
1 
 

Establishment and characteristics analysis of a crop-
drought vulnerability curve: a case study of European 
winter wheat 

Yanshen Wu1,2, Hao Guo3, Anyu Zhang1,2, Jing’ai Wang1,2,4 
1School of Geography, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, 5 
China; 
2Key Laboratory of Environmental Change and Natural Disaster, MOE, Beijing Normal University, 
Beijing 100875, China 
3College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China 
4College of Biologic and Geographic Sciences, Qinghai Normal University, Xining 810008, China 10 

Correspondence to: Jing’ai Wang (jwang@bnu.edu.cn) 

Abstract. As an essential component of drought risk, crop-drought vulnerability refers to the degree of 

the adverse response of a crop to a drought event. Different drought intensities and environments can 

cause significant differences in crop yield losses. Therefore, quantifying drought vulnerability and then 

identifying its spatial characteristics will help understand vulnerability and develop risk-reduction 15 

strategies. We select the European winter wheat growing area as the study area and 0.5°×0.5° grids as 

the basic assessment units. Winter wheat drought vulnerability curves are established based on the 

Erosion-Productivity Impact Calculator model simulation. Their loss change and loss extent 

characteristics are quantitatively analysed by the key points and cumulative loss rate, respectively, and 

are then synthetically identified VIA K-means clustering. The results show the following. (1) The 20 

regional yield loss rate starts to rapidly increase from 0.13 when the drought index reaches 0.18 and then 

converts to a relatively stable stage with the value of 0.74 when the drought index reaches 0.66. (2) In 

contrast to the Pod Plain, the stage transitions of the vulnerability curve lags behind in the southern 

mountain area, indicating a stronger tolerance to drought. (3) According to the loss characteristics during 

the initial, development and attenuation stages, the vulnerability curves can be divided into five clusters, 25 

namely, Low-Low-Low, Low-Low-Medium, Medium-Medium-Medium, High-High-High and Low-

Medium-High loss types, corresponding to the spatial distribution from low latitude to high latitude and 

from mountain to plain. The paper provides ideas for the study of the impact of environment on 

vulnerability, and for the possible application of vulnerability curve in the context of climate change. 

1 Introduction 30 

Drought is a widespread natural disaster causing the largest agricultural losses in the world. More than 

one-half of the earth is susceptible to drought, including nearly all of the major agricultural areas (Kogan, 

1997). Under the context of climate change and globalization, drought will pose a threat to future food 

security. How to assess and manage agricultural drought risks has become a focus of the world (Reid et 

al., 2006;Li et al., 2009;Mishra and Singh, 2010). As vulnerability is a key factor in determining risk, 35 

drought vulnerability assessment is an important foundation for drought risk assessment and management 

(Knutson C, 1998;Zhang et al., 2015).  
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Crop drought vulnerability assessment focuses on crops, particularly the biophysical factors closely 

related to crop growth processes (Tánago et al., 2015; Wu et al., 2017), describing the damage to crops 

caused by different intensity hits. At present, crop drought vulnerability assessment methods mainly 

include the following three aspects. 

(1) Calculation of the comprehensive vulnerability index based on selected relevant indicators. Some of 5 

these studies encompass recognition of the factors influencing drought vulnerability, construction of 

vulnerability indicators from physiographic, climatic and hydrologic aspects, assignment of their weights 

and calculation of a comprehensive index (Wilhelmi and Wilhite, 2002;Shahid and Behrawan, 2008;Jain 

et al., 2014). For example, Pandey et al.(2010) identified seven influence indicators, such as 

watershed geography, soil types, water availability and so on, graded each of them and then added 10 

them up to obtain the drought vulnerability index of the Sonar basin in the Madhya Pradesh. Some 

of these studies are based on the components of vulnerability, construct sensitivity and exposure 

indicators, and combine them to form a vulnerability index (O’Brien et al., 2004;Antwi-Agyei et al., 

2012;Tánago et al., 2015). For example, Simelton et al. (2009) used the crop failure index to characterize 

sensitivity, the drought index to characterize exposure, and the ratio of the two to characterize crop 15 

drought vulnerability, and then discussed the correlation between drought vulnerability and socio-

economic characteristics in China. Although this method cannot predict the loss quantitatively and has 

certain subjectivity and uncertainty in index system construction and weights determination, affected by 

the difficulty of testing and verification, it is able to express the relative level of vulnerability between 

regions, providing potential ways to disaster mitigation for decision makers, and providing a strong 20 

reference for the establishment of quantitative vulnerability relationships (Wilhelmi and Wilhite, 

2002;Simelton et al., 2009;Wu et al., 2010).  

(2) Quantitative research on vulnerability based on historical statistics and meteorological observations. 

This method mainly uses meteorological observation data and historical statistical data to build a  

quantitative relationship between disaster intensity and historical disaster loss (Lobell and Burke, 25 

2008;Hlavinka et al., 2009;Rowhani et al., 2011). Fishman (2016) used Indian daily rainfall and statistical 

yield data from 1970 to 2003 to analyse the relationship between precipitation variability and major crop 

yields. Jayanthi et al. (2014) used satellite rainfall based-water requirement satisfaction index and 

historical yield loss rate as regression indicators to develop a maize drought vulnerability model in Kenya, 

Malawi and Mozambique. Xu et al. (2013) selected consecutive rainless days as the drought index, 30 

converted drought affected area into the drought-induced yield loss rate, and then established 

vulnerability curves of corn, wheat and rice in the monsoon region of east China based on the daily 

precipitation data and historical disaster data. Such a method explores how crop yield loss varies with 

disaster intensity, but is easily affected by the availability and quality of disaster loss data, therefore, 

having difficulties in high-resolution vulnerability assessment and spatial analysis. 35 

(3) Quantitative research on vulnerability curves based on field experiments and crop model simulations. 

