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Abstract. As an essential component of drought risk, crop-drought vulnerability refers to the degree of
the adverse response of a crop to a drought event. Different drought intensities and environments can
cause significant differences in crop yield losses. Therefore, quantifying drought vulnerability and then
identifying its spatial distribution pattern will contribute to understanding vulnerability and the
development of risk-reduction strategies. We select the European winter wheat growing area as the study
area and 0.50.5°grids as the basic assessment units. Winter wheat drought vulnerability curves are
established based on the Erosion-Productivity Impact Calculator model simulation. Their loss change
and loss extent characteristics are quantitatively analysed by the key points and cumulative loss rate,
respectively, and are then synthetically identified VIA K-means clustering. The results show the
following. (1) The regional yield loss rate starts to rapidly increase from 0.13 when the drought index
reaches 0.18 and then converts to a relatively stable stage with the value of 0.74 when the drought index
reaches 0.66. (2) The stage transitions of the vulnerability curve lags behind in the southern mountain
area; only when the drought index is higher, indicating a stronger tolerance to drought in the system, in
contrast to the Pod Plain. (3) According to the loss characteristics during the initial, development and
attenuation stages, the vulnerability curves can be divided into five clusters, namely, Low-Low-Low,
Low-Low-Medium, Medium-Medium-Medium, High-High-High and Low-Medium-High loss types,
corresponding to the spatial distribution from low latitude to high latitude and from mountain to plain.
The results provide ideas for the study of the environment’s impact on vulnerability and as well as

guidance for drought risk management.

1 Introduction

Drought is a widespread natural disaster causing the largest agricultural losses in the world. More than
one-half of the earth is susceptible to drought, including nearly all of the major agricultural areas (Kogan,
1997). Under the context of climate change and globalization, drought will pose a threat to future food
security. How to assess and manage agricultural drought risks has become a focus of the world (Reid et
al., 2006;Li et al., 2009;Mishra and Singh, 2010). As vulnerability is a key factor in determining risk,

drought vulnerability assessment is an important foundation for drought risk assessment and management
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(Zhang et al., 2015;Knutson C, 1998).

Crop drought vulnerability assessment focuses on crops, particularly the biophysical factors closely
related to crop growth processes (Wu et al., 2017;Tanago et al., 2015), describing the damage to crops
caused by different intensity hits. At present, crop drought vulnerability assessment methods mainly
include the following three aspects.

(1) Calculation of the comprehensive vulnerability index based on selected relevant indicators. Some of
these studies encompass recognition of the factors influencing drought vulnerability, construction of
vulnerability indicators from physiographic, climatic and hydrologic aspects, assignment of their weights
and calculation of a comprehensive index (Wilhelmi and Wilhite, 2002;Shahid and Behrawan, 2008;Jain
etal., 2014). For example, Pandey et al.(2010) identify seven influence indicators, such as watershed
geography, soil types, water availability and so on, grade each of them and then add them up to
obtain the drought vulnerability index of the Sonar basin in the Madhya Pradesh. Some of these
studies are based on the components of vulnerability, construct sensitivity and exposure indicators, and
combine them to form a vulnerability index (O’Brien et al., 2004; Antwi-Agyei et al., 2012;Tanago et al.,
2015). For example, Simelton et al. (2009) use the crop failure index to characterize sensitivity, the
drought index to characterize exposure, and the ratio of the two to characterize crop drought vulnerability
and to further explore the correlation between drought vulnerability and socioeconomic characteristics
in China. Although this method cannot predict the loss quantitatively and has certain subjectivity and
uncertainty in index system construction and weights determination, affected by the difficulty of testing
and verification, it is able to express the relative level of vulnerability between regions, providing
potential ways to disaster mitigation for decision makers, and providing a strong reference for the
establishment of quantitative vulnerability relationships (Wilhelmi and Wilhite, 2002;Simelton et al.,
2009;Wu et al., 2010).

(2) Quantitative research on vulnerability based on historical statistics and meteorological observations.
This method mainly uses meteorological observation data and historical statistical data to build a
quantitative relationship between disaster intensity and historical disaster loss (Lobell and Burke,
2008;Hlavinka et al., 2009;Rowhani et al., 2011). Fishman (2016) uses Indian daily rainfall and statistical
yield data from 1970 to 2003 to analyse the relationship between precipitation variability and major crop
yields. Jayanthi et al. (2014) use satellite rainfall based-water requirement satisfaction index and
historical yield loss rate as regression indicators to develop a maize drought vulnerability model in Kenya,
Malawi and Mozambique. Xu et al. (2013) select consecutive rainless days as the drought index, convert
drought affected area into the drought-induced yield loss rate, and then establish vulnerability curves of
corn, wheat and rice in the monsoon region of east China using the daily precipitation data and historical
disaster data. Such a method explores how crop yield loss varies with disaster intensity, but is easily
affected by the availability and quality of disaster loss data, therefore, having difficulties in high-
resolution vulnerability assessment and spatial analysis.

(3) Quantitative research on vulnerability curves based on field experiments and crop model simulations.
This method generally conducts field experiments or crop growth model simulations by artificially
setting up different disaster intensity scenarios, and then fitting cooperative vulnerability curves from the

perspective of a crop disaster-causing mechanism. Pan et al. (2017) conduct field experiments by
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artificially controlling soil water content at the Huanghua experimental site in Hebei, China. Based on
the experimental data showing the effects of drought intensity and biomass loss on maize growth, the
physical drought vulnerability curves of the five growth stages are constructed. Yin et al. (2014) use the
Erosion-Productivity Impact Calculator (EPIC) model to obtain drought index and yield loss rates, and
construct a drought vulnerability curve for maize in 35 regions of the world. Kamali et al. (2018b) use
the precipitation and EPIC simulated maize yield to fit the cumulative distribution function to describe
the crop sensitivity and exposure indexes to drought, respectively, and link the two indexes using a power
curve fitted to describe the physical vulnerability of sub-Saharan African countries. This method provides
a new research idea and perspectives for vulnerability quantitative assessment based on the crop growth
mechanism. Additionally, the crop model can quantitatively describe and predict the crop growth and
yield formation process in a specific environment, with lower cost than the field experiments and fewer
limitations in historical disaster statistical sample or spatial accuracy, which is conducive to high-
precision quantitative research on crop vulnerability (Palosuo et al., 2011;Challinor et al., 2009). It is
worth mentioning that as infinite dimensional data (James and Sugar, 2003), the vulnerability curve is
difficult to perform spatial analysis directly like the vulnerability index, which leads to its main
application in risk assessment field with insufficient vulnerability information mining.

