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Abstract 9  

The real-time Probabilistic Seismic Hazard Assessment (PSHA) is developed for considering the 10  

practicability for daily life and the rate of seismic activity with time. The real-time PSHA follows 11  

the traditional PSHA framework, but the statistic occurrence rate is substituted by time-dependent 12  

seismic source probability. Pattern Informatics method (PI) is a proper time-dependent probability 13  

model of seismic source, which have been developed over a decade. Therefore, in this research, 14  

we chose the PI method as the function of time-dependent seismic source probability and selected 15  

two big earthquakes in Taiwan, the 2016/02/05, Meinong earthquake (ML 6.6) and the 2018/02/06, 16  

Hualien earthquake (ML 6.2), as examples for the real-time PSHA. The forecasting seismic 17  

intensity maps produced by the real-time PSHA present the maximum seismic intensity for the 18  
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next 90 days. Compared to real ground motion data from the P-alert network, these forecasting 19  

seismic intensity maps have considerable effectiveness in forecasting. It indicates that the real-20  

time PSHA is practicable and can provide a useful information for the prevention of earthquake 21  

disasters.  22  

 23  

1   Introduction  24  

At present, there are two major phases about the researches and applications of seismic hazard: the 25  

pre-earthquake and the post-earthquake. The most important usage of the post-earthquake seismic 26  

hazard assessment is the Earthquake Early Warning (EEW) system (Cooper, 1868; Wu et al., 1998; 27  

Wu et al., 2013). It provides extra time for people to take refuge before the larger seismic wave 28  

arrives. On the other hand, Probabilistic Seismic Hazard Analysis (PSHA; Cornell, 1968; SSHAC, 29  

1997) is the most common methodology of the pre-earthquake seismic hazard assessment and 30  

mainly for engineering design. PSHA determines the exceeding probability of ground motion level 31  

over a specified time period based on the occurrence rate of earthquake and ground motion 32  

prediction equations (GMPEs). The occurrence rate of earthquake is generally described by the 33  

truncated exponential model (Cosentino et al., 1977) and the characteristic earthquake model 34  

(Schwartz and Coppersmith, 1984; Wang et al., 2016). No matter the data is from long-term 35  

observations or paleoseismic studies, the earthquake occurrence rate computed from these models 36  
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will not change with time. However, the seismic activity is a complex dynamic process in time and 37  

space and usually fluctuates enormously in short time scale (Chen et al., 2006). Furthermore, the 38  

assessment is usually computed by using very long recurrence interval, 475 or 2475 years, for the 39  

purpose of engineering design (Iervolino et al., 2011). As a result, it is hard to verify the accuracy 40  

of seismic hazard assessment in limited life because of such long period. On the other hand, such 41  

long interval is suitable for buildings, but not for human’s life which is definitely much shorter 42  

than the life span of buildings. In other words, the concept of catastrophic in such long recurrence 43  

intervals is difficult to resonate in the daily life of general public. In addition, the definition like 44  

10% probability in 50 years is hard to image for most ordinary people. Therefore, a statistical long-45  

term seismic hazard assessment is useless in our daily life. On the contrary, we believe that a short-46  

term and time-dependent pre-earthquake hazard assessment is necessary for everyone’s daily use. 47  

In this study, we suggested a preliminary method to achieve this goal by using a time-dependent 48  

seismic source probability instead of the static one in the long-term assessment. One of the capable 49  

candidates as a time-dependent seismic source probability is the Pattern Informatics (PI) method, 50  

which has developed over the past decade (Rundle et al., 2000; Tiampo et al., 2002; Wu et al., 51  

2008a; Chang et al., 2016). 52  

 53  

Anomalous change in seismicity is widely used as precursory indicator for big earthquakes and is 54  
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usually classified into seismic activation or seismic quiescence, depending on ascending or 55  

descending number or occurrence rate of seismicity (Chen et al., 2005; Wu et al., 2008b). In the 56  

PI method, big earthquakes tend to occur after precursory anomalous seismic changes and its 57  

occurrence probability can be quantified by the magnitude of spatiotemporal variation of 58  

seismicity. In preliminary researches, PI performs good in identifying locations nearby upcoming 59  

big earthquakes. A modified version of PI developed in the recent researches has obviously 60  

improved the accuracy of identifying occurrence time interval of big earthquakes. The occurrence 61  

probability of big earthquakes in the next 90 days is plausible after a series of verification (Chang 62  

et al., 2016; Chang, 2018). Therefore, we used the modified PI method to compute the time-63  

dependent seismic source probability of each location while the area of interest is coarse-grained 64  

by square in uniform size.  65  

 66  

In this research, we illustrate a simple way to achieve a real-time seismic hazard assessment. The 67  

crucial step is to replace statistical seismic probability by the time-dependent probability from the 68  

modified PI method. The real-time seismic hazard assessment produced the seismic hazard 69  

forecasting maps for the next 90 days. The “real-time” PSHA can be updated with earthquake 70  

catalog refreshing (time-dependent) and forecast for the near future (short-term), and compared 71  

with the forecasting time scale and static seismic rate of the traditional PSHA, these can be called 72  
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“real-time”. We illustrated this real-time assessment process by two recent big earthquakes in 73  