This method generally conducts field experiments or crop growth model simulations by artificially 

setting up different disaster intensity scenarios, and then fitting cooperative vulnerability curves from the 

perspective of a crop disaster-causing mechanism. Pan et al. (2017) conducted field experiments by 

artificially controlling soil water content at the Huanghua experimental site in Hebei, China. Based on 40 
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the experimental data of maize growth under different drought intensity, the physical drought 

vulnerability curves of the five growth stages were constructed. Yin et al. (2014) used the Erosion-

Productivity Impact Calculator (EPIC) model to obtain drought index and yield loss rates, and 

constructed drought vulnerability curves for maize in 35 regions of the world. Kamali et al. (2018b) used 

the precipitation and EPIC-simulated maize yield data to describe the crop sensitivity and exposure 5 

indexes to drought, respectively, and linked the two indexes using a power curve fitted to describe the 

physical vulnerability of sub-Saharan African countries. This method provides a new research idea and 

perspectives for vulnerability quantitative assessment based on the crop growth mechanism. Additionally, 

the crop model can quantitatively predict the crop growth and yield formation process in a specific 

environment, with lower cost than the field experiments and fewer limitations in historical disaster 10 

statistical sample or spatial accuracy, which is conducive to high-precision quantitative research on crop 

vulnerability (Palosuo et al., 2011;Challinor et al., 2009). However, it is worth mentioning that as infinite 

dimensional data (James and Sugar, 2003), the vulnerability curve used in this method is difficult to 

perform spatial analysis directly like the vulnerability index, which leads to its main application in risk 

assessment field with insufficient vulnerability information mining. 15 

Actually, there are spatial differences in crop drought vulnerability affected by factors such as the natural 

environment and crop variety (IPCC, 2012, 2014). Analysing and mapping the spatial differences based 

on a quantitative assessment can better help identify the vulnerability distribution and local mitigation-

oriented drought management. Therefore, this paper aims to exploring the vulnerability curve feature 

extraction and spatial difference analysis method, which is beneficial to improve the quantitative degree 20 

of vulnerability spatial analysis. It can not only quantify regional drought vulnerability based on the 

disaster-causing mechanism but also convey vulnerability information to decision makers from a risk 

visualization perspective. 

As wheat is one of the three major grain crops in the world, we select the main wheat producing area, the 

European winter wheat growing area, as the research area, using the 0.5°× 0.5° grid as the basic 25 

assessment unit. The vulnerability curves of winter wheat drought are established based on EPIC 

simulation. Then, the loss extent and loss change characteristics of the vulnerability curve are extracted 

to analyse the vulnerability characteristics to drought in various areas. By clustering the curve shapes, 

areas with similar vulnerability characteristics are identified for exploring their environment and 

providing scientific guidance regarding the development of regional drought mitigation strategies.  30 

2 Data and methods 

2.1 Basic concept 

Crop drought vulnerability curve describes the functional relationship between drought intensity and loss. 

As drought intensifies, disaster losses begin to appear and gradually increase until the end of the disaster. 

That is regarded as an interactive process of energy accumulation and resisting effect (Chen et al., 35 

2015;Chen et al., 2017). Drought intensification brings about energy accumulation, which will be 

released when it reaches a certain level; meanwhile, resistance, such as system adjustment ability, always 

exists. In the initial stage, it appears as a slow development of drought due to insufficient energy storage 
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and the existence of resistance. And if the driving force is stopped or weakened, the energy accumulation 

basically ends; otherwise, energy will continue to accumulate, then break through the resistance and 

release, resulting in explosive development. Finally, the drought event gradually subsided with energy 

attenuation and resistance influence. 

Therefore, the drought vulnerability curve can be divided into three stages as follows (Kucharavy and 5 

De Guio, 2011;Wang et al., 2013): (1) initial stage, corresponding to low drought intensity and slight loss, 

during which there is slow loss growth acceleration; (2) development stage, corresponding to moderate 

drought intensity and a rapid increase in loss, during which the loss growth rate continues to increase to 

reach a peak and then quickly falls; and (3) attenuation stage, corresponding to high drought intensity 

and stable high loss, during which the loss growth rate slowly decays. These characteristics coincide well 10 

with the S-shaped curve (Fig. 1).  

In different environments, the drought vulnerability curve presents different S-shapes (Wang et al., 

2013;Yue et al., 2015;Guo et al., 2016), and the core lies in the differences in loss extent and loss change 

(Gottschalk and Dunn, 2005;Hu et al., 2012;Wang et al., 2013). Therefore, the key points of the 

vulnerability curve—the transition points of three stages (P1 and P3, where the third derivative of the 15 

vulnerability curve is equal to zero) and the turning point of the loss growth rate (P2, where the second 

derivative of the vulnerability curve equals zero) are used to describe the loss change characteristics, the 

cumulative loss to the loss extent characteristics, and the morphological classification to of the integrated 

description. 

 20 

Figure 1: The relationship between drought intensity and (a) loss and (b) loss growth rate as shown by the S-
shape drought vulnerability curve. P1, P2, P3 represent the starting point, inflection point and end point of 
the rapid loss growth, respectively. 

2.2 EPIC model and database construction 

The EPIC model, published by the United States in 1984 (Williams et al., 1984), is selected to simulate 25 

the growth process of winter wheat. It can simulate soil erosion and productivity for hundreds of years 

on a daily step under a variety of climatic, environmental and management conditions. It simulates all 

crops with one model framework based on crop’s physiological commonality and uses unique crop 

parameters for each crop. In the process of simulation, intercepted photosynthetic active radiation is 

converted into potential biomass, which is adjusted by five daily stress factors (water, nitrogen, 30 

phosphorus, temperature, and aeration) to predict actual biomass growth, where the water stress (WS) 

factor is computed as the ratio of soil water use over potential plant water use. Crop yields are estimated 

as the product of the actual above ground biomass and a harvest index (economic yield/above ground 
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biomass) (Williams et al., 1989).  

EPIC model has been successfully applied in yield simulation for different crops and water input 

conditions in many parts of the world (Roloff et al., 1998;Gassman et al., 2005). Williams et al. (1989) 

described the EPIC model simulation results of 6 crop species throughout the U.S. and in European and 

Asian countries and concluded that the average simulated yields were always within 7 % of the average 5 

measured yields. Bryant et al. (1992) used the EPIC model to duplicate 38 irrigation stress experiments 

in the Texas High Plains during 1975-1977 and found that simulated corn yields explained 83, 86, and 

72 % of the variance in 3-year measured yields separately. Ko et al. (2009) calibrated the EPIC model 

based on field studies in South Texas, and demonstrated that under full and deficient irrigation and rainfall 

conditions, EPIC-simulated yields of maize and cotton were in agreement with the measured yields 10 

according to a paired t-test.  