Actually, there are spatial differences in crop drought vulnerability affected by factors such as the natural
environment and crop variety (IPCC, 2012, 2014). Analysing and mapping the spatial differences based
on a quantitative assessment can better help identify the vulnerability distribution and local mitigation-
oriented drought management. Therefore, this paper aims to exploring the vulnerability curve feature
extraction and spatial difference analysis method, which is beneficial to improve the quantitative degree
of vulnerability spatial analysis. It can not only quantify regional drought vulnerability based on the
disaster-causing mechanism but also convey vulnerability information to decision makers from a risk
visualization perspective.

As wheat is one of the three major grain crops in the world, we select the main wheat producing area, the
European winter wheat growing area, as the research area, using the 0.5°x0.5° grid as the basic
assessment unit. The vulnerability curve of winter wheat drought was established based on EPIC
simulation. Then, the loss extent and loss change characteristics of the vulnerability curve are extracted
to analyse the vulnerability characteristics to drought in various areas. By clustering the curve shapes,
areas with similar vulnerability characteristics are identified for exploring their environment and

providing scientific guidance regarding the development of regional drought mitigation strategies.

2 Data and methods

2.1 Basic concept

Crop drought vulnerability curve describes the functional relationship between drought intensity and loss.
As drought intensify, disaster losses begin to appear and gradually increase until the end of the disaster.
That is regarded as an interactive process of energy accumulation and resisting effect (Chen et al.,
2015;Chen et al., 2017). Drought intensification brings about energy accumulation, which will be

released when it reaches a certain level; meanwhile, resistance, such as system adjustment ability, always
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exists. In the initial stage, it appears as a slow development of drought due to insufficient energy storage
and the existence of resistance. And if the driving force is stopped or weakened, the energy accumulation
basically ends; otherwise, energy will continue to accumulate, then break through the resistance and
release, resulting in explosive development. Finally, the drought event gradually subsided with energy
attenuation and resistance influence.

Therefore, the drought vulnerability curve can be divided into three stages as follows (Wang et al.,
2013;Kucharavy and De Guio, 2011): (1) initial stage, corresponding to low drought intensity and slight
loss, during which there is slow loss growth acceleration; (2) development stage, corresponding to
moderate drought intensity and a rapid increase in loss, during which the loss growth rate continues to
increase to reach a peak and then quickly falls; and (3) attenuation stage, corresponding to high drought
intensity and stable high loss, during which the loss growth rate slowly decays. These characteristics
coincide well with the S-shaped curve (Fig. 1).

In different environments, the drought vulnerability curve presents different S-shapes (Yue et al.,
2015;Guo etal., 2016;Wang et al., 2013), and the core lies in the differences in loss extent and loss change
(Wang et al., 2013;Hu et al., 2012;Gottschalk and Dunn, 2005). Therefore, the key points of the
vulnerability curve—the transition points of three stages (P1 and P3, where the third derivative of the
vulnerability curve is equal to zero) and the turning point of the loss growth rate (P2, where the second
derivative of the vulnerability curve equals zero) are used to describe the loss change characteristics, the

cumulative loss to the loss extent characteristics, and the morphological classification to of the integrated

description.
(a) (b)
N N
| i i
} } P3 | P2 :
|
| | o ] |
} Development } = ! l
\ stage \ = | I
2 I gl Zz | |
Q I | = I |
= I I . = 4 1
| JAttenuation - | Devel - .
| | stage 2 1 cvelopmen ttenuation
I I s | stage stage
} } Initial |
| | stage |
| |
‘ i
1 | > I >
Drought intensity Drought intensity

Figure 1: The relationship between drought intensity and (a) loss and (b) loss growth rate as shown by the S-
shape drought vulnerability curve. P1, P2, P3 represent the starting point, inflection point and end point of
the rapid loss growth, respectively.

2.2 EPIC model and database construction

The EPIC model, published by the United States in 1984 (Williams et al., 1984), is selected to simulate
the growth process of winter wheat. It can simulate soil erosion and productivity for hundreds of years
on a daily step under a variety of climatic, environmental and management conditions. It simulates all
crops with one model framework based on crop’s physiological commonality and uses unique crop
parameters for each crop. In the process of simulation, intercepted photosynthetic active radiation is
converted into potential biomass, which is adjusted by five daily stress factors (water, nitrogen,
phosphorus, temperature, and aeration) to predict actual biomass growth, where the water stress (WS)

factor is computed as the ratio of soil water use over potential plant water use. Crop yields are estimated
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as the product of the actual above ground biomass and a harvest index (economic yield/above ground
biomass) (Williams et al., 1989).

EPIC model has been successfully applied in yield simulation for different crops and water input
conditions in many parts of the world (Roloff et al., 1998;Gassman et al., 2005). Williams et al. (1989)
described the EPIC model simulation results of 6 crop species throughout the U.S. and in European and
Asian countries and concluded that the average simulated yields were always within 7% of the average
measured yields. Bryant et al. (1992) used the EPIC model to duplicate 38 irrigation stress experiments
in the Texas High Plains during 1975-1977 and found that simulated corn yields explained 83, 86, and
72 % of the variance in 3-year measured yields separately. Ko et al. (2009) calibrated the EPIC model
based on field studies in South Texas, and demonstrated that under full and deficient irrigation and rainfall
conditions, EPIC-simulated yields of maize and cotton were in agreement with the measured yields
according to a paired t-test.

