
Response Letter to Reviewers Comments on NHESS-2019-166#R2 

 
Dear Prof. Merz 

Many thanks for the constructive comments and suggestions from you and the reviewers. 

We carefully considered all issues mentioned in the reviewer’s comments, and we outlined 

every change point by point, as highlighted in the reversion. We believe that the reviewer’s 

comments and suggestions have helped us to improve the quality and readability of the 

paper. The point-by-point responses are provided below.  

 

 

(The highlighted parts are added to the revised paper) 

 

Responses to reviewer #1 

1- Section 3. The presentation of the six steps need some improvements. Maybe it is 

better to have a purpose of each step, then followed by a description of how this 

purpose is achieved (methods, equations, etc.). For example, Step I, the purpose is 

to estimate the lag time. However, I do not understand how AMI method presented 

below can be used to estimate the lag time. Step II, how to estimate the influence of 

ENSO is not described, by regression or some other methods? Now there is too 

much information mixed in this part, which made the it hard to read and follow 

Reply: It is corrected according to the reviewer comment 

Step I: (P5L3-8) As the effect of ENSO takes time to be experienced in far 

geographic locations, the lag time between the ENSO occurrence and the related 

influences in Kan River Basin was firstly calculated. This lag time can be 

revealed by comparison the variations of SOI and local precipitation time series. 

The monthly rainfall at the nearby synoptic stations of Mehrabad (1951-2017), 

Shemiran (1988-2017), Tehran-Geophysics (1992-2017) and Chitgar (1997-

2017) (See Figure 1) and monthly SOI values are used. A statistical method, the 

average mutual information (AMI), is used to determine the time delay. 

Step II: (P6L4-6) Secondly, the influence of El-Niño on the precipitation amount 

in Kan River Basin is quantified. The influence is estimated using a statistical 
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method by calculating the expected value of the changes of precipitation amount 

in the El Nino episodes compared to those in the neutral periods. 

Step III: (P6L23-25) Thirdly, several design storms are generated to be applied 

in a rainfall-runoff model. The rainfall storms are synthesized based upon the 

average precipitation change during El-Niño events. The designed storms are 

used for assessing the flood damages in a certain return period. 

Step IV: (P7L14-16) Fourthly, the HEC-HMS hydrologic model is used to simulate 

the rainfall-runoff process. The hydrologic model is run for every scenario and 

every return period; then the peak discharges are used in the next step to estimate 

the flooding depths. In the hydrologic model, the SCS method is used to calculate 

the effective rainfall. 

Step V: (P8L4-5) Fifthly, based on the obtained flood depth, the flooding areas are 

determined for designed storms in the El Nino and neutral periods. 

Step VI: (P8L9-10) Finally, flood damage is assessed for all 9 runs of the model. 

These damages can be compared to each other in order to determine the role of El-

Nino on the flood damages. 

 

2- Page 4, lines 11, error on the reference. 
Reply: corrected 

 

3- There are two Table 1 in the manuscript. 

Reply: corrected 

  



Responses to reviewer #2 

 

1- Fig. 4 in the paper clearly illustrates that the median % change of precipitation 

during El Nino years is equal to 0.  

Reply: Figure 3 of the paper shows that the occurrence of El-Nino increases the 

precipitation, and this increased value is significant (see Table 1). However, we confirm the 

median in Figure 4 is close to zero (4%) and the mode value (for which the probability 

density function is maximum) is 10.1% (P9L20-21). 

 

 
Figure 1. Probability density function (PDF) of %-increased rainfall values under the effect of El Nino 

(SOI<-0.8) 
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Figure 2. Cumulative distribution function (CDF) of %-increased rainfall values under the effect of El 

Nino (SOI<-0.8) 

 

(P9L21-23) In fact, the reason for that the median is close to zero is due to the selection 

criterion of 9 events as the El Nino events out of total events; (SOI less than -0.8 according 

to Australia Bureau of Meteorology). If this criterion is set as SOI<-1.0 (according to the 

Western Regional Climate Center, USA), the number of El Nino events will decrease to 6. 

Using frequency analysis approach, the probability distribution of data is as Figure 3: 
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Figure 3. CDF of %-increased rainfall values under the effect of El Nino (SOI<-1.0) 

 

(P9L23-26) As can be seen, in this condition the median increases to 12.2; because two El 

Nino events with negative %-increased precipitation which had a great impact on the results, 

were eliminated. Therefore, there will be just one El Nino event (in which SOI = -1.018) 

with negative %-increased precipitation (-33%) in the data. It is clear that if the criterion for 

determining the occurrence of El Nino be changed as SOI< -1.02, the only negative value 

would be omitted and in this case, there would be 5 El Nino events in the analysis. Therefore, 

the probabilistic distribution on the %-increased values changes as follow: 

 

 
Figure 4. CDF of %-increased rainfall values under the effect of El Nino (SOI<-1.018) 

 
It is clear that in the new situation, the median will increase significantly to about 20 

(P9L25). 