With good performance in water stress tests, the model is further widely used in crop drought research, 

including irrigation management, drought impact prediction and drought vulnerability assessment (Guo 

et al., 2020). By setting different irrigation times, irrigation amounts and irrigation frequency to observe 

the EPIC-simulated yields, the optimized irrigation scheduling can be obtained without carrying out long 15 

and expensive field experiments (Rinaldi, 2001); by inputting climate model data, the future yield loss 

due to drought in different climate change scenarios can be prediction (Webber et al., 2018;Leng and 

Hall, 2019); and by using multi-year precipitation or irrigation data, a series of grid yield loss data can 

be obtained for quantifying drought vulnerability (Wang et al., 2013;Kamali et al., 2018c). In short, by 

setting up drought scenarios, the EPIC model can efficiently provide fine yield loss data. Therefore, we 20 

choose it as the core tool for drought vulnerability assessment. 

The study area is the European wheat harvest area provided by the Center for Sustainability and the 

Global Environment, University of Wisconsin-Madison (Monfreda et al., 2008), and further screened by 

the wheat planting habit distribution map of CIMMYT (Lantican et al., 2005) for winter wheat 

distribution. Distributed in the range of 10° W-50° E and 42° N-59° N, this area is one of the world's 25 

major wheat-producing areas. 

Inputs to EPIC include topography, soil, meteorological, and field management data (Table 1). The soil 

data in this study are provided by the International Soil Reference and Information Centre (Batjes, 2012), 

including soil type distribution raster maps and soil physical and chemical property lookup tables (soil 

bulk density, soil water content, grit content, clay content, organic carbon content, pH, etc.). The daily 30 

meteorological data are derived from HadGEM2-ES model data (Hempel et al., 2013) from 1974 to 2004, 

which are based on meteorological observations including solar radiation, maximum temperature, 

minimum temperature, average temperature, precipitation, relative humidity and average wind speed. All 

the original input data are processed onto 0.5° × 0.5° grids, which are the basic units for the yield 

simulation and vulnerability assessment.  35 

The statistical yield data are not required for EPIC model input but for the localization of crop parameters 

in the model and validation of simulated yields. They are derived from the Food and Agriculture 

Organization (FAO) and are country-based statistics. We use statistical yields of 2000 for model 

localization, and yields of other years between 1974 and 2004 for validation.  

Outputs from the EPIC model include daily stress factors (water, nitrogen, phosphorus, temperature, and 40 
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aeration) and annual yield value. The WS and yield can be further processed into sample for the 

construction of vulnerability curves. 

Table 1: Basic database 

Category Name Source 
Spatial 

resolution 

Distribution range 

data 

Harvested area of wheat 

Sustainability and the Global Environment, 

University of Wisconsin-Madison 

 (Monfreda et al., 2008) 

5’×5′ 

Distribution of wheat 

planting habit 

CIMMYT 

 (Lantican et al., 2005) 
Site unit 

Administrative 

boundary 

Eurostat 

(https://ec.europa.eu/eurostat/web/gisco/ 

geodata/reference-data) 

1: 10 Million 

Environmental 

data 

DEM United States Geological Survey (1996)  0.5’×0.5′ 

Slope 

Food and Agriculture Organization of the 

United Nations/International Institute for 

Applied Systems Analysis 

(http://www.iiasa.ac.at/Research/LUC/GAEZ/

index.htm, 2000) 

5’×5′ 

Soil 
International Soil Reference and Information 

Centre (Batjes, 2012) 
5’×5′ 

Historical daily 

meteorological data 

(1974-2004) 

German Federal Ministry of Education and 

Research: the ISIMIP Fast Track project 

(Hempel et al., 2013) 

0.5°×0.5° 

Management data 

Growth period of winter 

wheat 

University of Wisconsin-Madison 

Sustainability and the Global Environment 

(Sacks et al., 2010) 

0.5°×0.5° 

Irrigation 

OKI Laboratory, University of Tokyo 

(http://hydro.iis.u-tokyo.ac.jp/GW/result/ 

global/annual/withdrwith/index.html, 2002) 

0.5°×0.5° 

Fertilizer 
Land Use and the Global Environment  

(Potter et al., 2010) 
0.5°×0.5° 

Statistical yield 

data 

Statistical yield for 

calibration (2000) Food and Agriculture Organization of the 

United Nations (http://faostat.fao.org) 

National

（regional）

unit 
Statistical yield for 

validation (1974-2004) 

 

2.3 Research method  5 

This study consists of the following three parts. (1) Calibration and validation of the EPIC model. Critical 

crop parameters in the model are localized to improve the simulation accuracy in different regions. Then 

the calibrated model performance is validated by comparing simulated and statistical yields. (2) 

Construction of winter wheat drought vulnerability curves based on the calibrated EPIC model simulation. 
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A set of WS and yields are simulated for each grid unit by setting series of irrigation scenarios, which 

are converted into drought index and yield loss rate for the construction of the vulnerability curve. (3) 

Vulnerability curve characteristics analysis. Key points and cumulative loss rate of vulnerability curves 

are calculated for the spatial analysis of loss change and loss extent characteristics, and the vulnerability 

curves are clustered for the integrated spatial analysis (Fig. 2).  5 

 

 

Figure 2: Basic research framework. First, we input relevant data into the EPIC model and perform model 
calibration. Next, we obtain a series of water stress and yield data based on the calibrated EPIC model by 
setting different irrigation scenarios, which are converted into drought index (Di) and yield loss rate (Lr) for 10 
the construction of vulnerability curves. Then, we extract three key points and calculate the cumulative loss 
rate of vulnerability curves for the spatial analysis of loss change and loss extent characteristics. Finally, we 
calculate the Lr and the growth rate of Lr (Lr’) under a set of fixed Di to transform the vulnerability curves 
into a finite data set for clustering, and the classification of vulnerability curves can be used for the integrated 
spatial analysis. 15 