Taiwan, the 2016 Meinong earthquake (ML 6.6) (Lee et al., 2016; Chen et al., 2017; Lee et al., 74  

2017) and the 2018 Hualien earthquake (ML 6.2) (Hsu et al., 2018). Detailed parameters about 75  

these two earthquakes are listed in Table 1. Finally, the reliability of the seismic hazard maps was 76  

verified by comparing with real ground motion data recorded by the P-alert network. 77  

 78  

2   Data 79  

2.1   Central Weather Bureau Seismic Network (CWBSN) catalog 80  

We used the CWBSN catalog maintained by the Central Weather Bureau (CWB), Taiwan 81  

(https://www.cwb.gov.tw/V7e/earthquake/seismic.htm and http://gdms.cwb.gov.tw/index.php, 82  

last access: July 2018). The completeness magnitude (Mc) of this catalog is estimated 83  

approximately 2.0 in local magnitude (ML) (Wu et al., 2008c). In the analysis of focal depth, Wu 84  

et al. (2008b) showed that the focal depth for about 80% earthquakes is shallower than 30 km. 85  

Therefore, we used ML 2.0 and 30 km as the threshold of magnitude and focal depth to select 86  

earthquakes used in the PI calculation.  87  

 88  

2.2   P-alert network 89  

In this research, the ground motion recordings from the P-alert network were used to verify the 90  
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effectiveness of the real-time seismic hazard assessments from our idea. The EEW research group 91  

of the National Taiwan University (NTU) have begun to set up the P-alert real-time strong-motion 92  

network since 2010. The device of the P-alert network can record real-time acceleration signals in 93  

three-component and publish alerts if the peak initial-displacement amplitude (Pd) or peak ground 94  

acceleration (PGA) exceeds a redefined threshold (Wu et al., 2013, 2016b). Nowadays, there are 95  

more than 600 stations in Taiwan; most of them are located in elementary schools (Wu et al., 2013; 96  

Yang et al., 2018). We mainly adopted the P-alert waveform database maintained by Taiwan 97  

Earthquake research Center (TEC) and the data from NTU were as an auxiliary catalog (The data 98  

of the P-alert network can be downloaded from the Data Center of TEC: 99  

http://palert.earth.sinica.edu.tw/db/ (last access: July 2018) or contact with Prof. Yih-Min Wu at 100  

NTU for NTU’s catalog: drymwu@ntu.edu.tw). However, even if there are so many stations 101  

covering Taiwan, the distribution of the P-alert network is still nonuniform (see Fig. 2b and 3b). 102  

This nonuniform distribution may causes some problems that we will discuss later. 103  

 104  

3   Method 105  

3.1   Pattern Informatics (PI) 106  

The physical fundamental of the PI method is phase dynamics which describes changes of a system 107  

by rotation of state vector in the Hilbert space (Rundle et al., 2002; 2003). The evolution of state 108  
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vector in a dynamic fault system is suggested to be related to stress accumulation and release (Chen 109  

et al., 2006). The computation steps we addressed here are a modified version developed by Chang 110  

et al. (2016) and Chang (2018) to improve temporal resolution of the PI. The research area 111  

(119°~123° E 21°~26° N) is divided into boxes of grid size 0.1°×0.1°, and each box is indicated 112  

by parameter 𝑥". Because of the Mc and the distribution of focal depth (mentioned in Section 2.1), 113  

all events having ML ≥ 2.0 and depth ≤ 30 km were used. In the PI computation, 𝑡$ and 𝑡% are 114  

the beginning and the end of a change interval, respectively, and the length of a change interval is 115  