With good performance in water stress tests, the model is further widely used in crop drought research,
including irrigation management, drought impact prediction and drought vulnerability assessment (Guo
et al., 2020). By setting different irrigation times, irrigation amounts and irrigation frequency to observe
the EPIC-simulated yields, the optimized irrigation scheduling can be obtained without carrying out long
and expensive field experiments (Rinaldi, 2001); by inputting climate model data, the future yield loss
due to drought in different climate change scenarios can be prediction (Webber et al., 2018;Leng and
Hall, 2019); and by using multi-year precipitation or irrigation data, a series of grid yield loss data can
be obtained for quantifying drought vulnerability (Wang et al., 2013;Kamali et al., 2018c). In short, by
setting up drought scenarios, the EPIC model can efficiently provide fine yield loss data. Therefore, we
choose it as the core tool for drought vulnerability assessment.

The study area is the European wheat harvest area provided by the Center for Sustainability and the
Global Environment, University of Wisconsin-Madison (Monfreda et al., 2008), and further screened by
the wheat planting habit distribution map of CIMMYT (Lantican et al., 2005) for winter wheat
distribution. Distributed in the range of 10° W-50° E and 42° N-59° N, this area is one of the world's
major wheat-producing areas.

Inputs to EPIC include topography, soil, meteorological, and field management data (Table 1). The soil
data in this study are provided by the International Soil Reference and Information Centre (Batjes, 2012),
including soil type distribution raster maps and soil physical and chemical property lookup tables (soil
bulk density, soil water content, grit content, clay content, organic carbon content, pH, etc.). The daily
meteorological data are derived from HadGEM2-ES model data (Hempel et al., 2013) from 1974 to 2004,
which are based on meteorological observations including solar radiation, maximum temperature,
minimum temperature, average temperature, precipitation, relative humidity and average wind speed. All
the original input data are processed onto 0.5° x 0.5° grids, which are the basic units for the yield
simulation and vulnerability assessment.

The statistical yield data are not required for EPIC model input but for the localization of crop parameters
in the model and validation of simulated yields. They are derived from the Food and Agriculture
Organization (FAO) and are country-based statistics. We use statistical yields of 2000 for model

localization, and yields of other years between 1974 and 2004 for validation.



Outputs from the EPIC model include daily stress factors (water, nitrogen, phosphorus, temperature, and
aeration) and annual yield value. The WS and yield can be further processed into sample for the

construction of vulnerability curve.

Table 1: Basic database

Spatial
Category Name Source )
resolution
Sustainability and the Global Environment,
Harvested area of wheat University of Wisconsin-Madison 5'x5
(Monfreda et al., 2008)
Distribution range Distribution of wheat
CIMMYT (Lantican et al., 2005) Site unit

data planting habit

. . Eurostat
Administrative . -
(https://ec.europa.eu/eurostat/web/gisco/geo 1: 10 Million

boundary
data/reference-data)
DEM United States Geological Survey (1996) 0.5'x0.5'
Food and Agriculture Organization of the
Slope United Nations/International Institute for 5'x5

] Applied Systems Analysis (2000)
Environmental

International Soil Reference and L
data Soil 55
Information Centre (Batjes, 2012)

Historical daily German Federal Ministry of Education and
meteorological data Research: the ISIMIP Fast Track project 0.5°x0.5°
(1974-2004) (Hempel et al., 2013)

) ) University of Wisconsin-Madison
Growth period of winter

Sustainability and the Global Environment 0.5°x0.5°
wheat
(Sacks et al., 2010)

Management data o OKI Laboratory, University of Tokyo

Irrigation ) 0.5°x0.5°
(Oki, 2002)

Land Use and the Global Environment

Fertilizer 0.5°%0.5°

(Potter et al., 2010)

Statistical yield for

National
Statistical yield calibration (2000) Food and Agriculture Organization of the )
(regional)
data Statistical yield for United Nations (http://faostat.fao.org)
unit

validation (1974-2004)

2.3 Research method

This study consists of the following three parts. (1) Calibration and validation of the EPIC model. Critical
crop parameters in the model are localized to improve the simulation accuracy in different regions. Then
the calibrated model performance is validated by comparing simulated and statistical yields. (2)
10 Construction of winter wheat drought vulnerability curves based on the calibrated EPIC model simulation.
A set of WS and yields are simulated for each grid unit by setting series of irrigation scenarios, which

are converted into drought index and yield loss rate for the construction of the vulnerability curve. (3)

6
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Vulnerability curve characteristics analysis. Key points and cumulative loss rate of vulnerability curves
are calculated for the spatial analysis of loss change and loss extent characteristics, and the vulnerability

curves are clustered for the integrated spatial analysis (Fig. 2).
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Figure 2: Basic research framework. First, we input relevant data into the EPIC model and perform model
calibration. Next, we obtain a series of water stress and yield data based on the calibrated EPIC model by
setting different irrigation scenarios, which are converted into drought index (Di) and yield loss rate (Lr) for
the construction of vulnerability curves. Then, we extract three key points and calculate the cumulative loss
rate of vulnerability curves for the spatial analysis of loss change and loss extent characteristics. Finally, we
calculate the Lr and the growth rate of Lr (Lr’) under a set of fixed Di to transform the vulnerability curves
into a finite data set for clustering, and the classification of vulnerability curves can be used for the integrated
spatial analysis.