2.3.1 Calibration and validation of the EPIC model 

The calibration method refers to the research of Guo et al. (2016). Four key parameters of WA (biomass-

energy ratio), HI (harvest index), DLMA (maximum potential leaf area index), and DLAI (fraction of the 

growing season when the leaf area decreases) are selected for calibration (Barros et al., 2005;Wang and 

Li, 2010;Wang et al., 2011). Considering the limitation of statistical yields on a grid scale, we localize 20 

the four key parameters at the country level based on the idea of partition calibration (Liu et al., 

2007;Balkovič et al., 2013;Kamali et al., 2018a). That is, each country has a unique set of crop parameters, 

and all the grids within one country are the same. The default values of the crop parameters in the EPIC 

model are taken as the initial value, and the geographical environmental, field management and 

meteorological data are entered to obtain simulated grid yields of 2000. We simply assign a FAO national 25 

statistical yield to the grids within a country. Then the root mean square error (RMSE) between the 

simulated and statistical grid yields for each country are calculated. We reiterate the yield simulations 

and RMSE calculations by incrementally adjusting the four key parameters to minimize RMSE. The 

calibration will be finished when the least RMSE is below the threshold or the number of reiterations is 

above the threshold.  30 

To validate the parameterization results, we generate the simulated grid yields of 1974-2004 based on 

the calibrated EPIC model, and aggregate to the nation level by averaging. For FAO national statistical 

yields of 1974-2004 with significant trends, linear de-trending transformations are applied to remove the 

impacts of technology progress (Xiong et al., 2014;Kamali et al., 2018a). Then we compare national 

simulated yields with the statistical yields across all European countries. 35 
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2.3.2 Vulnerability curve construction based on the calibrated EPIC model 

(1) Generation of WS and yields under different irrigation scenarios 

After parameter localization, the EPIC model can be used to simulate WS and the winter wheat yields 

under different drought scenarios, providing samples for the construction of vulnerability curves to 

drought.  5 

To focus on physical drought vulnerability and eliminate the impact of other stress factors on yields, we 

use meteorological data with suitable temperature and no precipitation, and control the water supply 

condition by setting 20 irrigation scenarios, in which the irrigation amount uniformly increases from 0 

to the optimum (the maximum irrigation amount without WS). The optimal value is determined by pre-

testing. Consequently, we obtain the outputs of 20 groups of WS and yield for each grid evaluation unit. 10 

(2) Calculation of the drought index and yield loss rate 

As an output factor of the EPIC model, WS reflects the relationship between daily water supply and crop 

water demand. WS ranges from 0-1; the larger the value, the more serious the water shortage will be. To 

characterize integrated drought intensity affecting yield, drought index (Di) is defined as relative 

cumulative water stress during the crop growth period, which can reflect both WS intensity and stress 15 

duration (Wang et al., 2013). The calculation is shown in Eq. (1) and Eq. (2): 

𝐷𝑖 =
ுூ

୫ୟ୶(ுூ)
 , (1) 

𝐻𝐼 = ∑ (𝑊𝑆)
ௗୀଵ  , (2) 

where 𝐷𝑖  is the drought index of a grid unit under the irrigation scenario 𝑖, ranging from 0-1; 𝐻𝐼  is 

the cumulative value of 𝑊𝑆 during the growth period under this scenario; max(𝐻𝐼) is the maximum 

value of 𝐻𝐼 under all irrigation scenarios; 𝑊𝑆 is the 𝑊𝑆 value on day k of the growth period; and 

n is the number of days affected by 𝑊𝑆 during the growth period. 20 

The yield loss rate (Lr) is used to express the response of the yield to drought effects, calculated following 

Eq. (3): 

𝐿𝑟 =
୫ୟ୶(௬)ି௬

୫ୟ୶(௬)
 , (3) 

where 𝐿𝑟   is the yield loss rate of a grid unit under irrigation scenario 𝑖 , 𝑦   is the yield under this 

scenario and max(𝑦) is the maximum yield under the optimal irrigation scenario. 

(3) Fitting of drought vulnerability curves 25 

The aforementioned Di-Lr samples are fitted by a logistical curve to obtain the grid vulnerability curve, 

as shown in Eq. (4): 

Lr =
ୟ

ଵାୠ××ವ + 𝑑 , (4) 

where a, b, c, and d are constant parameters. 

Then the coefficient of determination (R2) and RMSE are used to measure the imitative effect (Quiring 

and Papakryiakou, 2003). R2 represents the proportion of the total variance in the observed Di-Lr samples 30 

that can be explained by the fitting model. It ranges from 0 to l, where the higher values indicate better 

fitting accuracy. RMSE represents the average difference between the predicted values by the fitting 

model and the observed samples, and the higher values indicate worse fitting accuracy. 
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2.3.3 Feature extraction and spatial analysis of the vulnerability curves 

(1) Identification of key points 

According to the analysis in Section 2.1, taking the derivative of Eq. (4), and setting the second and third 

derivatives equal to 0, the coordinates of the key points can be obtained to characterize the phase change 

in the vulnerability curve (Table 2). 5 

Table 2: Key point coordinates of the vulnerability curve 

 
The starting point of rapid 

loss growth (P1) 

The inflection point of rapid loss 

growth (P2) 

The end point of rapid loss growth 

(P3) 

Di −
୪୬൫ଶି√ଷ൯


  −

୪୬ 


  −

୪୬൫ଶା√ଷ൯


  

Lr ൫ଷି√ଷ൯


+ 𝑑  



ଶ
+ 𝑑  

൫ଷା√ଷ൯


+ 𝑑  

(2) Calculation of the cumulative loss rate  

The cumulative loss rate (CLr) is obtained by the integral of Eq. (4) on the Di interval of [0,1] to describe 

the overall vulnerability. All CLr values are divided into five levels by the natural breakpoint method: 

extremely low (0.22-0.34), low (0.34-0.42), moderate (0.42-0.49), high (0.49-0.55), and extremely high 10 

(0.55-0.69). 