4 years. The beginning time of calculation, 𝑡&, is defined as 12 years before 𝑡%. Then, 𝑡' is a 116  

sampling reference time between 𝑡& and 𝑡$. The 𝑡' starts from 𝑡& and shifts forward 3 days in 117  

each calculation until the length of time between 𝑡' and 𝑡$ being a half change interval. The 118  

forecasting interval, 𝑡(, starts after 𝑡% (Chang, 2018). The seismicity rate in the time period 𝑡' 119  

to 𝑡 (𝑡' to 𝑡$ and 𝑡' to 𝑡%) can be expressed as  120  

𝑆(𝑥", 𝑡', 𝑡) =
1

𝑡 − 𝑡'
0 𝑛(𝑥", 𝑡)𝑑𝑡
3

34
 121  

(1) 122  

In this study, we conservatively consider the earthquake number, 𝑛, occurring in the 𝑥" and its 123  

eight neighboring boxes. The rate change during the change interval can be expressed as  124  

∆𝑆(𝑥", 𝑡', 𝑡$, 𝑡%) = 𝑆(𝑥", 𝑡', 𝑡%) − 𝑆(𝑥", 𝑡', 𝑡$) 125  

(2) 126  
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𝑆(𝑥", 𝑡', 𝑡) is a vector in a Hilbert space that records present seismic activity, so ∆𝑆 can be 127  

interpreted as an angular drift of 𝑆 (Rundle et al., 2002; Tiampo 2002). To reduce the time-128  

dependent background seismicity, we take temporal standard score normalizing ∆𝑆, and obtain 129  

∆𝑆6. To compare the high and low levels of seismicity rate change in each grid box at the same 𝑡', 130  

we then take spatial standard score normalizing ∆𝑆6, and obtain ∆𝑆7. The average of the absolute 131  

value at all 𝑡' points in each 𝑥" is  132  

∆𝑠(𝑥") =
1

|{𝑡'}|
< =∆𝑆7(𝑥", 𝑡', 𝑡$, 𝑡%)=
34

34>3?

 133  

(3) 134  

Then, the mean squared change in probability  135  

∆𝑃(𝑥") = ∆𝑠%(𝑥") 136  

is computed (Chen et al., 2005; Chang et al., 2016). In this study, we further divide the magnitude 137  

range of earthquakes into several segments to separately calculate the relative probabilities 138  

∆𝑃(𝑥"). The divided magnitude range is from magnitude of 2.0 with window length 0.5, and it 139  

shifts forward by 0.2 each time. Then, we calculate relative probability each time, such as 140  

∆𝑃(𝑥")%.&~%.C, ∆𝑃(𝑥")%.%~%.D. Finally, we multiply all of the relative probabilities.  141  

∆𝑃E =F∆𝑃"~"G&.C 142  

(4) 143  
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∆𝑃E to forecast earthquakes is referred to as the modified pattern informatics method (Chang, 144  

2018). According to Chang et al. (2016), the forecasting interval of the PI method reaches 90 days. 145  

Lastly, the PI method produces a forecasting probability distribution of seismic sources for ML ≥ 146  

5.0 within the forecasting interval. 147  

 148  

3.2   Real-time PSHA 149  

In the traditional PSHA framework (Cornell, 1968; Wang et al., 2016), the probability of an 150  

earthquake’s occurrence follows the Poisson process and the average recurrence interval for an 151  

annual frequency of exceedance can be expressed as 152  

𝜐(𝑍 > 𝑧) =<𝑁Ṁ
OP

">$

Q𝑓ES
(𝑚)𝑓US(𝑟)	  𝑃(𝑍 > 𝑧	  |	  𝑚, 𝑟)	  𝑑𝑚	  𝑑𝑟 153  

(5) 154  

where 𝑓ES
(𝑚)  and 𝑓US(𝑟)  are the probability density functions of magnitude and distance, 155  

respectively; 𝑃(𝑍 > 𝑧	  |	  𝑚, 𝑟) is the conditional probability of ground motion 𝑍  exceeding a 156  

specified value 𝑧 for a specific magnitude 𝑚 and distance 𝑟. 𝑁Ṁ  is the annual occurrence rate 157  

of earthquakes and described by the truncated exponential model (Cosentino et al., 1977) and the 158  

characteristic earthquake model (Schwartz and Coppersmith, 1984). Finally, to consider all 159  

scenarios, the total probability of 𝑁X earthquakes is summarized in a given region. 160  
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 161  

In the real-time PSHA, the occurrence rate of earthquake used in the traditional PSHA framework 162  

is replaced by seismic forecasting probability to achieve spatiotemporal variability of the hazard 163  

assessment. Then, considering the gridded space, the real-time PSHA can be expressed as  164  

𝜐(𝑍 > 𝑧) =<<𝑃ES,YZ[S(𝑚, 𝑙𝑜𝑐)
YZ[PEP

𝑃(𝑍 > 𝑧|𝑚, 𝑙𝑜𝑐)	   165  

 (6) 166  

where 𝑃ES	  ,	  YZ[S(𝑚, 𝑙𝑜𝑐), the forecasting probability distribution, is a function of magnitude and 167  

location. It specifies an occurrence probability for specific magnitude, 𝑀", at each spatial location, 168  

