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Abstract. Real-time probabilistic seismic hazard assessment
(PSHA) was developed in this study in consideration of its
practicability for daily life and the rate of seismic activity
with time. Real-time PSHA follows the traditional PSHA
framework, but the statistic occurrence rate is substituted
by time-dependent seismic source probability. Over the last
decade, the pattern informatics (PI) method has been de-
veloped as a time-dependent probability model of seismic
source. We employed this method as a function of time-
dependent seismic source probability, and we selected two
major earthquakes in Taiwan as examples to explore real-
time PSHA. These are the Meinong earthquake (ML 6.6)
of 5 February 2016 and the Hualien earthquake (ML 6.2) of
6 February 2018. The seismic intensity maps produced by the
real-time PSHA method facilitated the forecast of the maxi-
mum expected seismic intensity for the following 90 d. Com-
pared with real ground motion data from the P-alert network,
our seismic intensity forecasting maps showed considerable
effectiveness. This result indicated that real-time PSHA is
practicable and provides useful information that could be em-
ployed in the prevention of earthquake disasters.

1 Introduction

Currently, research on and the application of seismic haz-
ard analyses focus on two major aspects of seismic activity,
namely the pre-earthquake and post-earthquake phases. Post-
earthquake seismic hazard assessment is employed mainly in
the earthquake early warning (EEW) system (Cooper, 1868;
Wu et al., 1998, 2013), which provides people with cru-

cial time to seek refuge before the arrival of larger seis-
mic waves. Pre-earthquake seismic hazard assessment con-
ventionally employs probabilistic seismic hazard analysis
(PSHA; Cornell, 1968; SSHAC, 1997) mainly for engineer-
ing design. PSHA determines the probability of exceeding
the ground motion level over a specified time period based on
the occurrence rate of earthquakes and ground motion predic-
tion equations (GMPEs). The occurrence rate of earthquakes
is generally described by the truncated exponential model
(Cosentino et al., 1977) and the characteristic earthquake
model (Schwartz and Coppersmith, 1984; Wang et al., 2016).
The earthquake occurrence rate computed from these mod-
els will not change with time regardless of whether the data
being used are from long-term observations or paleoseismic
studies. However, seismic activity is a complex dynamic pro-
cess in time and space and usually fluctuates greatly over
a short timescale (Chen et al., 2006). Furthermore, the as-
sessment is usually computed by using extremely long re-
currence intervals, 475 or 2475 years, for the purpose of en-
gineering design (Iervolino et al., 2011). Consequently, it is
difficult to verify the accuracy of seismic hazard assessment
in relation to the limited lifespan of humans. Although long
recurrence intervals are suitable in building construction, the
concept of “catastrophic” over such long intervals does not
resonate with the general public. In addition, most ordinary
people would find it difficult to comprehend an indication
such as “10 % probability of exceedance in 50 years”. Sta-
tistical long-term seismic hazard assessment, therefore, does
not have relevance to the daily life of most people.

However, we believe that short-term, time-dependent, pre-
earthquake hazard assessment is necessary for everyone’s
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daily use. Accordingly, we propose a preliminary method
to achieve this goal by employing time-dependent seismic
source probability instead of the static probability used in
long-term assessment. We used the pattern informatics (PI)
method developed over the past decade (Rundle et al., 2000;
Tiampo et al., 2002; Wu et al., 2008a; Chang et al., 2016) as
a time-dependent seismic source probability method.

Anomalous change in seismicity is used widely as a pre-
cursory indicator for large earthquakes and is usually classi-
fied into seismic activation or seismic quiescence, depending
on an ascending or descending number of seismicity occur-
rences (Chen et al., 2005; Wu et al., 2008b). In the PI method,
large earthquakes tend to occur after precursory anomalous
seismic changes, and the occurrence probability can be quan-
tified by the magnitude of the spatiotemporal variation in
seismicity. In preliminary research, PI performed well in
identifying locations in the vicinity of impending large earth-
quakes. A modified version of PI developed in recent re-
search has apparently improved the accuracy of identifying
the occurrence time interval of large earthquakes. After a se-
ries of verifications, an occurrence probability of large earth-
quakes over the following 90 d was found to be plausible
(Chang et al., 2016; Chang, 2018). Accordingly, we used the
modified PI method to compute the time-dependent seismic
source probability in the Taiwan region.