(3) Clustering of the vulnerability curves 

To identify the morphological characteristics of the vulnerability curves, the curves are divided into some 

categories by clustering. The first step is to filter the infinite dimensional curve data to a finite set of 

representative parameters (James and Sugar, 2003). A set of Lr and growth rate of Lr (Lr') under the fixed 15 

Di (0.2, 0.4, 0.6, and 0.8) are selected to preserve both the loss extent and change characteristics of a 

curve, where distinguishing the differences between the curves. The 8 elements are separately normalised 

following Eq. (5) for clustering.  

𝑁(𝐿𝑟ୀ௫)௧ =
(ವసೣ)

ୗୈ(ವసೣ)
 , (5) 

where (Lrୈ୧ୀ୶)୲ is the value of Lr (Lr’) when Di=x for the vulnerability curve t, and x=0.2, 0.4, 0.6, 

and 0.8; SD(Lrୈ୧ୀ୶) is the standard deviation of Lr (Lr’) when Di=x for all vulnerability curves; and 20 

N(Lrୈ୧ୀ୶)୲ is the normalised value. 

The second step is to choose an appropriate clustering tool. Generally, clustering algorithms can be 

divided into four categories, partitional clustering, hierarchical clustering, grid-based clustering and 

density-based clustering. Partitional clustering directly divides the data set into several sub-sets without 

intersection; hierarchical clustering creates a hierarchical decomposition of the data set to perform 25 

clustering, and it cannot be traced back after classifying; density-based clustering controls the growth of 

clusters through judging the relationship of data density (the number of instances in unite area) and 

threshold; grid-based clustering divides the object space into a limited number of cells to form a grid 

structure, and is often combined with other methods, especially density-based clustering methods (Sun 

et al., 2008;Han et al., 2012). 30 

K-means is a clustering algorithm which based on partition. It has the characteristics of faster calculation 

speed and good clustering effect, which has been widely used in clustering research (Sun et al., 2008;Wu 
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et al., 2011). This paper uses the basic K-means clustering method to the representative parameter set, 

and uses Euclidean distance to compare the similarity of vulnerability curves among grid cells (Jacques 

and Preda, 2014). The smaller the distance, the more similar of the vulnerability curves. The steps of the 

K-means clustering are: 

① Setting up the classification number K of the data set, and then randomly select K data points from 5 

the data set as initial centroid of the classification; 

② Sorting each data point into the class which are closest it; 

③ Calculating the new centroid of each class based on all data points in it; 

④ Repeating steps ② and ③ until the centroid of each class remains the same or reaches the limit of 

iterations. 10 

The selection of K value is the key of K-means clustering. The elbow method is a commonly used method 

for selecting K values, which is based on the sum of squares of errors (SSE) (Nainggolan et al., 

2019;Wang et al., 2019). The SSE is calculated as follows: 

𝑆𝑆𝐸 =  𝑆𝑆𝐸



ୀଵ

 (6) 

𝑆𝑆𝐸 = (𝑃, − 𝐶)
ଶ



ୀଵ

 (7) 

Where 𝑆𝑆𝐸  is the sum of squares of errors within the i-th class, 𝑛 is the number of data points in the 

i-th class, 𝐶 is the centroid of the i-th class, 𝑃, is the j-th sample point in the i-th class. 15 

The principle of the elbow method is as follow (Nainggolan et al., 2019;Wang et al., 2019). As the K 

value increases, the data set becomes finer, the data points are closer to the centroid, and the SSE will 

become smaller. The increase of the K value will reduce the SSE greatly and improve the clustering effect 

in the early stage; but when it reaches a certain value, the SSE will decline slowly and over-classification 

may occur. That is to say, the K value has an elbow relationship with the SSE, and the elbow point 20 

corresponds to optimal number of clusters. Considering that the elbow point may not be obvious, we 

have further counted the number of vulnerability curves in each cluster with different K values, so as to 

determine the optimal K value comprehensively. 

After clustering, the further category vulnerability curves are fitted by all the Di-Lr samples in 

corresponding cluster, for better describing the characteristics of each cluster. 25 

3 Results and analysis 

3.1 Validation of the EPIC model simulation results 

From the national comparison results from 1974 to 2004 (excluding calibration year of 2000), though the 

simulated yields are slightly higher than the statistical yields, there is high agreement between the two 

(Fig. 3). The regression equation has an R2 of 0.77 and passes the test with a confidence of 0.01, indicating 30 

a reliable performance of the calibrated EPIC model for yields simulation in various regions and various 

years. 
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Figure 3: Comparison of national winter wheat yield reported by FAO and simulated by calibrated EPIC 
during the period from 1974-2004 (excluding calibration year of 2000). 

3.2 European winter wheat drought vulnerability curves and characteristics analysis 

3.2.1 Winter wheat drought vulnerability curves 5 

Figure 5a shows the drought vulnerability curves of the 2010 grid assessment unit in Europe. On the grid 

scale, the R2 values of the vulnerability curve fitting are all above 0.94, and 97.5 % of them are above 

0.996 (Fig. 4a). Grids with R2 less than 0.999 are mainly distributed in Ukraine, Germany, Macedonia, 

Greece. The RMSE values are concentrated between 0-0.043, and the 94.5 % of them are less than 0.02 

(Fig. 4b). Grids with RMSE values greater than 0.15 are mainly belong to Ukraine. In general, the R2 of 10 

the regional vulnerability curve fitted by all the grid Di-Lr samples is 0.90 and the RMSE is 0.12, 

indicating a high overall goodness of fit.  

 

Figure 4: Goodness of fit of grid vulnerability curves, including R2 and RMSE measures. 

 15 

There are differences in the shape of vulnerability curves and in the coordinates of key points (Fig. 5b). 

The regional starting point, inflection point and end point of the rapid loss of growth correspond to Di 

values of 0.27, 0.47 and 0.68 and Lr values of 0.17, 0.43 and 0.75, respectively. For most grids, the Di 

values at the three key points are mainly distributed from 0.15-0.55, 0.35-0.7 and 0.4-0.8, while the Lr 

values have a relatively small distribution, from 0.1-0.2, 0.4-0.5 and 0.7-0.8. Therefore, the 20 

characteristics of stage transitions of grid vulnerability curves can be simplified by using the Di instead 
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of two coordinates at key points. The larger the Di is at key points, the more severe the drought must be 

to cause a similar loss rate; this is reflected in the lag in the stage transitions of vulnerability curve, 

indicating a greater tolerance to drought disturbance.  