	  𝐿𝑜𝑐". The summations are to consider the whole of the contribution from any possible magnitude, 169  

𝑀X, and location, 𝐿𝑜𝑐X. In this research, we adopted the forecasting probability from the PI method 170  

as 𝑃E,YZ[(𝑚, 𝑙𝑜𝑐). 𝐿𝑜𝑐  refers to 𝑥"  in the PI method. The forecasting probability of the PI 171  

method presents a distribution of cumulative forecasting probability for ML ≥ 5.0. Thus, we 172  

referred to the average character of Gutenberg-Richter law in Taiwan (Gutenberg and Richter, 173  

1944; Wang et al., 2015) to turn it into probability density function (PDF). It can be corresponded 174  

to the specific magnitude conditions for 𝑃(𝑍 > 𝑧	  |	  𝑚, 𝑙𝑜𝑐). To evaluate the ground motion, we 175  

used the GMPE published by Lin et al. (2012),  176  
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ln 𝑦 = 𝐶$ + 𝐹$ + 𝐶((8.5 −𝑀i)% + [𝐶k + 𝐶C(𝑀i − 6.3)] ln op[𝑅% + 𝑒𝑥𝑝(𝐻)%]u + 𝐶v𝐹OE177  

+ 𝐶D𝐹Uw + 𝐶x ln y
𝑉X30
1130| 178  

𝐹$ = 𝐶%(𝑀i − 6.3), 𝑀i ≤ 6.3 179  

𝐹$ = −𝐻𝐶C(𝑀i − 6.3), 𝑀i > 6.3 180  

(7) 181  

which was also adopted for the issue of Taiwan PSHA in Lee et al. (2017). In Eq. 7, 𝐶$ to 𝐶x 182  

and 𝐻 are the regression coefficients (Table 2); 𝑅 is the closest distance (km); 𝐹OE and 𝐹Uw 183  

represent the earthquake type: 𝐹OE = 1 and 𝐹Uw = 0 for normal fault earthquake; 𝐹OE = 0 184  

and 𝐹Uw = 1 for reverse fault earthquake. In this GMPE, the earthquake type is one of the 185  

important parameters. However, the divisions of seismic source in the PI method is no longer based 186  

on the geological classification, but the grid box, 𝑥". Considering that the most faults in Taiwan 187  

are reverse faults (Shyu et al., 2016), we adopted the reverse fault parameters setting for the entire 188  

research area. 𝑉X is eclectically assigned 𝑉X = 760. Using the conversion equation written in Lin 189  

and Lee (2008), which is adopted in Lin (2012), turns 𝑀Y  into 𝑀i . Finally, the forecasting 190  

maximum PGA from the real-time PSHA is transferred to seismic intensity according to the 191  

seismic intensity scale of CWB listed in Table 3 (Wu et al., 2003). It means that the forecasting 192  

seismic intensity map presents the maximum seismic intensity which every site will encounter in 193  

the following 90 days.  194  
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 195  

3.3   Performance verification  196  

3.3.1   Receiver Operating Characteristic curve (ROC)  197  

The ROC diagram is a binary classification model and widely used as a tool for quantifying the 198  

performance of earthquake prediction (Holliday et al., 2006; Nanjo et al., 2006; Wu et al., 2016a). 199  

We used the ROC diagram as an objective quantitative indicator to evaluate the performance of 200  

the forecasting seismic probability computed by the PI method. For each box 𝑥", there are four 201  

situations, parameters, while comparing forecasting hotspot and target earthquake: 𝑎 means any 202  

target earthquake in a hotspot; 𝑏 means no target earthquake in a hotspot; 𝑐 means no hotspot 203  

but with at least one target earthquake; 𝑑  means no target earthquake and no hotspot. True 204  

positive rate (TPR) is defined as 𝑎 (𝑎 + 𝑐)⁄  and false positive rate (FPR) is defined as 𝑏 (𝑏 + 𝑑)⁄ . 205  

The values of 𝑎, 𝑏, 𝑐, and 𝑑 change with threshold of forecasting probability, and therefore 206  

TPR and FPR change as well. The area under the ROC curve (AUC) is between 0 and 1. AUC=1 207  

is a perfect prediction; AUC=0.5 is a random guess. For each forecasting map of PI, we generated 208  

