Di2, and Di3 values and a 

high CLr value in the vulnerability curve (Reid et al., 2006;Papathoma-Köhle, 2016). The cause-effect 25 

relationship between the temperature and the characteristic parameters cannot be defined, although the 

spatial distributions of the two have a certain correlation. Because temperature stress is removed from 

the drought scenarios, the temperature variable has no direct influence on the results of yield loss rate to 

drought and the characteristic parameters. It may have an indirect influence by affecting the crop 

parameters of winter wheat during the previous calibration process. Similarly, elevation does not directly 30 

affect the values of the characteristic parameters. Simulation experiments based on the EPIC model found 

that changing the input of elevation has little effect on the simulated yield (Thomson et al., 2002). Thus, 

the elevation may indirectly affect yield and drought vulnerability by acting on other environmental 

variables such as temperature, precipitation and soil. The aforementioned can provide ideas for the study 

of the impact of the environment on vulnerability. 35 

Table 3: Correlation between vulnerability characteristic parameters and environmental variables

（P≤0.01） 

 Di1 Dim Di2 CLr 

Elevation  0.40 0.43 0.37 -0.44 
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Slope 0.31 0.44 0.45 -0.48 

Soil sand content -0.10 -0.35 -0.44 0.38 

Average temperature during growth period 0.32 0.34 0.30 -0.38 

Precipitation during growth period -0.09 0.19 0.33 -0.26 

Relative humidity during growth period 0.41 0.23 0.09 -0.27 

4.2 Application of vulnerability curve 

By analysing the characteristic parameters distribution, it is found that the winter wheat vulnerability in 

Europe is lower to the south, particularly in the surrounding areas of the Mediterranean, which is 

consistent with Mäkinen's findings based on experimental data on wheat varieties (Mäkinen et al., 2018). 

In addition to reflecting the spatial differences in vulnerability, the characteristic information can 5 

accurately express the response feature to drought in various regions and more effectively guide drought 

risk management. In southern Europe (mainly the L-L-L and L-L-M loss-type vulnerability curves), there 

is a strong tolerance to mild drought with a Di1 greater than 0.4, and we should pay more attention to 

moderate and severe drought reduction. In most of the central region (mainly M-M-M and H-H-H loss-

type vulnerability curves), there is a low tolerance to varying degrees to drought, and we should pay 10 

attention to the construction of fortification capacity. In the north-eastern region (the L-M-H vulnerability 

curve), there is susceptibility to droughts with a Di ranging from 0.3 to 0.6, which is a critical stage for 

drought mitigation. In addition, in regions with H-H-H and L-M-H loss-type vulnerability curves, the Lr 

relatively slowly increases when the Di is greater than 0.6. At this time, the cost of engineering mitigation 

means is high and non-engineering means can be considered. 15 

The extent to which climate change affects crop yield depends not only on the temporal and spatial 

patterns of climate change but also on species characteristics (Trnka et al., 2014;Semenov et al., 2014). 

The vulnerability curve based on the crop growth process simulation helps to understand the risk from a 

vulnerability perspective. From the perspective of climate change, precipitation will decrease and 

evaporation will increase in southern Europe in the future, and drought risk is more likely to increase 20 

compared to that of other regions of Europe (IPCC, 2012;Olesen et al., 2011). However, it was found 

that under the RCP4.5 scenario and using the HadGEM2-ES and MPI-ESM-MR model data for 

simulation, the drought effects increase in the southern region will be less than or near those of the central 

and north-eastern regions (Webber et al., 2018), which may be related to a lower vulnerability. 