We illustrate an uncomplicated method to conduct real-
time seismic hazard assessment. The crucial difference is
to replace statistical seismic probability with the time-
dependent probability from the modified PI method. This
real-time seismic hazard assessment is able to produce seis-
mic hazard forecasting maps for the following 90 d. Com-
pared with the forecasting timescale and static seismic rate
of traditional PSHA, real-time PSHA can be updated by re-
freshing the earthquake catalog (time-dependent) and can
forecast for the near future (short term). Thus, it can be re-
ferred to as “real-time”.

We illustrate the real-time assessment process using two
recent large earthquake events in Taiwan, namely the 2016
Meinong earthquake (ML 6.6) (Lee et al., 2016, 2017; Chen
et al., 2017) and the 2018 Hualien earthquake (ML 6.2) (Hsu
et al., 2018). Detailed parameters of the two earthquakes are
listed in Table 1. Finally, we verified the reliability of the
seismic hazard forecasting maps by comparing them with
real ground motion data recorded by the P-alert network.

2 Data

2.1 Central Weather Bureau seismic network catalog

We used data from the seismic network catalog main-
tained by the Central Weather Bureau (CWB) of Taiwan
(R.O.C.) (https://www.cwb.gov.tw/V7e/earthquake/seismic.
htm and http://gdms.cwb.gov.tw/index.php, last access: July
2018). The completeness magnitude (Mc) of this catalog is

estimated at approximately 2.0 in local magnitude (ML) (Wu
et al., 2008c). In an analysis of focal depth, Wu et al. (2008b)
observed that the focal depth of approximately 80 % of earth-
quakes was shallower than 30 km. Accordingly, we used ML
2.0 and 30 km as the threshold of magnitude and focal depth,
respectively, to select the events to be used in the PI calcula-
tion.

2.2 P-alert network

We used the ground motion recordings from the P-alert net-
work to verify the effectiveness of the real-time seismic
hazard assessments from our model. The National Taiwan
University (NTU) commenced development of the P-alert
real-time strong motion network for EEW purposes in 2010
with the support of the Ministry of Science and Technol-
ogy (MOST) (Wu, 2015). The devices of the P-alert net-
work can record real-time three-component acceleration sig-
nals and publish alerts when the peak initial-displacement
amplitude (Pd) or the peak ground acceleration (PGA) ex-
ceeds predefined thresholds (Wu et al., 2013, 2016b; Wu,
2015). Today, there are more than 600 P-alert stations in Tai-
wan, most located in elementary schools (Wu et al., 2013;
Yang et al., 2018). We mainly adopted the P-alert wave-
form database maintained by the Taiwan Earthquake Re-
search Center (TEC), and we used the data from the NTU
as an auxiliary catalog (data from the P-alert network can
be downloaded from the Data Center of the TEC at http:
//palert.earth.sinica.edu.tw/db/, last access: July 2018, or by
contacting Yih-Min Wu at drymwu@ntu.edu.tw for access to
the NTU catalog).

The distribution of the P-alert network is still not uniform
(see Figs. 2b and 3b), despite the large number of seismic sta-
tions covering Taiwan. Obviously, this could cause problems,
which will be discussed later.

3 Method

3.1 Pattern informatics

Phase dynamics is the physical fundamental of the PI
method, which describes changes in a system by rotation of
the state vector in the Hilbert space (Rundle et al., 2002,
2003). The evolution of the state vector in a dynamic fault
system is suggested to be related to stress accumulation
and release (Chen et al., 2006). The computational steps we
adopted here are a modified version developed by Chang
et al. (2016) and Chang (2018) to improve the spatiotempo-
ral resolution of the PI method. The research area (21–26◦ N,
119–123◦ E) was divided into boxes of grid size 0.1◦× 0.1◦,
with each box being indicated by parameter xi . Because of
the Mc and the distribution of the focal depth (mentioned
in Sect. 2.1), we selected all the events with ML ≥ 2.0 and
depth≤ 30 km. In PI computation, t1 and t2 represent the be-
ginning and the end of a change interval, respectively, with
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Table 1. Earthquakes occurring in the forecast interval. Date format: mm/dd.