1000 random tests by re-distributing the hotspots randomly over the research area to examine the 209  

possibility that a specific distribution of hotspots can generate by chance. In Fig. 1c and 1d, the 210  

blue line is the 95% confidence interval based on two standard deviations. The standard deviation 211  

is calculated by the random test results in each bin of the x-axis. The 95% confidence interval helps 212  
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us differentiate the distributing range of random tests and the significant of forecasting probability.  213  

 214  

3.3.2   Average Percent Hit Rate (APHR) 215  

The success rate of forecasting seismic intensity is a predictive accuracy of classification problems 216  

for which the average percent hit rate (APHR) is arguably the most intuitive measure of 217  

discrimination. The APHR is a rate at which the forecasting data are classified into the correct 218  

classes (Sharda and Delen, 2006). In this research, the APHR was used to quantify the forecasting 219  

performance of the real-time seismic hazard assessments. In the APHR, the exact hit rate which 220  

only counts the correct classifications to the exact same class can be expressed as:  221  

APHR����� =
1
𝑁<𝑝"

�

">$

 222  

    (8) 223  

where, in our case, 𝑁 is the total number of the P-alert stations or the boxes on the forecasting 224  

hazard map, 𝑔 is the total number of seismic intensity classes (=8, according to the CWB’s 225  

seismic intensity scale), and 𝑝" is the total number of samples classified as class 𝑖. In the random 226  

test, we further generated 1000 random tests by randomly re-distributing the forecasting maximum 227  

seismic intensity over the research area and the stations to examine the possibility that a specific 228  

distribution of the forecast can generate by chance.  229  
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 230  

4   Results  231  

4.1   Forecast of earthquake occurrences 232  

Figure 1a and 1b show the forecasting probability maps computed by the PI method, and Fig. 1c 233  

and 1d are corresponding forecasting performance verified by the ROC tests. In the case of 2016 234  

Meinong earthquake, 𝑡&, 𝑡$, and 𝑡% are 2004/01/31, 2012/01/31, and 2016/01/31. In the case of 235  

2018 Hualien earthquake, 𝑡& , 𝑡$ , and 𝑡%  are 2006/01/31, 2014/01/31, and 2018/01/31. The 236  

forecasting intervals of both cases are 90 days after 𝑡%. Cyan star in Fig. 1a and 1b is the main 237  

shock of 2016 Meinong and 2018 Hualian earthquakes, and the biggest earthquake in the 238  

forecasting interval. Gray circles in Fig. 1a and 1b are the earthquakes with magnitude ML ≥ 5.0 239  

in the forecasting interval, and more detailed information about these earthquakes can be obtained 240  

in Table 1. A notable point is that both main shocks and most big earthquakes are located in or 241  

very close to the hotspots. The performance of the PI forecasting probabilities seems to be good 242  

simply by visual inspection. 243  

 244  

In Fig. 1c and 1d, red curves are far above the blue curves (95% confidence interval). The AUCs 245  

of red curves are 0.91 and 0.94, and are apparently larger than the AUCs of blue curves, which are 246  

0.73 and 0.70. The ROC tests verified quantitatively that the performance of the PI forecasting 247  
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probability is significant, and these patterns are not just generated by random distribution of 248  

hotspots by chance. Both distributions of hotspot are physically meaningful. Therefore, we can use 249  

these probability maps as the function of earthquake occurrence rate in subsequent calculation for 250  

the real-time PSHA. 251  

 252  

4.2   Real-time PSHA 253  

In Fig. 2 and 3, panel (a) shows the map of forecasting max seismic intensity estimated by the real-254  

time PSHA for the forecasting interval; panel (b) shows the map of max seismic intensity recorded 255  

by the P-alert network during the forecasting interval. To ensure that it is absolutely maximum 256  

intensity during the forecasting interval, we only used the stations which have recorded all the 257  

target events (ML ≥ 5.0) in the forecasting interval. Although there are over 600 P-alert stations 258  

distributing widely in Taiwan, some boxes still do not contain any station, for example, the Central 259  

Mountain Range (see Fig. 5a and 5b). Therefore, we had to estimate the intensities in such kind of 260  

boxes by interpolating. Thus, this strategy indeed generates the artificial effect and we will show 261  

it later. 262  

 263  

Comparing Fig. 2a and 2b, we suggest that both seismic intensity distributions are very similar. 264  

An apparent deviation of forecasting seismic intensities from the recorded values is in the 265  
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southwestern Taiwan, especially the area closer to the 2016 Meinong main shock. Fig. 2c shows 266  

the difference of intensity between Fig. 2a and 2b; the color of blue and red means that the 267  

forecasting value in a box is underestimated or overestimated. Most boxes have intensity 268  

difference in the range -1 to 1, but some boxes in the southwestern Taiwan are underestimated; the 269  

differences are most 2 or even up to 3.  270  

 271  

Comparing Fig. 3a and 3b, we suggest that both seismic intensity distributions are still very similar. 272  