5 Conclusion 25 

Quantitative crop-drought vulnerability assessment and analysis are an important basis for drought risk 

assessment and drought risk management. Taking European winter wheat as an example, we generate 

series data of water stress and scenario yield based on EPIC model simulation and then construct S-type 

drought vulnerability curves. Through characteristic parameters analysis and clustering analysis of 

vulnerability curves, the loss extent and loss variation characteristics are mapped to identify the regional 30 

vulnerability pattern and drought response characteristics. The results provide quantitative ideas for the 

study of the impact of the environment on vulnerability and provide scientific guidance for regional 

drought- mitigation resource allocation and strategy development. 
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The winter wheat drought vulnerability in Europe is higher in the south and lower in the north with a 

latitudinal zonality, which may be related to environmental variables such as elevation, slope, average 

temperature during growth period and soil sand content. In the southern region, the values of the key 

points’ drought index are high, and the cumulative loss rate is low, indicating a low vulnerability, while 

the northern region shows the opposite. 5 

The vulnerability curves can be divided into five loss types: Low-Low-Low (L-L-L), Low-Low-Medium 

(L-L-M), Medium-Medium-Medium (M-M-M), High-High-High (H-H-H) and Low-Medium-High (L-

M-H). It is recommended to improve the ability to address drought with a greater than 0.4 intensity in 

the L-L-L or L-L-M loss-type areas and a drought range from 0.3-0.6 intensity in the L-M-H loss-type 

areas, as well as improve the ability for drought prevention and mitigation in the M-M-M or H-H-H loss-10 

type areas. 

Data availability 

The sources of raw data can be found in section 2.2. The code is written for MATLAB, which is available 

upon request by contacting Yanshen Wu (wuyanshen1012@mail.bnu.edu.cn). 

Appendices 15 

Appendix A: Examples of European winter wheat grid vulnerability curves to drought 

  

France (grid centre: 1.75° E, 49.25° N) United Kingdom (grid centre: 2.25° W, 53.75° N) 

  

Germany (grid centre: 9.75° E, 54.25° N) Ukraine (grid centre: 33.25°E, 47.75°N) 
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Appendix B: Clustering effect of different cluster quantities  

Quantity 

of cluster 

Quantity of vulnerability curves in each cluster Within-cluster 

sum of squared 

errors (SSE) 
Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

4 

Cluster 

5 

Cluster 

6 

Cluster 

7 

3 235 1082 707 - - - - 3711.9 

4 257 641 891 235 - - - 3340.2 

5 475 409 692 245 203 - - 2794.3 

6 3 474 688 410 245 204 - 2538.0 

7 3 156 711 157 195 256 546 2519.9 

 

Appendix C: Classificatory key points and cumulative loss rates calculated by category vulnerability curves 

Category vulnerability curve Di1 Lr1 Di2 Lr2 Di3 Lr3 CLr 

L-L-L 0.44 0.19 0.67 0.48 0.90 0.76 0.33 

L-L-M 0.40 0.19 0.55 0.46 0.69 0.73 0.42 

M-M-M 0.28 0.18 0.47 0.47 0.65 0.75 0.50 

H-H-H 0.19 0.15 0.38 0.45 0.57 0.76 0.57 

L-M-H 0.33 0.19 0.44 0.47 0.56 0.75 0.53 

Europe 0.27 0.17 0.47 0.46 0.68 0.75 0.48 

 

Appendix D: Descriptive statistics of environmental variables in various loss-type regions 5 

 L-L-L L-L-M M-M-M H-H-H L-M-H Regional 

Elevation (m) 

Median 677 315 165 140 160 181 

Interquartile 

Range 
636 468 154 125 103 241 

Slope (°) 

Median 23 12 6 3 3 6 

Interquartile 

Range 
25 17 9 3 3 9 

Soil sand 

content (%) 

Median 43 43 43 52 52 43 

Interquartile 

Range 
4 10 22 9 0 12 

Precipitation 

during growth 

period (mm) 

Median 960 646 599 599 638 629 

Interquartile 

Range 
306 198 128 131 53 158 

Average 

temperature 

during growth 

period (℃) 

Median 7.1 7.8 7.5 6.9 3.9 7.1 

Interquartile 

Range 
3.5 3.6 2.1 1.9 1.1 2.9 

Relative 

humidity during 

growth period 

(%) 

Median 79.9 80.6 77.5 77.1 80.2 78.8 

Interquartile 

Range 
2.7 3 3.9 3.1 2.1 3.9 
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