The purpose of the above explanation is to state that in the analysis used in this paper, the 

criterion for distinguishing the El Nino condition is the criterion for distinguishing the El-

Niño condition is an effective assumption in this paper and it affects the results significantly. 

Therefore, the results of Figure 4 (in the paper) should not be evaluated as the insignificant 

effect of El Nino on the Kan River Basin precipitation (P9L25-27). Certainly, to assess the 

impact of El Nino on the amount of annual rainfall, Figure 3 (in the paper) can be used in 
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which the trend of annual rainfall against the SOI variation (without omitting any data) has 

been shown. 

 

2- Taking the 60 and 90% quantiles of this distribution and declaring these as 

representative for flood risk changes due to El Nino is simply not a valid approach, 

because it completely ignores the lower tail of the distribution where rainfall 

during El Nino years is actually decreased. I included some possible options for 

fixing this below, but the author's may have different ideas. In any case the risk 

analysis probably needs to be redone, so a major revision will be required. 
Reply: We agree with the opinion of the reviewer. To have a comprehensive study on the 

risk of flood due to El Nino, it is required to consider the whole range of probabilities: in 

both magnitude of hazard (flood) and magnitude of El Nino (P12L16-18). But at first, as 

explained previously, Figure 4 is not enough to show the impact of El Nino on the 

precipitation and it is required to considered all the time series of SOI for such judgment. In 

the current condition, taking all range of %-increased precipitation probabilities consisting 

the lower tail of distribution where rainfall during El Nino years is actually decreased and 

then numerically integrate over the distribution will be close to the median of the distribution 

(P12L21-24) which is less than those calculated for 60 and 90 percentiles. Secondly, one of 

the purposes of this article was to show the importance of small floods (floods with a low 

return period) in flood management plans, and for this reason we have compared 5-yr and 

10-yr floods with larger flood of 50-yr return periods (These values are selected in 

accordance with the paper’s objective to show the importance of small floods (floods with 

a low return period) in flood management plans compared to the high return period floods) 

(P6L28-29). Therefore, three floods with specific return periods (low to high return periods) 

are considered to cover the range of probability for flooding. This means that in terms of 

flood risk and probability of flood occurrence, the concern of the reviewer about the 

magnitude of hazard has been addressed. Therefore, by comparing the 5-yr and 10-yr flood 

with floods of larger return periods, the importance of El Nino on the floods with the low 

return period and the resultant damages has been shown and emphasized in the “abstract” 

and “results and discussion” sections. 

However, about the full coverage of the probabilistic distribution of %-increased 

precipitations due to the El Nino (Figure 4), it should be noted that the probability levels of 



60% and 90% are considered in accordance with the purpose of the paper. The objective of 

the paper as has been mentioned in the end of introduction (P3L25-26) is to show the 

amount of flood damage that can be added (possible increase in the damages) due to the 

El Nino. These percentiles are not representative for flood risk changes due to El Nino but 

are the selective high probability levels represent for the highest influence of El Nino with 

low probability levels of occurrence. This objective was mentioned in the paper as (P7L9-

13): 

“The reason behind the choice of 60% and 90% probability levels is to 

estimate the average amount of damages and the maximum amount of 

damages that are expected per year due to moderate to strong El-Niño 

events. Therefore, a probability level representative of the maximum 

possible damage and a probability level representative of average damage 

caused by El Niño were selected. “  

 Indeed, the fact that El Nino increases the precipitation amount has been proven in the 

previous section of the paper (Figure 3 and related explanations), and there is no doubt that 

there is a significant direct relationship between precipitation and the magnitude of El Nino 

(see Table 1). In this part of the paper, we seek to show the possible increase in flood 

damages due to El Nino, not the possible decrease value and not the expected value. This 

objective was highlighted in the abstract as (P1L16-18): 

“To determine the flood damage costs, the annual precipitation enhancement 

during El-Niño condition was firstly estimated using a probabilistic approach 

and the inundation area was then determined under high probability levels of 

increased rainfall due to El Nino for 5-, 10- and 50-year return period floods.” 

Also in the introduction section, it has been mentioned that (P3L25-26): 

“The question addressed in this research is that, given the increasing impact of 

rainfall due to El-Niño, how much losses/damages are expected to be added in 

a specified study area.” 