(a) Meinong case: 1 February–1 May 2016

Date Hour Min. Long. Lat. Depth ML P alert No.

02/05 19 57 120.54 22.92 14.64 6.60 TEC 338
02/05 19 58 120.43 22.94 18.10 5.26 Nan Nan
02/09 00 47 121.69 23.89 5.69 5.12 TEC 341
02/18 01 09 120.87 23.02 5.44 5.27 TEC 357
02/18 01 18 120.88 23.03 4.26 5.13 TEC 357
04/16 10 55 121.80 22.44 11.83 5.22 TEC 436
04/27 15 17 121.78 24.24 11.94 5.67 NTU 424
04/27 15 27 121.75 24.25 12.99 5.13 NTU 425
04/27 18 19 121.23 23.28 15.21 5.52 NTU 423

(b) Hualien case: 1 February–2 May 2018

Date Hour Min. Long. Lat. Depth ML P alert No.

02/04 13 12 121.67 24.20 15.10 5.10 TEC 543
02/04 13 56 121.74 24.15 10.60 5.80 TEC 519
02/04 13 57 121.68 24.19 11.10 5.10 Nan Nan
02/04 14 13 121.72 24.15 10.30 5.50 TEC 517
02/05 15 58 121.72 24.14 10.00 5.00 TEC 522
02/06 15 50 121.73 24.10 6.30 6.20 TEC 520
02/06 15 53 121.59 23.98 5.10 5.00 TEC 520
02/06 18 00 121.73 24.12 6.70 5.30 TEC 516
02/06 18 07 121.71 24.04 4.20 5.30 TEC 516
02/06 19 15 121.73 24.01 5.70 5.40 TEC 516
02/07 15 21 121.78 24.08 7.80 5.80 TEC 523
02/25 18 28 121.90 24.44 17.70 5.20 TEC 533
03/20 09 22 120.54 23.30 11.20 5.30 TEC 539
03/29 00 17 121.01 24.00 11.10 5.00 NTU 388
04/23 17 10 122.53 23.92 19.30 5.10 NTU 381

“P alert” indicates that the P-alert recording was obtained from the Taiwan Earthquake Research
Center (TEC) or the National Taiwan University (NTU). “No.” indicates the number of recording
stations. “Nan” indicates no P-alert data were recorded from either TEC or NTU, even if the event
was recorded by CWB. Bold font represents the Meinong and Hualien earthquakes.

the length of a change interval being 4 years. The start time
of calculation, t0, is defined as 12 years before t2. Then, tb
is a sampling reference time between t0 and t1. The tb starts
from t0 and shifts forward 3 d in each calculation until the
length of time between tb and t1 is a half change interval.
The forecasting interval, t3, starts after t2 (Chang, 2018). The
seismicity rate in the period tb to t (tb to t1 and tb to t2) can
be expressed as

S (xi, tb, t)=
1

t − tb

t∫
tb

n(xi, t)dt . (1)

We conservatively considered the earthquake number, n, oc-
curring in the xi and its eight neighboring boxes. The rate
change during the change interval can be expressed as

1S (xi, tb, t1, t2)= S (xi, tb, t2)−S (xi, tb, t1) . (2)

S(xi, tb, t) is a vector in a Hilbert space that records present
seismic activity, so that 1S can be interpreted as an angu-

lar drift of S (Rundle et al., 2002; Tiampo, 2002). To reduce
the time-dependent background seismicity, we used the tem-
poral standard score normalizing 1S and obtained 1S̃. To
compare the high and low levels of seismicity rate change in
each grid box at the same tb, we subsequently used the spa-
tial standard score normalizing 1S̃ and obtained 1Ŝ. The
average of the absolute value at all tb points in each xi is

1s (xi)=
1
|{tb}|

tb∑
tb=t0

∣∣∣1Ŝ (xi, tb, t1, t2)

∣∣∣ . (3)

Then, the mean squared change in probability

1P (xi)=1s
2 (xi)

was computed (Chen et al., 2005; Chang et al., 2016). We
further divided the magnitude range of earthquakes into sev-
eral segments to separately calculate the relative probabilities
1P(xi). The divided magnitude range is from magnitude 2.0
with a window length of 0.5 magnitude, and it shifts forward
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by 0.2 each time. Then, we calculated the relative probability
each time, such as 1P(xi)2.0–2.5, 1P(xi)2.2–2.7. Finally, we
multiplied all the relative probabilities.