2.3.1 Calibration and validation of the EPIC model

The calibration method refers to the research of Guo et al. (2016). Four key parameters of WA (biomass-
energy ratio), HI (harvest index), DLMA (maximum potential leaf area index), and DLAI (fraction of the
growing season when the leaf area decreases) are selected for calibration (Barros et al., 2005;Wang and
Li, 2010;Wang et al., 2011) . Considering the limitation of statistical yields on a grid scale, we localize
the four key parameters at the country level based on the idea of partition calibration (Liu et al.,
2007;Balkovi¢ et al., 2013;Kamali et al., 2018a). That is, each country has a unique set of crop parameters,
and all the grids within one country are the same. The default values of the crop parameters in the EPIC
model are taken as the initial value, and the geographical environmental, field management and
meteorological data are entered to obtain simulated grid yields of 2000. We simply assign a FAO national
statistical yield to the grids within a country. Then the root mean square error (RMSE) between the
simulated and statistical grid yields are calculated. We reiterate the yield simulations and RMSE
calculations by incrementally adjusting the four key parameters to minimize RMSE. The calibration will
be finished when the least RMSE is below the threshold or the number of reiterations is above the
threshold.

To validate the parameterization results, we generate the simulated grid yields of 1974-2004 based on
the calibrated EPIC model, and aggregate to the nation level by averaging. For FAO national statistical
yields of 1974-2004 with significant trends, linear de-trending transformations are applied to remove the
impacts of technology progress (Xiong et al., 2014;Kamali et al., 2018a). Then we compare national

simulated yields with the statistical yields across all European countries.
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2.3.2 Vulnerability curve construction based on the calibrated EPIC model

(1) Generation of WS and yields under different irrigation scenarios

After parameter localization, the EPIC model can be used to simulate WS and the winter wheat yields
under different drought scenarios, providing samples for the construction of vulnerability curves to
drought.

To focus on physical drought vulnerability and eliminate the impact of other stress factors on yields, we
use meteorological data with suitable temperature and no precipitation, and control the water supply
condition by setting 20 irrigation scenarios, in which the irrigation amount uniformly increases from 0
to the optimum (the maximum irrigation amount without WS). The optimal value is determined by pre-
testing. Consequently, we obtain the outputs of 20 groups of WS and yield for each grid evaluation unit.
(2) Calculation of the drought index and yield loss rate

As an output factor of the EPIC model, WS reflects the relationship between daily water supply and crop
water demand. WS ranges from 0-1; the larger the value, the more serious the water shortage will be. To
characterize integrated drought intensity affecting yield, drought index (Di) is defined as relative
cumulative water stress during the crop growth period, which can reflect both WS intensity and stress

duration (Eq. (1), (2)) (Wang et al., 2013):

. HI;
Di; = max(HI) °’ (1)
HI; = X5-:(WSp) (2)

where Di; is the drought index of a grid unit under the irrigation scenario i, ranging from 0-1; HI; is the
cumulative value of WS during the growth period under this scenario; max(HI) is the maximum value of
HI; under all irrigation scenarios; WSy is the WS value on day k of the growth period; and n is the number
of days affected by WS during the growth period.

The yield loss rate (Lr) is used to express the response of the yield to drought effects, calculated following
Eq. (3):

_ max(y)-y;
In = max(y) 3)

where Lr;is the yield loss rate of a grid unit under irrigation scenario i, y; is the yield under this scenario
and max(y) is the maximum yield under the optimal irrigation scenario.

(3) Fitting of drought vulnerability curves

The aforementioned Di - Lr samples were fitted by a logistical curve to obtain the vulnerability curve

on each grid unit as follows (Eq. (4)):

lr=——5+d, (4)
where a, b, ¢, and d are constant parameters.
Then the coefficient of determination (R?) and RMSE are used to measure the imitative effect (Quiring
and Papakryiakou, 2003). R? represents the proportion of the total variance in the observed Di - Lr
samples that can be explained by the fitting model. It ranges from 0 to 1, where the higher values indicate
better fitting accuracy. RMSE represents the average difference between the predicted values by the

fitting model and the observed samples.



10

15

20

25

30

2.3.3 Feature extraction and spatial analysis of the vulnerability curves

(1) Identification of key points
According to the analysis in Section 2.1, taking the derivative of Eq. (4), and setting the second and third
derivatives equal to 0, the coordinates of the key points can be obtained to characterize the phase change

in the vulnerability curve (Table 2).

Table 2: Key point coordinates of the vulnerability curve

The starting point of rapid The inflection point of rapid loss The end point of rapid loss growth

loss growth (P1) growth (P2) (P3)
- In(2-v3)b _Inb In(2+3)b
e . -
+d
L Bt 2 e g

(2) Calculation of the cumulative loss rate

The cumulative loss rate (CLr) is obtained by the integral of Equation 4 on the Di interval of [0,1] to
describe the overall vulnerability. All CLr values are divided into five levels by the natural breakpoint
method: extremely low (0.22-0.34), low (0.34-0.42), moderate (0.42-0.49), high (0.49-0.55), and
extremely high (0.55-0.69).

(3) Clustering of the vulnerability curves

To identify the morphological characteristics of the vulnerability curves, the curves are divided into some
categories by clustering. The first step is to filter the infinite dimensional curve data to a finite set of
representative parameters (James and Sugar, 2003). A set of Lr and growth rate of Lr (Lt') under the fixed
Di are selected to preserve both the loss extent and change characteristics (Di=0.2, 0.4, 0.6, and 0.8, when
Di=0 or 1, there is little difference in the value of Lr and Lr’ between the curves). The 8 elements are

separately normalised following Eq. (5) for clustering.

Irpi=x)
N(Lpi=x)e = WLD;;) ; ®)

where (Lrpj—y); is the value of Lr (Lr’) when Di=x for the vulnerability curve t, and x=0.2, 0.4, 0.6,
and 0.8; SD(Lrpj=x) is the standard deviation of Lr (Lr’) when Di=x for all vulnerability curves; and
N(Lrpj=x)¢ 1s the normalised value.