 

 5 

Figure 5: Distribution of (a) regional and grid vulnerability curves and (b) their three key points. The regional 
vulnerability curve is fitted by all drought index-loss rate sample data in the region. 

3.2.2 Spatial distribution of the characteristic value 

In terms of spatial distribution, the Di values at key points in the south are higher than those in the north 

(Fig. 6). In the southern areas, the Di values at the starting, inflection and end points are concentrated in 10 

0.4-0.5, 0.5-0.7, and greater than 0.7, respectively, while in north-central areas, they are less than 0.2, 

0.3-0.5, and 0.5-0.7, respectively. Therefore, the stage transitions of the vulnerability curves in the 

southern areas lag behind, indicating a higher tolerance to drought disturbance. In the northeast, the Di 

values at the start and end points are within the range of 0.2-0.4 and 0.4-0.6, respectively, indicating that 

Lr changes drastically during a short development stage, during which these areas are particularly 15 

susceptible to drought. 

The CLr represents the overall vulnerability, which is contrary to the meaning of Di at key points, and 

naturally shows an opposite distribution of low in the south and high in the north. Though both the north-

central areas and the northeast areas have extremely high CLr values, stage transition characteristics in 

the two areas are different. The CLr integrates the characteristics of the key points but shows information 20 

loss in the characteristics of loss change. 
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Figure 6: Spatial distributions of drought index (Di) at the (a) starting points, (b) inflection points and (c) end 
points, and (d) spatial distribution of the level of the cumulative loss rate (CLr) of vulnerability curves. 

3.3 Categories of winter wheat drought vulnerability curves  

To comprehensively analyse the vulnerability types of regions, we convert the vulnerability curve into a 5 

representative parameter set of loss degree and loss change characteristics (Appendix A), and then 

perform K-means clustering. When determining the optimal number of classification (K value), it is 

found that when K=5, the line graph of SSE shows an inflection point (Fig.7); at this time, the number 

of instance in each cluster is relatively uniform, so as not to be over-concentration or over-classification 

(Table 3), indicating an optimal classification effect. Therefore, the grid drought vulnerability curves are 10 

divided into 5 categories. 

Compared to the regional loss characteristics at the initial, development and attenuation stages, these 

types of vulnerability curves are defined as Low-Low-Low (L-L-L), Low-Low-Medium (L-L-M), 

Medium-Medium-Medium (M-M-M), High-High-High (H-H-H) and Low-Medium-High (L-M-H) loss-

type vulnerability curves (Fig. 8). Five category vulnerability curves are fitted based on the Di-Lr samples 15 

of related vulnerability curves for a comprehensive characterization. 
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Figure 7: Sum of squared errors (SSE) corresponding to different clustering numbers (K). 

 

Table 3: Clustering effect of different cluster quantities.   

Quantity 

of cluster 

(K) 

Quantity of vulnerability curves in each cluster 

Cluster 

1 

Cluster 

2 

Cluster 

3 

Cluster 

4 

Cluster 

5 

Cluster 

6 

Cluster 

7 

2 739 1271 - - - - - 

3 232 1076 702 - - - - 

4 254 637 886 233 - - - 

5 472 407 686 243 202 - - 

6 3 471 683 407 243 203 - 

7 3 155 706 156 193 254 543 

 5 

The Lr values of the L-L-L loss-type vulnerability curves are lower than the regional level under the 

same Di, and the category CLr is only 0.33 (calculated by the category vulnerability curve), which is the 

lowest value of the five categories (Appendix B). These vulnerability curves are mainly distributed in 

mountain areas such as the Alps and the Dinara and Caucasus mountains, accounting for 10.0 % of the 

winter wheat planting area in Europe. 10 

The L-L-M loss-type vulnerability curves have a relatively low loss rate and are susceptible to drought 

within the range of 0.4-0.7. When the Di values reach approximately 0.4, the loss rates begin to rapidly 

increase; when the Di values are greater than 0.6-0.7, the loss rates are near the regional level. The 

category CLr is 0.42. It is mainly found in the Danube river basins, including hilly areas and plains, 

accounting for 20.3 % of the winter wheat planting area in Europe. 15 

The M-M-M loss-type vulnerability curves are near the regional vulnerability curve with a category CLr 

of 0.50, and mainly occur in the Western European Plains, the Pod Plains, Donets Ridge and surrounding 

highlands and lowlands. They have the widest distribution accounting for 34.1 % of the winter wheat 

planting area in Europe. 

The Lr values of the H-H-H loss-type vulnerability curves are higher than the regional level, and the 20 

category CLr reaches 0.57. These vulnerability curves are concentrated in patches on the Pod Plain, 

Polesi and in lowland areas along the Black Sea and Eastern Great Britain, at approximately the same 

latitude zone as that of the M-M-M loss-type, accounting for 23.5 % of the winter wheat planting area in 
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Europe.  

The L-M-H loss-type vulnerability curves show high susceptibility to drought in the range of 0.3-0.6, 

where the Lr values rapidly increase and reach the regional level with the increase in Di. When Di values 

are greater than 0.6 and continue to increase, the Lr values maintain relatively stable and high level; when 

Di values are less than 0.3, the Lr values are slight. The category CLr is 0.53. These curves are mainly 5 

distributed on the east European plain, accounting for 12.1 % of the winter wheat planting area in Europe.  

Overall, the spatial distributions of the five types of vulnerability curves are obviously latitudinal and 

consistent with the geographical pattern of Europe, where plains and mountains mostly extend from the 

east to the west in the mainland and extend from north to south in the British Isles. From south to north, 

and from mountain to plain, the vulnerability curves transition from concave to convex, and the CLr 10 

values show an upward trend, indicating increasing vulnerability. The heat difference at different latitudes 

and the water and heat difference at different altitudes may be the root cause of the type distribution.  