In this case, an apparent deviation of forecasting seismic intensities from the recorded values is in 273  

the southern Taiwan and a part of southwestern area. Figure 3c shows that most boxes in the 274  

southern Taiwan have smaller recorded intensity, and the recorded intensities in a part of 275  

southwestern Taiwan are larger than the forecasting values. 276  

 277  

Figure 4 shows the verifications generated by the APHR to quantitatively evaluate the performance 278  

of the forecasting seismic intensity. We considered the denominator of two classifications in Eq. 279  

8, i.e. the total number of the P-alert stations and the total number of boxes in the research area. 280  

The results are indicated by “P-alert” and “Map” in Fig. 4, respectively. While comparing 281  

forecasting intensity to recorded value, both cases “forecasting = recorded” and “forecasting = 282  

recorded +1” belong to “successful forecasting”. The definition of the tolerance range that depends 283  
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on the perspectives and allowance of different users is  certainly debatable (Hsu et al., 2018). In 284  

our case, the reason is that considering to prevent or mitigate earthquake disaster, “overestimation” 285  

is better than “underestimation”. Therefore, we tolerated the case of overestimation of 1 intensity 286  

rather than underestimation.  287  

 288  

First, all red lines are above the maximum hit rate of random tests and higher than 0.5, not to 289  

mention the random guess of the eight choices of the seismic intensity scale. It means that these 290  

forecasting seismic intensity maps have considerable effectiveness in the forecast, and their good 291  

performance can’t merely happen by chance. Moreover, another property is that both hit rates of 292  

the “P-alert” cases are higher than the rates of the “map” cases. This result could be attributed to 293  

the influence of the artificial effect generated by the interpolation of seismic intensity from the P-294  

alert data of nonuniform distribution. Last, it is emphasized that we just focus on the earthquakes 295  

with ML ≥ 5 in this research, but we cannot deny the possibility of a ML < 5 earthquake to cause 296  

large seismic intensity in the near field. 297  

 298  

5   Discussion 299  

The results of the APHR performance test indicates that the maps and stations of forecasting max 300  

seismic intensity by the real-time PSHA are significant and effective. Figure 5 is a concretization 301  
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of the APHR verification and further gives more details. It clearly shows the P-alert station 302  

distributions of the “hit” and “not hit”, considering only the station-to-station prediction 303  

relationship between the forecasts and records. In both cases, most of the P-alert stations are hit 304  

(Fig. 5a and 5b), and the hit percentages distribute along the diagonal  and tolerant ranges (Fig. 5c 305  

and 5d). However, there still are some locations or stations with wrong forecast. In the case of 306  

2016 Meinong earthquake, the stations located in the southwestern Taiwan do not match the real 307  

records, and at high seismic intensities (>3), the forecasting results at some stations are 308  

underestimated (Fig. 5c), especially in the southwestern area. In the case of 2018 Hualien 309  

earthquake, the result from the “P-alert” APHR seems better than former, and further the 310  

distribution of the hit percentage is more concentrated along the diagonal  and tolerant ranges. 311  

Nevertheless, the stations in the southern and part of southwestern Taiwan are still missed. These 312  

abovementioned differences between forecasting results and recorded seismic intensities in both 313  

cases can be mainly attributed to three aspects.  314  

 315  

First of all, the forecasting model that determines the probability distributions of earthquake 316  

occurrences is critical for the real-time PSHA. If the probability distribution is missing or false 317  

alarm in somewhere, it directly causes the inaccurate forecasts to the real-time PSHA. In the PI 318  

results, some differences are located on the hotspots with relatively higher probability, for example, 319  
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the area in 22.6º to 23ºN and 120.9º to 121.3ºE in Fig. 1a, and 22.7º to 23.1ºN and 120.4º to 120.8ºE 320  

in Fig. 1b. Compared the locations of the earthquakes, these hotspots just shift slightly and it seems 321  

acceptable. However, in the results of the real-time PSHA, it leads the maps of forecasting max 322  

seismic intensity to underestimate in the area near the epicenters and overestimate in the area 323  

without any earthquake event, but with high probability of earthquake occurrence. For instance, 324  

the southwestern area in the case of 2018 Hualien earthquake is underestimated because of this 325  

reason, and then it also causes overestimated in the southern area (see Fig. 3 and 5b). Therefore, a 326  

more accurate and precise forecasting model helps us get a more positive result in a real-time 327  