The second step is to choose an appropriate clustering tool. Generally, clustering algorithms can be
divided into four categories, partitional clustering, hierarchical clustering, grid-based clustering and
density-based clustering. Partitional clustering directly divides the data set into several sub-sets without
intersection; hierarchical clustering creates a hierarchical decomposition of the data set to perform
clustering, and it cannot be traced back after classifying; density-based clustering controls the growth of
clusters through judging the relationship of data density (the number of instances in unite area) and
threshold; grid-based clustering divides the object space into a limited number of cells to form a grid
structure, and is often combined with other methods, especially density-based clustering methods (Sun
et al., 2008;Han et al., 2012).

K-means is a clustering algorithm which based on partition. It has the characteristics of faster calculation

speed and good clustering effect, which has widely used in clustering research (Wu et al., 2011;Sun et
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al., 2008). This paper uses the basic K-means clustering method to the representative parameter set, and
uses Euclidean distance to compare the similarity of vulnerability curves among grid cells (Jacques and
Preda, 2014). The smaller the distance, the more similar of the vulnerability curves. The steps of the K-
means clustering are:

(D Setting up the classification number K of the data set, and then randomly select K data points from
the data set as initial centroid of the classification;

(2 Sorting each data point into the class which are closest to the point;

® Calculating the new centroid of each class based on all data points in it;

@ Repeating steps @ and 3 until the centroid of each class remains the same or reaches the limit of
iterations.

The selection of K value is the key of K-means clustering. The elbow method is a commonly used method

for selecting K values, which is based on the sum of squares of errors (SSE) (Nainggolan et al.,

2019;Wang et al., 2019). The SSE is calculated as follows:

K
SSE = z SSE, (6)
i=1
n
SSE = ) (Pyy = C)? ™
i=1

Where SSE; is the sum of squares of errors within the i-th class, n is the number of data points in the i-
th class, C; is the centroid of the i-th class, P;; is the j-th sample point in the i-th class.

The principle of the elbow method is as follow (Nainggolan et al., 2019;Wang et al., 2019). As the K
value increases, the data set becomes finer, and the data points are closer to the centroid, and the SSE
value will become smaller; when K value is equal to the number of data points, each data point forms a
class and becomes the centroid by themselves, the SSE value is 0. The increase of the K value will reduce
the SSE value greatly and improve the clustering effect gradually in the early stage; but when the K value
increases to a certain value, the SSE value declines slowly and may cause over-classification. That is to
say, the relationship between K value and SSE value is the shape of an elbow. The K value corresponding
to the elbow point is the optimal clustering value. Since the elbow point may not be obvious when
applying the elbow method, we have further counted the number of vulnerability curves in each class
with different K values to judge the clustering effect comprehensively and determine the optimal number
of clusters better.

After clustering, the further category vulnerability curves are fitted by all the Di-Lr samples in

corresponding cluster, for better describing the characteristics of each cluster.

3 Results and analysis
3.1 Validation of the EPIC model simulation results

From the national comparison results from 1974 to 2004 (excluding calibration year of 2000), though the
simulated yields are slightly higher than the statistical yields, there is high agreement between the two

(Fig. 3). The regression equation has an R? of 0.77 and passes the test with a confidence of 0.01, indicating

10
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a reliable performance of the calibrated EPIC model for yields simulation in various regions and various

years.
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Figure 3: Comparison of national winter wheat yield reported by FAO and simulated by calibrated EPIC
during the period from 1974-2004 (excluding calibration year of 2000).

3.2 European winter wheat drought vulnerability curves and characteristics analysis
3.2.1 Winter wheat drought vulnerability curves

Figure 5a shows the winter wheat drought vulnerability curves of the 2010 grid assessment unit in Europe.
On the grid scale, the R? values of the vulnerability curve fitting are all above 0.94, and 97.5% of them
are above 0.996 (Fig. 4a). Grids with R? less than 0.999 are mainly distributed in Ukraine, Germany,
Macedonia, Greece. The RMSE values are concentrated between 0-0.043, and the 94.5% of them are less
than 0.02 (Fig. 4b). Grids with RMSE values greater than 0.15 are mainly belong to Ukraine. The R? of
the regional vulnerability curve fitted by all the grid Di-Lr samples is 0.90 and the RMSE is 0.12,
indicating a high overall goodness of fit.
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Figure 4: Goodness of fit of grid vulnerability curves, including R? and RMSE measures.

There are differences in the shape of vulnerability curves and in the coordinates of key points (Fig. 5b).
The regional starting point, inflection point and end point of the rapid loss of growth correspond to Di
values of 0.27, 0.47 and 0.68 and Lr values of 0.17, 0.43 and 0.75, respectively. For most grids, the Di
values at the three key points are mainly distributed from 0.15-0.55, 0.35-0.7 and 0.4-0.8, while the Lr
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values have a relatively small distribution, from 0.1-0.2, 0.4-0.5 and 0.7-0.8. Therefore, the
characteristics of stage transitions of grid vulnerability curves can be simplified by only using the Di at
key points instead of two coordinates. The larger the Di is at key points, the more severe the drought
must be to cause a similar loss rate; this is reflected in the lag in the stage transitions of vulnerability

curve, indicating a greater tolerance to drought disturbance.

(@) " )

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Drought index Drought Index

Grid vulnerability curve « Grid starting point Grid inflection point « Grid end point
— Regional vulnerability curve & Regional starting point ¢ Regional inflection point o Regional end point

Figure 5: Distribution of (a) regional and grid vulnerability curves and (b) their three key points. The regional
vulnerability curve is fitted by all drought index-loss rate sample data in the region.