 
Figure 8: Five types of European winter wheat vulnerability curves to drought: (a) L-L-L, (b) L-L-M, (c) M-
M-M, (d) H-H-H and (e) L-M-H loss-type vulnerability curves, and (f) their spatial distributions.  15 

4 Discussion 

4.1 Relationship between vulnerability characteristics and environmental variables 

To further explore the relationship between the vulnerability characteristics distribution and 

environmental variables, Spearman correlation analysis is performed between the vulnerability 
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characteristics parameters (Di1, Di2, Di3, and CLr) and environmental variables (elevation, slope, soil 

sand content, precipitation during growth period, average temperature during growth period, and relative 

humidity during growth period). The results all passed the significance test at the level of 0.01 (Table 4). 

The Di1 value is positively correlated with relative humidity and elevation, and the correlation 

coefficients are 0.41 and 0.40, respectively. That is, in areas with high relative humidity or altitude, only 5 

when the drought develops to a rather serious extent does it begin to have a significant impact on winter 

wheat yield. Additionally, the L-L-L, L-L-M and L-M-H loss-type areas with high Di1 values have the 

characteristics of high elevation or high relative humidity (Appendix C).  

The four characteristic parameters are highly correlated with the environmental variables with latitudinal 

zonality, such as elevation, slope, temperature and soil sand content, which verifies the inference of the 10 

distribution of the characteristic parameters above. The Di1, Di2 and Di3 values characterizing drought 

tolerance are positively correlated with elevation, slope and temperature, and negatively correlated with 

soil sandy content, while the CLr value characterizing the comprehensive vulnerability shows the 

opposite trend. The H-H-H loss-type areas with high vulnerability have typical characteristics of low 

elevation, slope, temperature and high soil sandy content. 15 

From the perspective of an influencing mechanism, when the soil sandy content is high, the soil drainage 

ability is strong, and the crop is more vulnerable to drought (Reid et al., 2006;Papathoma-Köhle, 2016) , 

exhibiting low Di1, Di2, and Di3 values and a high CLr value in the vulnerability curve. The cause-effect 

relationship between the temperature and the characteristic parameters cannot be defined, although the 

spatial distributions of the two have a certain correlation. Because temperature stress is removed from 20 

the drought scenarios, the temperature variable has no direct influence on the results of yield loss rate to 

drought and the characteristic parameters. It may have an indirect influence by affecting the crop 

parameters of winter wheat during the previous calibration process. Similarly, elevation does not directly 

affect the values of the characteristic parameters. Simulation experiments based on the EPIC model found 

that changing the input of elevation has little effect on the simulated yield (Thomson et al., 2002). Thus, 25 

the elevation may indirectly affect yield and drought vulnerability by acting on other environmental 

variables such as temperature, precipitation and soil. The aforementioned can provide ideas for studying 

the impact of the environment on vulnerability. 

Table 4: Correlation between vulnerability characteristic parameters and environmental variables (P≤0.01) 

Environmental variable Di1 Di2 Di3 CLr 

Elevation  0.40 0.43 0.37 -0.44 

Slope 0.31 0.44 0.45 -0.48 

Soil sand content -0.10 -0.35 -0.44 0.38 

Average temperature during growth period 0.32 0.34 0.30 -0.38 

Precipitation during growth period -0.09 0.19 0.33 -0.26 

Relative humidity during growth period 0.41 0.23 0.09 -0.27 

4.2 Uncertainty and limitation 30 

The EPIC model default crop parameters may deviate from the actual growth in different regions, so we 

localize and verify the crop parameters to be as close to reality as possible. Nevertheless, there are some 
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inevitable uncertainties, derived from the selection of calibrated crop parameters, the accuracy of the 

statistical yield data, and other factors. There are 56 crop parameters in the EPIC model, and different 

input parameters have different degrees of influence on the EPIC model in different simulation 

environments (Zhang et al., 2017). The main method to reduce the uncertainties of input parameters is to 

carry out sensitivity analysis in the basic evaluation unit and calibrate the sensitivity parameters one by 5 

one. However, this requires multiple calculations and does not completely eliminate the uncertainties of 

the input parameters (Yue et al., 2018). Therefore, with reference to previous research, we focus on the 

calibration and validation of the above four main sensitive parameters. In terms of the accuracy of the 

statistical yield, we use national-scale data due to the availability, which is coarser than the grid 

simulation unit, so it may cause some uncertainties in the localization and verification results. When 10 

more multi-year and higher-resolution statistical yield data are available in the future, the results will be 

further improved.  

There may also be uncertainties in the process of vulnerability simulation and assessment using the 

calibrated EPIC model. To quantify them, we reiterate this process 20 times and evaluate the standard 

deviation distribution of the results. First, we randomly select 10 % of samples from the five types of 15 

vulnerability curves based on the principle of stratified sampling, and obtain a total of 201 sample grids. 

Next, according to the method in Section 2.3.1, we reiterate the vulnerability simulation and vulnerability 

curve construction process 20 times by changing the irrigation scenario settings, that is, keeping the non-

irrigation and optimal irrigation scenarios unchanged and then randomly setting 18 irrigation scenarios 

between the two. From this, 20 reiterated vulnerability curves can be obtained for each sample grid. Then, 20 

by calculating the standard deviation of the Lr for 20 reiterated vulnerability curves at the drought index 

interval of 0.1, the standard deviation of Lr for each sample grid can be obtained to characterize the grid 

uncertainties. The mean standard deviation and 95 % prediction uncertainty band (95PPU) of total sample 

grids are finally calculated to characterize overall uncertainties. 95PPU is the range from 2.5 % to 97.5 % 

of the cumulative distribution function (Abbaspour et al., 2007). The results show that the mean standard 25 

deviation of Lr is between 0 and 0.065, and the average is 0.033; the width of PPU95 is between 0.007 

and 0.135, and the average is 0.067; the two indicators reach the peak when the drought index is between 

0.4 and 0.7 (Fig. 9). Although the prediction uncertainty of Lr is relatively large in such range, it is still 

significantly smaller than the differences in Lr between regions (which can reach more than 0.5), so it 

has little effect on the distribution pattern of vulnerability. In summary, the uncertainties in this process 30 

are acceptable. 
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Figure 9: Distribution of standard deviation of loss rate under different drought index. The mean standard 
deviation and 95 % prediction uncertainty band (95PPU) are calculated by the standard deviations of sample 
grids, which are randomly selected from the five vulnerability curves at a proportion of 10 %. 