In this regard, we selected two percentiles in the upper tail of probabilistic distribution: 1) 

increase in the probability level of 60%, and 2) increase in the probability level of 90%; then 

we compared the results with those in the normal condition. Doing so, three return periods 

in three scenarios of El Nino event were defined and a total of 9 model runs were  performed. 



These results provide decision makers with essential information on flood risk and highlight 

the importance to take in to account the probable effect of El Nino in flood risk management 

(P13L1-4). 

Also, in some other studies of flood risk analysis, depending on the purpose of the study 

some parts of the probability distribution may have been neglected. For example: 

To evaluate the risk of flood using a fuzzy approach, Nandalal and Ratnayake (2011) just 

selected rainfalls of a 100‐year return period. They did not consider the lower and higher 

tails of the probability distribution. Grabs (2015) evaluated the flood risk reduction 

measures in the Elbe River for 100-yr flood. He took two 100-yr return period floods in 

2002 and 2013 and did not analyzed the other floods with lower return periods. Noted that, 

the flood event of 2002 in the entire Elbe River Basin has become a reference in Europe for 

extreme flood events so in this paper the extreme floods were analyzed. Van Dau et al. 

(2017) evaluated only 25-yr return period precipitation to quantify flood damage under 

potential climate change impacts in central Vietnam neglecting the other floods with lower 

or higher frequencies. To consider the effect of climate change on flood risks, Van Dau et 

al. (2017) considered the HadGEM3–RA Regional Climate Model (RCM) under two 

Representative Concentration Pathways (RCP) 4.5 and 8.5 climate change scenarios 

neglecting RCP 2.6 a representative for the lower tail of climate change scenarios. 

Apart from this, as probability distribution of Figure 4 is not a full representative for El Nino 

effect on the precipitation, to make the point of view of the respected reviewer (regarding 

the study of the entire range of probability distribution), it is better to consider the whole 

range of ENSO without excluding some smaller events of El Nino (may be -0.8<SOI<0) 

and/or events of La Nina. In this case, it is necessary to use a different methodology in 

another independent study. The following figure shows the probabilistic distribution of SOI 

values. Figure 5 shows the PDF (here normal distribution) and Figure 6 shows the CDF. As 

shown, changes in the SOI index follow a normal distribution. The whole probability range 

can now be considered to examine the impact of ENSO on flood damage. 

 



 
Figure 5. PDF of entire ranges of SOI values 

 

 

 
Figure 6. CDF of entire ranges of SOI values 

 

3- The above assumes that it is a valid approach to apply annual precipitation change 

factors directly to extreme rainfall on short time scales. This is another major 
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limitation of the paper which needs to be stated clearly in the discussion and 

conclusions. The author's quite nicely illustrate this in their reply to reviewer 1 

(comment 1) in that average change of monthly precipitation in El Nino years is 

+36% in January, but -28% in April. The former is likely to be linked to snowfall, 

while the latter actually suggests a decrease of rainfall during the flooding season. 

Reply: this limitation is explained in the paper as (P6L15-20): 

PC values then will be used to construct synthesized rainfall storms for 

simulation of the El-Niño influence. It is a major limitation of this research that 

the annual change factor is applied in the extreme rainfalls of short time scales. 

Certainly, it was better to consider the monthly or seasonal change factor or 

calculation of change factor on the basis of recorded storms the applying it in 

a continues hydrologic model to have a more accurate prediction of El-Niño 

effect on the flood damages then calculation of the annual damages over years, 

but because of data limitation the analyses performed for the annual data. 

 

Major comments: 
4- Quantification of rainfall changes - I could imagine 2 ways of doing this: 

 Compute flood risk for 10 or so quantiles of the distribution in Figure 4 

(considering positive AND negative changes) and then numerically integrate over 

the distribution. 

  Compute flood risk for each of the 9 El Nino years and compare average against 

non El-Nino years. 

Reply: please see the reply to comment Number 2. 

 

5- Merge Fig. 5 and/or 6 from the author's response into Fig. 3 in the paper. These 

are much more illustrative, while the data in Fig.3 currently may or may not 

support the assumption of a trend. 

Reply: Fig 3 was modified and Fig6 (in the previous author responses) was added. 

Also the following text was added to the paper (P9L4-10): 

“In Figure 3, the annual rainfall of stations is plotted against the SOI index. It 

is obvious that with decreasing SOI index, annual rainfall increases in the 

study area and vice versa. In the period of 1951 to 2017, a total of 9 El-Niño 



(SOI<-0.8) and 7 La-Niña (SOI>+0.8) events have been occurred. Out of them, 

6 years have experienced increase in the precipitation and 3 years with 

decrease in the precipitation. The largest event for El-Niño dates back to 1983 

and 1987 with respectively 334 mm and 252 mm recorded rainfall in Mehrabad 

station. Furthermore, based on the trendlines, in average one unit decrease in 

the SOI, will enhance 22.5 mm annual rainfall in Mehrabad station. For further 

analyses, Mehrabad station was chosen because it has more data than the other 

stations.” 