3.2.2 Spatial distribution of the characteristic value

In terms of spatial distribution, the Di values at key points in the south are higher than those in the north
(Fig. 6). In the southern areas, the Di values at the starting, inflection and end points are concentrated in
0.4-0.5, 0.5-0.7, and greater than 0.7, respectively, while in north-central areas, they are less than 0.2,
0.3-0.5, and 0.5-0.7, respectively. Therefore, the stage transitions of the vulnerability curves in the
southern areas lag behind, indicating a higher tolerance to drought disturbance. In the northeast, the Di
values at the start and end points are within the range of 0.2-0.4 and 0.4-0.6, respectively, indicating that
Lr changes drastically during a short development stage, during which these areas are particularly
susceptible to drought.

The CLr represents the overall vulnerability, which is contrary to the meaning of Di at key points, and
naturally shows an opposite distribution of low in the south and high in the north. Though both the north-
central areas and the northeast areas have extremely high CLr values, stage transition characteristics in
the two areas are different. The CLr integrates the characteristics of the key points but shows information

loss in the characteristics of loss change.
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(a) Di at starting points

(b) Di at inflection points
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Figure 6: Spatial distributions of drought index (Di) at the (a) starting points, (b) inflection points and (c) end
points, and (d) spatial distribution of the level of the cumulative loss rate (CLr) of vulnerability curves.

3.3 Categories of winter wheat drought vulnerability curves

To comprehensively analyse the vulnerability types of regions, we convert the vulnerability curve into a

representative parameter set of loss degree and loss change characteristics (Appendix A), and then

perform K-means clustering. When determining the optimal number of classification (K values), it is

found that when K=5, the line graph of SSE shows an inflection point (Fig.7); at this time, the number

of instance in each cluster is relatively uniform, so as not to be over-concentration or over-classification

(Table 3), indicating an optimal classification effect. Therefore, the grid drought vulnerability curves are

divided into 5 categories.

Compared to the regional loss characteristics at the initial, development and attenuation stages, these

types of vulnerability curves are defined as Low-Low-Low (L-L-L), Low-Low-Medium (L-L-M),
Medium-Medium-Medium (M-M-M), High-High-High (H-H-H) and Low-Medium-High (L-M-H) loss-

type vulnerability curves (Fig. 8). Five category vulnerability curves are fitted based on the Di-Lr samples

of related vulnerability curves for a comprehensive characterization.
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Figure 7: Sum of squared errors (SSE) corresponding to different clustering numbers (K).

Table 3: Clustering effect of different cluster quantities.

Quantity Quantity of vulnerability curves in each cluster
of cluster
® Cluster  Cluster  Cluster  Cluster  Cluster  Cluster  Cluster
1 2 3 4 5 6 7
2 739 1271 - - - - -
3 232 1076 702 - - - -
4 254 637 886 233 - - -
5 472 407 686 243 202 - -
6 3 471 683 407 243 203 -
7 3 155 706 156 193 254 543

The Lr of the L-L-L loss-type vulnerability curves are lower than the regional level under the same Di,
and the category CLr is only 0.33 (calculated by the category vulnerability curve), which is the lowest
value of the five categories (Appendix B). These vulnerability curves are mainly distributed in mountain
areas such as the Alps and the Dinara and Caucasus mountains, accounting for 10.0 % of the winter wheat
planting area in Europe.

The L-L-M loss-type vulnerability curves have a relatively low loss rate and are susceptible to drought
within the range of 0.4-0.7. When the Di values reach approximately 0.4, the loss rates begin to rapidly
increase; when the Di values are greater than 0.6-0.7, the loss rates are near the regional level. The
category CLr is 0.42. It is mainly found in the Danube river basins, including hilly areas and plains,
accounting for 20.3 % of the winter wheat planting area in Europe.

The M-M-M loss-type vulnerability curves are near the regional vulnerability curve with a category CLr
0f 0.50, and mainly occur in the Western European Plains, the Pod Plains, Donets Ridge and surrounding
highlands and lowlands. They have the widest distribution accounting for 34.1 % of the winter wheat
planting area in Europe.

The Lr values of the H-H-H loss-type vulnerability curves are higher than the regional level, and the
category CLr reaches 0.57. These vulnerability curves are concentrated in patches on the Pod Plain,
Polesi and in lowland areas along the Black Sea and Eastern Great Britain, at approximately the same

latitude zone as that of the M-M-M loss-type, accounting for 23.5 % of the winter wheat planting area in

14



10

15

Europe.

The L-M-H loss-type vulnerability curves show high susceptibility to drought in the range of 0.3-0.6,
where the loss rate rapidly increases and reaches the regional level with the increase in Di. When Di
values are greater than 0.6 and continue to increase, the loss rates maintain relatively stable high values;
when Di values are less than 0.3, the yield losses are slight. The category CLr is 0.53. These curves are
mainly distributed on the east European plain, accounting for 12.1 % of the winter wheat planting area
in Europe.

Overall, the spatial distributions of the five types of vulnerability curves are obviously latitudinal and
consistent with the geographical pattern of Europe, where plains and mountains mostly extend from the
east to the west in the mainland and extend from north to south in the British Isles. From south to north,
and from mountain to plain, the vulnerability curves transition from concave to convex, and the CLrs
show an upward trend, indicating increasing vulnerability. The heat difference at different latitudes and

the water and heat difference at different altitudes may be the root cause of the type distribution.
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Figure 8: Five types of European winter wheat vulnerability curves to drought: (a) L-L-L, (b) L-L-M, (c) M-
M-M, (d) H-H-H and (e) L-M-H loss-type vulnerability curves, and (f) their spatial distributions.