1PM =
∏
1P i–i+0.5 (4)

1PM to forecast the occurrence of earthquakes is referred to
as the modified pattern informatics method (Chang, 2018).
According to Chang et al. (2016), the forecasting interval of
the PI method reaches 90 d. Finally, the PI method produced
a forecasting probability distribution of seismic sources for
ML ≥ 5.0 within the forecasting interval.

3.2 Real-time PSHA

In the traditional PSHA framework (Cornell, 1968; Wang
et al., 2016), the probability of an earthquake occurrence fol-
lows the Poisson process and the average recurrence interval
for an annual frequency of exceedance can be expressed as

υ (Z > z)=

Ns∑
i=1

Ṅi

∫∫
fMi (m)fRi (r) P (Z > z |m, r) dmdr, (5)

where fMi (m) and fRi (r) are the probability den-
sity functions of magnitude and distance, respectively;
P (Z > z |m, r) is the conditional probability of ground mo-
tion Z exceeding a specified value z for a specific magni-
tude m and distance r . Ṅi is the annual occurrence rate of
earthquakes and is described by the truncated exponential
model (Cosentino et al., 1977) and the characteristic earth-
quake model (Schwartz and Coppersmith, 1984). Finally, to
consider all scenarios, the total probability ofNs earthquakes
is summarized in a given region.

In real-time PSHA, the occurrence rate of earthquakes
used in the traditional PSHA framework is replaced by seis-
mic forecasting probability to achieve spatiotemporal vari-
ability in the hazard assessment. Then, considering the grid-
ded space, real-time PSHA can be expressed as

υ (Z > z)=
∑∑

PMi ,Loci (m, loc)P (Z > z|m, loc) , (6)

where PMi ,Loci (m, loc), the forecasting probability distribu-
tion, is a function of magnitude and location. It specifies an
occurrence probability for specific magnitude, Mi , at each
spatial location, Loci . The summations are to consider the
whole of the contribution from any possible magnitude, Ms ,
and location, Locs . We adopted the forecasting probability
from the PI method as PM,Loc(m, loc). Loc refers to xi in
the PI method. The forecasting probability of the PI method
presents a distribution of cumulative forecasting probability
for ML ≥ 5.0. We referred to the average character of the
Gutenberg–Richter law in Taiwan (Gutenberg and Richter,
1944; Wang et al., 2015) to convert it into the probability den-
sity function (PDF). It can correspond to the specific magni-
tude conditions for P(Z > z |m, loc). To evaluate the ground

motion, we used the GMPE published by Lin et al. (2012),

lny =C1+F1+C3 (8.5−Mw)
2
+ [C4+C5 (Mw− 6.3)]

× ln
{√[

R2+ exp(H)2
]}
+C6FNM+C7FRV

+C8 ln
(
Vs30
1130

)
F1 =C2 (Mw− 6.3) , Mw ≤ 6.3
F1 =−HC5 (Mw− 6.3) , Mw > 6.3, (7)

which was also adopted for the Taiwan PSHA in Lee et al.
(2017). In Eq. (7), C1 to C8 and H are the regression coef-
ficients (Table 2); R is the closest distance (km); FNM and
FRV represent the earthquake type, namely FNM = 1 and
FRV = 0 for a normal fault earthquake and FNM = 0 and
FRV = 1 for a reverse fault earthquake. In this GMPE, earth-
quake type is regarded as an important parameter. However,
the division of seismic sources in the PI method is no longer
based on the geological classification but on the grid box,
xi . Considering that most faults in Taiwan are reverse faults
(Shyu et al., 2016), we adopted the reverse fault parameter
setting for the entire research area. Vs30 is eclectically as-
signed Vs30= 760. Using the conversion equation from Lin
and Lee (2008), which was adopted in Lin (2012), turns ML
into Mw. Finally, the forecasting maximum PGA from real-
time PSHA is transferred to seismic intensity according to
the seismic intensity scale of the CWB listed in Table 3 (Wu
et al., 2003). This implies that the seismic intensity forecast-
ing map presents the maximum seismic intensity that every
site will encounter over the following 90 d.