PSHA. Even if the PI results perform well in the ROC test, the PI method still needs to be improved. 328  

 329  

Secondly, the evaluation of earthquake ground motion suffers from the limitations of GMPEs. We 330  

adopted the GMPE produced by Lin et al. (2012) whose data (ML ≥ 5.0) within 50 km are less than 331  

14% of all data for the regression of GMPE. If there is a shortage of data in near field and for larger 332  

events in the regression of GMPEs, the applicability of GMPEs is limited (Edwards and Fäh, 2014). 333  

Therefore, that probably causes the deviation of evaluation on forecasting seismic intensity maps, 334  

for instance, the underestimation of the areas around the two main shocks (Fig. 2c and 3c). 335  

Moreover, the site effect is difficult to be properly and comprehensively evaluated in GMPEs,  but 336  

it dramatically affects the behavior of seismic waves. For example, the amplitudes in the Meinong 337  
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earthquake were amplified extending along the northwest (in Fig. 2b) because of the Western Plain 338  

composed of thick and low velocity sedimentary deposits (see Fig. 4 in Lee et al., 2016). As a 339  

result, the site effect also contributes and leads the seismic intensity forecast to underestimate (Fig. 340  

2c and 5a). 341  

 342  

Last but not least, the directivity effect also plays an important role in the distribution of ground 343  

motion. For the main shocks in two cases, the rupture characteristic brings a strong directivity 344  

effect that causes the significant amplification of ground motion along the rupture direction (Lee 345  

et al., 2016; Hsu et al., 2018). However, GMPEs are basically a statistical distribution of PGA 346  

generated by all data at the same radical distance without considering possible effect of rupture 347  

directivity. As a result, GMPEs are only able to provide the ground motion estimation of radial 348  

extension. Besides, the forecasting model does not include the information of rupture direction 349  

either. Therefore, we suggest that some differences which along the rupture direction may belong 350  

to this effect.  351  

 352  

6   Conclusion  353  

This study presents how the real-time seismic hazard assessment can be achieved by replacing the 354  

static seismic rate, i.e. the truncated and characteristic earthquake models, with the time-dependent 355  
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seismic source probability of the PI method. With regard to the time-dependent seismic source 356  

probability, the ROC tests verified quantitatively that the performances of the PI forecasting 357  

probabilities in forecasting interval are quite effective. Therefore, those significant probability 358  

distributions can be used as the function of earthquake occurrence rate,	  𝑃(𝑚, 𝑙𝑜𝑐), in the real-time 359  

PSHA. Our forecasting seismic intensity maps of the real-time PSHA have the hit rates 360  

outperformed the random guesses and higher than 0.5 for both cases of the Meinong and Hualien 361  

earthquakes. This study thus suggests that these real-time PSHA maps are effective in terms of 362  

forecasting, and their good performances are not likely coincidence. We demonstrated that the real-363  

time seismic hazard assessment is doable and can be realized and updated by the time-dependent 364  

seismic source probability.  365  

 366  

In the future, the different time-dependent seismic source probability models can be introduced to 367  

provide a more accurate and robust estimation for earthquake occurrences. Also, a possible 368  

improvement for our results could be from the estimated PGA distribution not only by means of 369  

the state-of-the-art machine learning tools for a big data bank of the P-alert network but also by 370  

physics-based numerical simulations (PBS) of seismic ground motion, instead of the empirical 371  

GMPEs. Presumably, a real-time forecasting map of seismic intensity enables governments or 372  

businesses to efficiently prepare for earthquake disasters. Moreover, the seismicity intensity scale 373  
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based on PGA are related to the vulnerability level of buildings, which will also be changed with 374  

time due to the degradation and upgrades (e.g. obsolescence, retrofitting actions, climate events). 375  

Therefore, when further assessing a seismic risk fluctuating with time, the real-time PSHA and the 376  

change of vulnerability should be considered. 377  

 378  
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 493  

Figure 1. Panels (a) and (b) show the forecasting probability maps of the Meinong earthquake and 494  

the Hualien earthquake, respectively. Panels (c) and (d) are the ROC curves of (a) and (b), 495  

respectively. Red, gray, blue, and black curve represent the forecasting probability map, random 496  

tests, 95% confidence interval, and the average of random tests, respectively. 497  

 498  
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 499  

Figure 2. The case of 2016 Meinong earthquake: (a) The map of forecasting max seismic intensity 500  

by the rea-time PSHA. The forecasting interval of seismic intensity is 90 days. (b) The map of 501  

max seismic intensity recorded by the P-alert network. Black and white triangles indicate the P-502  

alert stations which we used and didn’t use in the verification, respectively. (c) The difference of 503  

seismic intensity between the forecast and the record. Cyan star represents the Meinong earthquake; 504  

gray circles represent the earthquakes with magnitude ML ≥ 5 in this forecasting interval. 505  