4 Discussion

4.1 Relationship between vulnerability characteristics and environmental variables

To further explore the relationship between the wvulnerability characteristics distribution and
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environmental variables, Spearman correlation analysis is performed between the vulnerability
characteristics parameters (Di, Di, Di3, and CLr) and environmental variables (elevation, slope, soil
sand content, precipitation during growth period, average temperature during growth period, and relative
humidity during growth period). The results all passed the significance test at the level of 0.01 (Table 4).
The Di; value is positively correlated with relative humidity and elevation, and the correlation
coefficients are 0.41 and 0.40, respectively. That is, in areas with high relative humidity or altitude, only
when the drought develops to a rather serious extent does it begin to have a significant impact on winter
wheat yield. Additionally, the L-L-L, L-L-M and L-M-H loss-type areas with high Di; values have the
characteristics of high elevation or high relative humidity (Appendix C).

The four characteristic parameters are highly correlated with the environmental variables with latitudinal
zonality, such as elevation, slope, temperature and soil sand content, which verifies the inference of the
distribution of the characteristic parameters above. The Di;, Di, and Dis values characterizing drought
tolerance are positively correlated with elevation, slope and temperature, and negatively correlated with
soil sandy content, while the CLr value characterizing the comprehensive vulnerability shows the
opposite trend. The H-H-H loss-type areas with high vulnerability have typical characteristics of low
elevation, slope, temperature and high soil sandy content.

From the perspective of an influencing mechanism, when the soil sandy content is high, the soil drainage
ability is high, and the crop is more vulnerable to drought, exhibiting low Di;, Di,, and Di3 values and a
high CLr value in the vulnerability curve (Reid et al., 2006;Papathoma-Kohle, 2016). The cause-effect
relationship between the temperature and the characteristic parameters cannot be defined, although the
spatial distributions of the two have a certain correlation. Because temperature stress is removed from
the drought scenarios, the temperature variable has no direct influence on the results of yield loss rate to
drought and the characteristic parameters. It may have an indirect influence by affecting the crop
parameters of winter wheat during the previous calibration process. Similarly, elevation does not directly
affect the values of the characteristic parameters. Simulation experiments based on the EPIC model found
that changing the input of elevation has little effect on the simulated yield (Thomson et al., 2002). Thus,
the elevation may indirectly affect yield and drought vulnerability by acting on other environmental
variables such as temperature, precipitation and soil. The aforementioned can provide ideas for studying

the impact of the environment on vulnerability.

Table 4: Correlation between vulnerability characteristic parameters and environmental variables (P<0.01)

Environmental variable Dii Diz Di3 CLr

Elevation 0.40 0.43 0.37 -0.44
Slope 0.31 0.44 0.45 -0.48
Soil sand content -0.10 -0.35 -0.44 0.38

Average temperature during growth period 0.32 0.34 0.30 -0.38
Precipitation during growth period -0.09 0.19 0.33 -0.26
Relative humidity during growth period 0.41 0.23 0.09 -0.27

4.2 Uncertainty and limitation

The EPIC model default crop parameters may deviate from the actual growth in different regions, so we
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localize and verify the crop parameters to be as close to reality as possible. Nevertheless, there are some
inevitable uncertainties, derived from the selection of calibrated crop parameters, the accuracy of the
statistical yield data, and other factors. There are 56 crop parameters in the EPIC model, and different
input parameters have different degrees of influence on the EPIC model in different simulation
environments (Zhang et al., 2017). The main method to reduce the uncertainties of input parameters is to
carry out sensitivity analysis in the basic evaluation unit and calibrate the sensitivity parameters one by
one. However, this requires multiple calculations and does not completely eliminate the uncertainties of
the input parameters(Yue et al., 2018). Therefore, with reference to previous research, we focus on the
calibration and validation of the above four main sensitive parameters. In terms of the accuracy of the
statistical yield, we use national-scale data due to the availability, which is coarser than the grid
simulation unit, so it may cause some uncertainties in the localization and verification results. When
more multi-year and higher-resolution statistical yield data are available in the future, the results will be
further improved.

There may also be uncertainties in the process of vulnerability simulation and assessment using the
calibrated EPIC model. To quantify them, we reiterate this process 20 times and evaluate the standard
deviation distribution of the results. First, we randomly select 10 % of samples from the five types of
vulnerability curves based on the principle of stratified sampling, and obtain a total of 201 sample grids.
Next, according to the method in Section 2.3.1, we reiterate the vulnerability simulation and vulnerability
curve construction process 20 times by changing the irrigation scenario settings, that is, keeping the non-
irrigation and optimal irrigation scenarios unchanged and then randomly setting 18 irrigation scenarios
between the two. From this, 20 reiterated vulnerability curves can be obtained for each sample grid. Then,
by calculating the standard deviation of the loss rate for 20 reiterated vulnerability curves at the drought
index interval of 0.1, the standard deviation of loss rate for each sample grid can be obtained to
characterize the grid uncertainties. The mean standard deviation and 95 % prediction uncertainty band
(95PPU) of total sample grids are finally calculated to characterize overall uncertainties. 95PPU is the
range from 2.5 % to 97.5 % of the cumulative distribution function (Abbaspour et al., 2007). The results
show that the mean standard deviation of loss rate is between 0 and 0.065, and the average is 0.033; the
width of PPU9S is between 0.007 and 0.135, and the average is 0.067; the two indicators reach the peak
when the drought index is between 0.4 and 0.7 (Fig. 9). Although the prediction uncertainty of loss rate
is relatively large in such range, it is still significantly smaller than the difference in loss rate between
regions (which can reach more than 0.5), so it has little effect on the distribution pattern of vulnerability.

In summary, the vulnerability assessment results of this paper are credible.
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Figure 9: Distribution of standard deviation of loss rate under different drought index. The mean standard
deviation and 95 % prediction uncertainty band (95PPU) are calculated by the standard deviations of sample
grids, which are randomly selected from the five vulnerability curves at a proportion of 10 %.