4.3 Prospection of the vulnerability curves 5 

By analysing the distribution of characteristic parameters, it is found that the winter wheat vulnerability 

in Europe is lower to the south, particularly in the surrounding areas of the Mediterranean, which is 

consistent with research findings based on experimental results of wheat varieties (Mäkinen et al., 2018) 

and the crop model simulation results at country scale (Leng and Hall, 2019). 

By reflecting the spatial differences in vulnerability, the characteristic information can accurately express 10 

the response feature to drought in various regions and more effectively guide drought risk management. 

We suggest paying more attention to moderate and severe drought mitigation in southern Europe (mainly 

the L-L-L and L-L-M loss-type areas), improving the prevetion and mitigation capacity in the central 

region (mainly M-M-M and H-H-H loss-type areas), and seizing the susceptibility stage of drought 

development for mitigation in the north-eastern region (the L-M-H loss-type areas).  15 

In addition, the vulnerability curve based on the crop growth process simulation helps to understand the 

risk from a vulnerability perspective. The impact of climate change on crop yield depends not only on 

the temporal and spatial patterns of climate change but also on species characteristics (Trnka et al., 

2014;Semenov et al., 2014). From the perspective of climate change, the drought risk in southern Europe 

is more likely to increase compared to other regions of Europe, due to the predicted reduced precipitation 20 

and increased evaporation (Olesen et al., 2011;IPCC, 2012). However, it was found that the increase in 

drought effects on wheat in the southern region may be less than or near those of the central and north-

eastern regions (Webber et al., 2018), which may be related to a lower drought vulnerability. This is also 

an indirect verification of the spatial difference analysis results in this paper. 

Conducting a comprehensive vulnerability assessment combined with social vulnerability will be an 25 

important direction for future research. The vulnerability assessment will focus on the agricultural social 

ecosystem rather than crops. On the basis of consideration of variety characteristics and natural 

environmental factors, the impact of field farming measures such as regional irrigation, fertilization, and 

pest management should also be considered (González Tánago et al., 2016;Guo et al., 2020). In the 

further research, we suggest adding socio-economic factors into the crop growth simulation as field 30 

management parameters, such as irrigation capacity and fertilization level. It will improve the level of 
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evaluation and application value of regional vulnerability. 

On the other hand, how to carry out dynamic vulnerability assessment needs further exploration. With 

climate change and socio-economic development, the crop planting dates, growth periods, irrigation and 

fertilization management may change constantly (Moriondo et al., 2010). The future vulnerability curves 

may be different from the current ones here. Therefore, it is recommended to explore dynamic 5 

vulnerability assessment methods, combining possible scenarios of climate change and socio-economic 

development, and then evaluate differences the comprehensive drought vulnerability under different 

scenarios. This work has important reference value for dynamic risk assessment and risk management. 

5 Conclusion 

Quantitative crop-drought vulnerability assessment and analysis are an important basis for drought risk 10 

assessment and drought risk management. Taking European winter wheat as an example, we generate 

series data of WS and scenario yield based on EPIC model simulation and then construct S-type drought 

vulnerability curves. Through characteristic parameters analysis and clustering analysis of vulnerability 

curves, the loss extent and loss change characteristics are mapped to identify the regional vulnerability 

pattern and drought response characteristics. The results provide quantitative ideas for the study of the 15 

impact of the environment on vulnerability and provide scientific guidance for regional drought 

mitigation resource allocation and strategy development. 

The winter wheat drought vulnerability in Europe is higher in the south and lower in the north with a 

latitudinal zonality, which may be related to environmental variables such as elevation, slope, average 

temperature during growth period and soil sand content. In the southern region, the Di values at the key 20 

points are high, and the CLr values are low, indicating a low vulnerability, while the northern region 

shows the opposite trend. 

The vulnerability curves can be divided into five loss types: L-L-L, L-L-M, M-M-M, H-H-H and L-M-

H. It is recommended to improve the ability to address drought with a greater than 0.4 intensity in the L-

L-L or L-L-M loss-type areas and a drought range from 0.3-0.6 intensity in the L-M-H loss-type areas, 25 

as well as improve drought prevention and mitigation in the M-M-M or H-H-H loss-type areas. 

Appendices 

Appendix A: Spatial distribution of yield loss rate and loss rate growth rate under different drought index 
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Appendix B: Classificatory key points and cumulative loss rates calculated by category vulnerability curves 

Category vulnerability curve Di1 Lr1 Di2 Lr2 Di3 Lr3 CLr 

L-L-L 0.44 0.19 0.67 0.48 0.90 0.76 0.33 

L-L-M 0.40 0.19 0.55 0.46 0.69 0.73 0.42 

M-M-M 0.28 0.18 0.47 0.47 0.65 0.75 0.50 

H-H-H 0.19 0.15 0.38 0.45 0.57 0.76 0.57 

L-M-H 0.33 0.19 0.44 0.47 0.56 0.75 0.53 

Europe 0.27 0.17 0.47 0.46 0.68 0.75 0.48 

 

Appendix C: Descriptive statistics of environmental variables in various loss-type regions 

 L-L-L L-L-M M-M-M H-H-H L-M-H Regional 

Elevation (m) 

Median 677 315 165 140 160 181 

Interquartile 

Range 
636 468 154 125 103 241 

Slope (°) 

Median 23 12 6 3 3 6 

Interquartile 

Range 
25 17 9 3 3 9 

Soil sand 

content (%) 

Median 43 43 43 52 52 43 

Interquartile 

Range 
4 10 22 9 0 12 

Precipitation 

during growth 

period (mm) 

Median 960 646 599 599 638 629 

Interquartile 

Range 
306 198 128 131 53 158 

Average 

temperature 

during growth 

period (℃) 

Median 7.1 7.8 7.5 6.9 3.9 7.1 

Interquartile 

Range 
3.5 3.6 2.1 1.9 1.1 2.9 

Relative 

humidity during 

growth period 

(%) 

Median 79.9 80.6 77.5 77.1 80.2 78.8 

Interquartile 

Range 
2.7 3 3.9 3.1 2.1 3.9 

Data availability 5 
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