 506  

 507  

 508  

 509  

 510  
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 511  

Figure 3. The case of 2018 Hualian earthquake: (a) The map of forecasting max seismic intensity. 512  

(b) The map of max seismic intensity recorded by the P-alert network. (c) The difference of seismic 513  

intensity between the forecast and the record. Cyan star represents the Hualian earthquake. 514  

 515  

 516  

 517  
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 518  

Figure 4. Performance test of APHR. Red line indicates the forecasts of the real-time PSHA; gray 519  

circle indicates the result of a random test by randomly re-distributing seismic intensities; blue 520  

error bar indicates the interval with two standard deviations over all random tests. 521  

 522  

 523  

 524  

 525  
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 526  

Figure 5. Panels (a) and (b) are the P-alert station distributions of the “hit” and “not hit”. Red and 527  

blue triangles present the “hit” and “not hit”, respectively. Panels (c) and (d) are the distributions 528  

of the hit percentage for the cases of 2016 Meinong and 2018 Hualian earthquake, respectively. 529  
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Red line area presents the acceptable prediction range. 530  

  531  
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Table 1. The earthquakes occurred in the forecast interval. “P-alert” indicates that the P-alert 532  

recording obtained from the Taiwan Earthquake Research Center (TEC) or the National Taiwan 533  

University (NTU). “Num.” is the number of recording stations. “Nan” indicates that there is no P-534  

alert data to be recorded in both TEC and NTU even if that event was recorded by CWB. The bold 535  

represents the Meinong and Hualian earthquakes. 536  

(a) Meinong case: 2016/02/01~2016/05/01 

Date Hour Min. Lon. Lat. Depth ML P-alert Num. 

02/05 19 57 120.54 22.92 14.64 6.60 TEC 338 

02/05 19 58 120.43 22.94 18.10 5.26 Nan Nan 

02/09 00 47 121.69 23.89 5.69 5.12 TEC 341 

02/18 01 09 120.87 23.02 5.44 5.27 TEC 357 

02/18 01 18 120.88 23.03 4.26 5.13 TEC 357 

04/16 10 55 121.80 22.44 11.83 5.22 TEC 436 

04/27 15 17 121.78 24.24 11.94 5.67 NTU 424 

04/27 15 27 121.75 24.25 12.99 5.13 NTU 425 

04/27 18 19 121.23 23.28 15.21 5.52 NTU 423 

 537  

(b) Hualian case: 2018/02/01~2018/05/02 

Date Hour Min. Lon. Lat. Depth ML P-alert Num. 

02/04 13 12 121.67 24.20 15.10 5.10 TEC 543 

02/04 13 56 121.74 24.15 10.60 5.80 TEC 519 

02/04 13 57 121.68 24.19 11.10 5.10 Nan Nan 

02/04 14 13 121.72 24.15 10.30 5.50 TEC 517 

02/05 15 58 121.72 24.14 10.00 5.00 TEC 522 

02/06 15 50 121.73 24.10 6.30 6.20 TEC 520 

02/06 15 53 121.59 23.98 5.10 5.00 TEC 520 
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02/06 18 00 121.73 24.12 6.70 5.30 TEC 516 

02/06 18 07 121.71 24.04 4.20 5.30 TEC 516 

02/06 19 15 121.73 24.01 5.70 5.40 TEC 516 

02/07 15 21 121.78 24.08 7.80 5.80 TEC 523 

02/25 18 28 121.90 24.44 17.70 5.20 TEC 533 

03/20 09 22 120.54 23.30 11.20 5.30 TEC 539 

03/29 00 17 121.01 24.00 11.10 5.00 NTU 388 

04/23 17 10 122.53 23.92 19.30 5.10 NTU 381 

 538  

Table 2. The coefficients in the GMPE. 539  

𝐶$ 𝐶% 𝐶( 𝐶k 𝐶C 𝐶v 𝐶D 𝐶x 𝐻 

1.3979 0.3700 0.0000 -1.2273 0.2086 -0.1934 0.1122 -0.4359 1.4877 

 540  

Table 3. Seismic intensity scale of CWB. 541  

Intensity Scale 
Ground Acceleration 

(cm/s2, gal) 

Micro 0 <0.8 

Very minor 1 0.8~2.5 

Minor 2 2.5~8.0 

Light 3 8~25 

Moderate 4 25~80 

Strong 5 80~250 

Very Strong 6 250~400 

Great 7 ≥400 

 542  