3.3 Performance verification

3.3.1 Receiver operating characteristic curve

The receiver operating characteristic (ROC) diagram is a bi-
nary classification model used widely as a tool to quantify the
performance of earthquake prediction (Holliday et al., 2006;
Nanjo et al., 2006; Wu et al., 2016a). We used the ROC di-
agram as an objective quantitative indicator to evaluate the
performance of the seismic forecasting probability computed
by the PI method. For each box, xi , there are four situations
(parameters) when comparing forecasting hot spots and tar-
get earthquakes. Namely, a means any target earthquake in
a hot spot, b means no target earthquake in a hot spot, c
means no hot spot but at least one target earthquake, d means
no target earthquake and no hot spot. The true positive rate
(TPR) is defined as a/(a+c) and the false positive rate (FPR)
is defined as b/(b+ d). The values of a, b, c, and d change
with the threshold of forecasting probability and, therefore,
TPR and FPR change as well. The value of the area under the
ROC curve (AUC) varies between 0 and 1. AUC= 1 is a per-
fect prediction and AUC= 0.5 is a random guess. For each
PI forecasting map, we generated 1000 random test maps by
re-distributing the hot spots randomly over the research area
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Table 2. Coefficients in the GMPE.

C1 C2 C3 C4 C5 C6 C7 C8 H

1.3979 0.3700 0.0000 −1.2273 0.2086 −0.1934 0.1122 −0.4359 1.4877

Table 3. Seismic intensity scale of CWB. TS1

Intensity scale Ground acceleration
(cm s−2, Gal)

Micro 0 < 0.8
Very minor 1 0.8–2.5
Minor 2 2.5–8.0
Light 3 8–25
Moderate 4 25–80
Strong 5 80–250
Very strong 6 250–400
Great 7 ≥ 400

to examine the possibility that a specific distribution of hot
spots could be generated by chance. In Fig. 1c and d, the blue
line is the 95 % confidence interval based on 2 standard de-
viations. The standard deviation is calculated by the random
test results in each bin of the x axis. The 95 % confidence in-
terval helps to differentiate the distributing range of random
tests and the significance of the forecasting probability.

3.3.2 Average percent hit rate

The success rate of forecasting seismic intensity is a predic-
tive accuracy of classification problems for which the av-
erage percent hit rate (APHR) is arguably the most intu-
itive discrimination measure. The APHR is a rate at which
the forecasting data are classified into the correct classes
(Sharda and Delen, 2006). We used the APHR to quantify
the forecasting performance of real-time seismic hazard as-
sessments. In the APHR, the exact hit rate, which only counts
the correct classifications to the exact same class, can be ex-
pressed as

APHRexact =
1
N

g∑
i=1

pi, (8)

where, in this study, N is the total number of the P-alert sta-
tions or the boxes on the forecasting hazard map, g is the total
number of seismic intensity classes (eight, according to the
CWB seismic intensity scale), and pi is the total number of
samples classified as class i. In the random test, we generated
1000 random tests by randomly redistributing the forecasting
maximum seismic intensity over the research area and the
stations to examine the possibility that a specific distribution
of the forecast could be generated by chance.