  

  

Figure 3- Annual rainfall against SOI index in the station of a) Mehrabad, b) Shemiran, c) Chitgar 

and 4) Tehran Geophysics 

 

Minor comments: 

 

6- p.4 l.13: all your result figures suggest annual rain depths around 250-300mm, so 

I'm surprised to see 640mm here? 

(a)       (b) 

 

 

 

 

 

 

 

 

(c)       (d) 

 



Reply: Kan River Basin is part of a larger basin. The larger basin includes Mehrabad, 

Shemiran, Chitgar and Tehran Geo-physics rain stations in lower levels than the Kan River 

Basin. The basin is a small mountainous basin located at upstream. Therefore, the average 

annual precipitation of Kan River Basin is more than those presented in Fig.3. 

 

7- Eq.2: it is still unclear how you compute the probabilities. Please specify, possibly 

in an appendix 

Reply: The Average Mutual Information (AMI) measures how much one random variable 

tells us about another. In the context of time series analysis, AMI helps to quantify the 

amount of knowledge gained about the value of x(t+λ) when observing x(t). Since mutual 

information can be computed for a times series and a time-shifted version of the same time 

series, this is called the auto mutual information. However, it can be calculated for two 

different time series as average mutual information. 

To measure the AMI of a time series, a histogram of the data using bins is created. Let Pi 

the probability that the signal has a value inside the ith bin, and let Pij(λ) be the probability 

that x(t) is in bin i and x(t+λ) is in bin j. Note that only the joint probability Pij(λ) depends 

on λ, and that the AMI function also depends on how the histograms are constructed, i.e., 

the width and position of the bins. Then, AMI for time delay λ is defined as 

AMI(λ) = sum( Pij log( Pij / (Pi*Pj) ) ) 

Depending on the base of the logarithm used to define AMI, the AMI is measured in bits 

(base 2, also called shannons), nats (base e) or bans (base 10, also called hartleys). In this 

paper shannons type was used and probabilities PA and PB were calculated using empirical 

frequency analysis in which the relative frequency histograms for both time series, SOI and 

precipitation were determined. The values of AMI for different arbitrary lag-times (1 to 12 

months) between SOI and precipitation were calculated. The higher AMI value, the more 

dependency between two time series. Therefore, that lag-time corresponding to the highest 

AMI value was selected as the lag-time between the time series (P5L19-23).  

 

8- p.8 l.25: This paragraph describes methodology which should be merged into the 

description of assessment steps (probably step 3) 



Reply: the paragraph was revised and those parts related to the methodology section were 

moved to the methodology section step II. 

“Methodology” (P6L30-P7L2) 

To determine the rainfall intensity in every scenario, PC values are employed 

and using an appropriate analytic probability distribution, the rainfall 

increase in different confident levels are determined. Here two probability 

levels, 60% and 90%, are considered for every rainfall return period. 

Accordingly, 9 different model runs were evaluated in the following scenarios: 

“Results and discussion” (P9L17-20) 

Then, using Eq. (4), PC and ∆P can be calculated. According to the results, for 

9 years with El-Niño condition, PC ranges from -60.34% to 42.8% while the 

latter is related to the year 1983 in which 334 mm rainfall was recorded. On 

the basis of Kolmogorov-Smirnov goodness of fit test with 99% certainty, 

Gumbel distribution well fits on these percentiles (Figure 4). 

 

9- the motiviation of the paper is still not quite clear. I would say we are trying to 

identify the potential variability due to El Nino to be able to separate from other 

(e.g., climate) effects? 

Reply: the objective of the paper has been mentioned in Abstract and in the end of the 

introduction as: 

Abstracy (P1L14-18) 

This study aims at determining the effect of the most emblematic teleconnection, 

El-Niño, on the expected damages of floods with low return periods in Kan River 

basin, Iran. To determine the flood damage costs, the annual precipitation 

enhancement during El-Niño condition was firstly estimated using a 

probabilistic approach and the inundation area was then determined under high 

probability levels of increased rainfall due to El Nino for 5-, 10- and 50-year 

return period floods. 

Introduction (P3L22-23) 

The question addressed in this research is that, given the increasing impact of 

rainfall due to El-Niño, how much losses/damages are expected to be added in 

a specified study area. 



10- the paper does require language revisions if accepted 

Reply: Done. 
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