4.3 Prospection of the vulnerability curves

By analysing the distribution of characteristic parameters, it is found that the winter wheat vulnerability
in Europe is lower to the south, particularly in the surrounding areas of the Mediterranean, which is
consistent with research findings based on experimental results of wheat varieties (Mékinen et al., 2018)
and the crop model simulation results at country scale (Leng and Hall, 2019).

By reflecting the spatial differences in vulnerability, the characteristic information can accurately express
the response feature to drought in various regions and more effectively guide drought risk management.
We suggest paying more attention to moderate and severe drought mitigation in southern Europe (mainly
the L-L-L and L-L-M loss-type areas), improving the prevetion and mitigation capacity in the central
region (mainly M-M-M and H-H-H loss-type areas), and seizing the susceptibility stage of drought
development for mitigation in the north-eastern region (the L-M-H loss-type areas).

In addition, the vulnerability curve based on the crop growth process simulation helps to understand the
risk from a vulnerability perspective. The impact of climate change on crop yield depends not only on
the temporal and spatial patterns of climate change but also on species characteristics (Trnka et al.,
2014;Semenov et al., 2014). From the perspective of climate change, the drought risk in southern Europe
is more likely to increase compared to other regions of Europe, due to the predicted reduced precipitation
and increased evaporation (IPCC, 2012;0Olesen et al., 2011). However, it was found that the increase in
drought effects on wheat in the southern region may be less than or near those of the central and north-
eastern regions (Webber et al., 2018), which may be related to a lower drought vulnerability. This is also
an indirect verification of the spatial difference analysis results in this paper.

Conducting a comprehensive vulnerability assessment combined with social vulnerability will be an
important direction for future research. At this time, the vulnerability assessment will focus on the
agricultural social ecosystem rather than crops. On the basis of consideration of variety characteristics
and natural environmental factors, the impact of field farming measures such as regional irrigation,
fertilization, and pest management should also be considered (Gonzalez Ténago et al., 2016;Guo et al.,
2020). In the further research, we suggest adding socio-economic factors into the crop growth simulation

as field management parameters, such as irrigation capacity and fertilization level. It will improve the
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level of evaluation and application value of regional vulnerability.

On the other hand, how to carry out dynamic vulnerability assessment needs further exploration. With
climate change and socio-economic development, the crop planting dates, growth periods, irrigation and
fertilization management may change (Moriondo et al., 2010). The future vulnerability curves may be
different from the current ones here. Therefore, it is recommended to explore dynamic vulnerability
assessment methods, combining possible scenarios of climate change and socio-economic development,
and then evaluate differences the comprehensive drought vulnerability under different scenarios. This

work has important reference value for dynamic risk assessment and risk management.

5 Conclusion

Quantitative crop-drought vulnerability assessment and analysis are an important basis for drought risk
assessment and drought risk management. Taking European winter wheat as an example, we generate
series data of WS and scenario yield based on EPIC model simulation and then construct S-type drought
vulnerability curves. Through characteristic parameters analysis and clustering analysis of vulnerability
curves, the loss extent and loss change characteristics are mapped to identify the regional vulnerability
pattern and drought response characteristics. The results provide quantitative ideas for the study of the
impact of the environment on vulnerability and provide scientific guidance for regional drought
mitigation resource allocation and strategy development.

The winter wheat drought vulnerability in Europe is higher in the south and lower in the north with a
latitudinal zonality, which may be related to environmental variables such as elevation, slope, average
temperature during growth period and soil sand content. In the southern region, the Di values at the key
points are high, and the CLr values are low, indicating a low vulnerability, while the northern region
shows the opposite trend.

The vulnerability curves can be divided into five loss types: L-L-L, L-L-M, M-M-M, H-H-H and L-M-
H. It is recommended to improve the ability to address drought with a greater than 0.4 intensity in the L-
L-L or L-L-M loss-type areas and a drought range from 0.3-0.6 intensity in the L-M-H loss-type areas,

as well as improve drought prevention and mitigation in the M-M-M or H-H-H loss-type areas.
Data availability
The sources of raw data can be found in section 2.2. The code is written for MATLAB, which is available

upon request by contacting Yanshen Wu (wuyanshen1012@mail.bnu.edu.cn).

Appendices

Appendix A: Spatial distribution of yield loss rate and loss rate growth rate under different drought index
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Appendix B: Classificatory key points and cumulative loss rates calculated by category vulnerability curves

Category vulnerability curve Dii L Diz Lr Di3 Lrs CLr
L-L-L 0.44 0.19 0.67 0.48 0.90 0.76 0.33

L-L-M 0.40 0.19 0.55 0.46 0.69 0.73 0.42

M-M-M 0.28 0.18 0.47 0.47 0.65 0.75 0.50

H-H-H 0.19 0.15 0.38 0.45 0.57 0.76 0.57

L-M-H 0.33 0.19 0.44 0.47 0.56 0.75 0.53

Europe 0.27 0.17 0.47 0.46 0.68 0.75 0.48

Appendix C: Descriptive statistics of environmental variables in various loss-type regions

L-L-L L-L-M M-M-M H-H-H L-M-H Regional
Median 677 315 165 140 160 181
Elevation (m) Interquartile
636 468 154 125 103 241
Range
Median 23 12 6 3 3 6
Slope (° Interquartile
pe () q 25 17 9 3 3 9
Range
Median 43 43 43 52 52 43
Soil sand _
Interquartile
content (%) 4 10 22 9 0 12
Range
Precipitation Median 960 646 599 599 638 629
during growth Interquartile
306 198 128 131 53 158
period (mm) Range
Average Median 7.1 7.8 7.5 6.9 3.9 7.1
temperature
. Interquartile
during  growth 35 3.6 21 1.9 11 29
o Range
period ('C)
Relative Median 79.9 80.6 775 77.1 80.2 78.8
humidity during .
) Interquartile
growth  period 2.7 3 3.9 3.1 2.1 3.9

Range
) ’
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