4 Results

4.1 Forecasting earthquake occurrences

Figure 1a and b show the forecasting probability maps com-
puted with the PI method, and Fig. 1c and d show the corre-
sponding forecasting performance verified by the ROC tests.
In the case of the 2016 Meinong earthquake, t0, t1, and t2 are
31 January 2004, 31 January 2012, and 31 January 2016. In
the case of the 2018 Hualien earthquake, t0, t1, and t2 are 31
January 2006, 31 January 2014, and 31 January 2018. The
forecasting intervals of both cases are 90 d after t2. The cyan
stars in Fig. 1a and b indicate the main shock of the 2016
Meinong and 2018 Hualien earthquakes and the largest earth-
quake in the forecasting interval. The gray circles in Fig. 1a
and b are the earthquakes with magnitude ML ≥ 5.0 in the
forecasting interval, with more-detailed information about
these earthquakes presented in Table 1. Notably, both main
shocks and most large earthquakes are located in or in close
proximity to hot spots. Overall, simply from visual inspec-
tion, the performance of the PI forecasting probabilities ap-
peared satisfactory.

In Fig. 1c and d, the red curves are located far above the
blue curves (95 % confidence interval). The AUCs of the red
curves are 0.91 and 0.94 and are apparently larger than the
AUCs of the blue curves, which are 0.73 and 0.70. The ROC
tests quantitatively verified that the performance of the PI
forecasting probability was significant and that these patterns
were not generated by chance by the random distribution of
hot spots. Both distributions of hot spots were found to be
physically meaningful. In view of the above, we were able to
use these probability maps as the function of earthquake oc-
currence rate in subsequent calculations for real-time PSHA.

4.2 Real-time PSHA

In Figs. 2 and 3, panel (a) shows the map forecasting the
maximum seismic intensity estimated by real-time PSHA for
the forecasting interval, and panel (b) shows the map indicat-
ing the maximum seismic intensity recorded by the P-alert
network during the forecasting interval. To ensure that it was
the absolute maximum intensity during the forecasting inter-
val, we used only the stations that had recorded all the tar-
get events (ML ≥ 5.0) in the forecasting interval. Although
there are over 600 P-alert stations distributed widely in Tai-
wan, some boxes do not contain any station, e.g., the Cen-
tral Mountain Range (see Fig. 5a and b). Therefore, we es-
timated the intensities in these boxes by interpolating. How-
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Figure 1. Panels (a) and (b) show the forecasting probability maps of the Meinong earthquake and the Hualien earthquake, respectively.
Panels (c) and (d) are the ROC curves of (a) and (b), respectively. Red, gray, blue, and black curves represent the forecasting probability
map, random tests, 95 % confidence interval, and the average of random tests, respectively.

ever, clearly, our strategy generated an artificial effect, which
will be shown later.

Comparing Fig. 2a and b, we suggest that both seismic
intensity distributions are remarkably similar. An apparent
deviation between the forecasted seismic intensities and the
recorded values occurs in southwestern Taiwan, particularly
the area closer to the 2016 Meinong main shock. Figure 2c
shows the difference in seismic intensity between Fig. 2a
and b, with the blue and red colors indicating that the fore-
casting value in a box was underestimated or overestimated,
respectively. Most boxes have an intensity difference in the
range −1 to 1, but some boxes in southwestern Taiwan are
underestimated, with the differences being mostly 2 or even
up to 3.

Comparing Fig. 3a and b, we suggest that both seismic
intensity distributions are still extremely similar. In this in-

stance, an apparent deviation between the forecasted seismic
intensities and the recorded values occurs in southern Tai-
wan and a part of the southwestern area. Figure 3c shows
that most boxes in southern Taiwan have a smaller recorded
intensity, with the recorded intensities in a part of southwest-
ern Taiwan being larger than the forecasting values.

Figure 4 shows the verifications generated by the APHR
to quantitatively evaluate the performance of forecasting the
seismic intensity. We considered the denominator of two
classifications in Eq. (8), i.e., the total number of P-alert sta-
tions and the total number of boxes in the research area. The
results are indicated by “P-alert” and “Map”, respectively, in
Fig. 4. When comparing forecasting intensity with recorded
value, both cases “forecasting= recorded” and “forecast-
ing= recorded+ 1” indicate “successful forecasting”. How-
ever, defining the tolerance range, which depends on the per-
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Figure 2. The 2016 Meinong earthquake. (a) Map of forecasted maximum seismic intensity by real-time PSHA. The forecasting interval
of seismic intensity is 90 d. (b) Map of maximum seismic intensity recorded by the P-alert network. Black and white triangles indicate the
P-alert stations that we used and did not use, respectively, in the verification. (c) Difference in seismic intensity between the forecast and
the record. The cyan star represents the Meinong earthquake, and the gray circles represent the earthquakes with magnitude ML ≥ 5 in this
forecasting interval.

Figure 3. The 2018 Hualien earthquake. (a) Map of forecasting maximum seismic intensity. (b) Map of maximum seismic intensity recorded
by the P-alert network. (c) Difference in seismic intensity between the forecast and the record. The cyan star represents the Hualien earth-
quake.

spectives and allowances of different users, is debatable (Hsu
et al., 2018). In this study, we tolerated an overestimation of
1 intensity rather than underestimation, as, in relation to the
prevention or mitigation of earthquake disasters, “overesti-
mation” was considered preferable to “underestimation”.

All the red lines are above the maximum hit rate of the
random tests and higher than 0.5, not to mention the random
guesses of the eight choices of the seismic intensity scale on
each station or box. This implies that the forecasting ability
of the generated seismic intensity maps is significantly ef-
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Figure 4. Performance test of APHR. The red line indicates the
forecasts of real-time PSHA, the gray circle indicates the result of
a random test by randomly redistributing seismic intensities, and the
blue error bar indicates the interval with 2 standard deviations over
all random tests.

fective and that this satisfactory performance could not be
ascribed to chance. Furthermore, both hit rates of the “P-
alert” cases are higher than the rates of the “map” cases.
However, this result could be attributed to the influence of
the artificial effect generated by the interpolation of seismic
intensity from the P-alert data of nonuniform distribution. Fi-
nally, it should be emphasized that we focused only on earth-
quakes with ML ≥ 5 and we cannot deny the possibility that
a ML < 5 earthquake could cause large seismic intensity in
the near field.

5 Discussion

The results of the APHR performance test indicated that the
maps and stations employed to forecast the maximum seis-
mic intensity by real-time PSHA were significant and effec-
tive. Figure 5 is a concretization of the APHR verification
and provides more detail. It clearly shows the P-alert station
distributions of the “hit” and “not hit”, considering only the
station-to-station prediction relationship between the fore-
casts and records. In both instances, most of the P-alert sta-
tions are hit (Fig. 5a and b), and the hit percentages are
distributed along the diagonal and tolerant ranges (Fig. 5c
and d). However, some locations or stations produced incor-
rect forecasts. In the case of the 2016 Meinong earthquake,
the stations located in southwestern Taiwan do not match the
real records and, at high seismic intensities (> 3), the fore-
casting results at some stations are underestimated (Fig. 5c),
particularly in the southwestern area. In the case of the 2018
Hualien earthquake, the result from the P-alert APHR ap-
pears superior to that of Meinong, and the distribution of the

hit percentage is more concentrated along the diagonal and
tolerant ranges (Fig. 5d). Nevertheless, the forecasts in south-
ern Taiwan and part of southwestern Taiwan were not hit.

In both instances, the differences between the forecasting
results and the recorded seismic intensities could be ascribed
mainly to three aspects. First, the forecasting model that de-
termines the probability distributions of earthquake occur-
rences is critical in real-time PSHA. If the probability dis-
tribution misses or is a false alarm somewhere, it directly
leads to inaccurate forecasts in real-time PSHA. In the PI re-
sults, some differences were located at the hot spots with rel-
atively higher probability, e.g., the area in 22.6 to 23◦ N and
120.9 to 121.3◦ E in Fig. 1a and 22.7 to 23.1◦ N and 120.4
to 120.8◦ E in Fig. 1b. Compared with the locations of the
earthquakes, these hot spots shifted slightly and it appeared
acceptable. However, in the results of real-time PSHA, this
led to underestimation of the maximum seismic intensity in
the area close to the epicenters and overestimation in the area
without any earthquake events but with high probability of
earthquake occurrence. For instance, in the case of the 2018
Hualien earthquake, the maximum seismic intensity in the
southwestern area was underestimated and that in the south-
ern area was overestimated (see Figs. 3 and 5b). Therefore,
in real-time PSHA, a more accurate and precise forecasting
model would facilitate the obtainment of results that are more
positive. Furthermore, even if the PI results performed well
in the ROC test, the PI method still needed improvement.

Second, the evaluation of earthquake ground motion is
subject to the limitations of GMPEs. We adopted the GMPE
produced by Lin et al. (2012), whose data (ML ≥ 5.0) within
50 km represent less than 14 % of all the data for regression
of GMPE. Therefore, when there is shortage of data in the
near field and, for larger events, in the regression of GMPEs,
the applicability of GMPEs becomes limited (Edwards and
Fäh, 2014). Accordingly, the limited applicability of GMPEs
probably caused the deviation in evaluation of the seismic
intensity forecasting maps, e.g., the underestimation of the
areas around the two main shocks (Figs. 2c and 3c). Further-
more, it is difficult to properly and comprehensively evalu-
ate the site effect in GMPEs, but it dramatically affects the
behavior of seismic waves. For example, the amplitudes in
the Meinong earthquake were amplified extending along the
northwest (in Fig. 2b) because the western plain is composed
of thick and low-velocity sedimentary deposits (see Fig. 4 in
Lee et al., 2016). Consequently, the site effect leads to under-
estimation in the seismic intensity forecast (Figs. 2c and 5a).

In addition, the directivity effect plays a vital role in the
distribution of ground motion. In regards to the main shocks
in the two study cases, the rupture characteristic had a strong
directivity effect that caused significant amplification of the
ground motion along the rupture direction (Lee et al., 2016;
Hsu et al., 2018). However, basically, GMPEs indicate the
statistical distribution of PGA generated by all the data at
the same radical distance without considering the possible
effect of rupture directivity. As a result, GMPEs are only
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Figure 5. Panels (a) and (b) are the P-alert station distributions indicating “hit” and “not hit”. The red and blue triangles represent “hit” and
“not hit”, respectively. Panels (c) and (d) are the distributions of the hit percentage for the 2016 Meinong and 2018 Hualien earthquakes,
respectively. The red line area represents the acceptable prediction range.

able to provide the ground motion estimation of radial ex-
tension. Furthermore, the forecasting model does not include
information on the rupture direction. Therefore, we suggest
that some differences along the rupture direction could be
ascribed to this effect.

6 Conclusions

This study presents a method to achieve real-time seismic
hazard assessment by replacing the static seismic rate, i.e.,
the truncated and characteristic earthquake models, with the
time-dependent seismic source probability of the PI method.
With regard to this time-dependent seismic source probabil-
ity, ROC tests verified quantitatively that the performance of
the PI forecasting probabilities in the forecasting intervals
was quite effective. Therefore, we were able to use the sig-
nificant probability distributions as the function of the earth-

quake occurrence rate, P(m, loc), in real-time PSHA. The
hit rates of our seismic intensity forecasting maps gener-
ated with real-time PSHA outperformed the random guesses
and were higher than 0.5 for both the Meinong and the
Hualien earthquakes. Therefore, we suggest that real-time
PSHA maps are effective forecasting tools, and their sat-
isfactory performance cannot be attributed to coincidence.
We demonstrated that real-time seismic hazard assessment
was attainable and could be realized and updated by time-
dependent seismic source probability.

In future, different time-dependent seismic source proba-
bility models of earthquake occurrences could be introduced
to provide estimation that is more accurate and robust. In ad-
dition, a possible improvement to our results could be from
estimated PGA distribution, not only by means of state-of-
the-art machine learning tools for an extensive databank of
the P-alert network but also by physics-based numerical sim-
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ulations (PBSs) of seismic ground motion, instead of em-
pirical GMPEs. Presumably, a real-time forecasting map of
seismic intensity would enable governments or businesses
to prepare efficiently for earthquake disasters. Furthermore,
the seismicity intensity scale based on PGA is related to
the vulnerability level of buildings, which will also change
over time because of degradation and upgrades (e.g., obso-
lescence, retrofitting actions, and climate events). Therefore,
real-time PSHA and change in vulnerability should be con-
sidered when assessing seismic risk fluctuation with time.
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on the Central Weather Bureau website (https://www.cwb.gov.
tw/V7e/earthquake/seismic.htm, Central Weather Bureau, 2018a
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