
 1 

RESPONSE TO REVIEWERS – nhess-2019-159 

 

13 September 2019 

 

Dear Editors – 

We thank you and the two reviewers for your time, and for the opportunity to revise this 
submission. Here we offer detailed responses to the comments made by both reviewers 
(whose remarks are italicised). 

Sincerely – 

Eli Lazarus (E.D.Lazarus@soton.ac.uk) 
Scott Armstrong 
 

 

REVIEWER #1 (Anon) Comments 

(1) Introduction speaks very broadly about risk and vulnerability, when the model is based on shoreline 
change and vulnerability that is defined by beach width and re-nourishment. Although this paper does 
contribute to the discussion about coastal risk, it is a very narrow framing of this problem (for example, 
your vulnerability measure does not include things like social vulnerability or built environment 
vulnerability). I think you need to reframe the introduction to talk about what this does do well – 
investigate geomorphic risk and the impacts of renourishment - rather than what it doesn’t. 

We have sought to clarify our vantage and framing of the problem in the Abstract and 
Introduction (detailed replies below). 

 

2) Results need to be rewritten to talk about the major findings and not just describe the figures. 

We respectfully disagree with this characterisation of the Results section. However, in 
addressing R1's specific comments, we have also tried to improve the clarity of the text 
throughout, with an eye toward emphasising the major findings. 

 

3) Data analysis is unclear at times (for example, how many counties are in the analysis? Do figures 7 and 
9 show a count of counties or transects?). Please make sure the main details are discussed in the methods 
(like the statistical analysis in Figures 8 and 10). 

We address these issues in detail where they appear, below. 

 

4) To really hit home the interesting interactions between risk and renourishment, I think you need to add a 
spatial component – how does risk change in the model over the coastline, regionally (a color-coded map 
would be a great way to show this). 

We suggest that this is what Figs. 1 & 2 show, albeit in a matrix rather than a spatially 
explicit map. (We revisit this point below.) The relationship between risk intensification in 
nourishment zones comes out most clearly in the shape of the statistical distributions (now 
Figs. 7 & 8), not in a "heat map" of their own – they are embedded in Figs. 1 & 2, but not 
easily seen in that format. Their collective statistical distributions are their signature. 
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Title: I would reframe coastal risk throughout the paper as geomorphic or shoreline erosion risk. 

Noted – and see our reply, below, to the related comment on P2/Introduction. 

We hew close to the formal definitions of hazard, exposure, and risk used by the US 
National Research Council. Those definitions are generic inasmuch as hazard, exposure, 
and vulnerability types can be substituted in. It is therefore unclear to us what "geomorphic 
risk" is. We can imagine geomorphic hazard, which is the role of shoreline change in this 
work. Or, because the definition of "vulnerability" is not always mutually exclusive from 
other components of risk, we can imagine geomorphic vulnerability where the susceptibility 
of exposed assets/people is a function of, for example, the recurrence interval of a 
geomorphic/natural event (e.g., hurricanes, floods, landslides). We treat vulnerability as a 
kind of buffer between hazard and exposure. But "geomorphic risk" is an entanglement of 
the three separate components (hazard, exposure, vulnerability), which we take pains to 
differentiate and not double-count in our analysis. 

In that context, "coastal risk" is both generic and a readily accepted term. We agree with R1 
that how coastal risk is then defined is essential. We have made amendments to the 
Abstract (see related comments below) to help make our framing/definition more readily 
accessible from the outset. 

 

Abstract: Overall: The abstract does not give any description of what kind of data goes into the model or 
major findings. If you reframed the abstract and intro around geomorphic hazard and beach renourishment, 
this abstract could be a lot more specific and interesting. At the moment it is way too broad and says little 
about the actual study. 

We have amended the Abstract (blue text) to read as follows: 

"…But risk may also increase because of interactions, or feedbacks, between hazard, 
exposure, and vulnerability. Using empirical records of shoreline change, valuation of 
owner-occupied housing, and beach nourishment projects to represent hazard, exposure, 
and vulnerability, respectively, here we present a data-driven model that describes 
trajectories of risk at the county scale along the US Atlantic Coast over the past five 
decades. We also investigate quantitative relationships between risk components that help 
explain these trajectories. We find higher property exposure in counties where hazard from 
shoreline change has appeared to reverse from high historical rates of shoreline erosion to 
low rates in recent decades. Moreover, exposure has increased more in places that have 
practiced beach nourishment intensively. The spatio-temporal relationships that we show 
between exposure and hazard, and between exposure and vulnerability, indicate a feedback 
between coastal development and beach nourishment that exemplifies the "safe 
development paradox", in which hazard protections encourage further development in 
places prone to hazard impacts. Our findings suggest that spatially explicit modelling 
efforts to predict future coastal risk need to address feedbacks between hazard, exposure, 
and vulnerability to capture emergent patterns of risk in space and time." 

 

Line 12: What do you mean by “indications of feedbacks”? 

For clarity, corrected (P1, L14) to read "quantitative relationships" between risk 
components. 
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Page 2: Introduction generally: It is good to start out broad with risk analysis, but the introduction does not 
really address geomorphic risk or beach renourishment. I think you could reframe in along these lines and 
set the reader up much better for what is coming. At the moment it stays too broad. 

We have addressed this with added text (blue) at the end of the Introduction (P2, L36): 

"Here, we develop a data-driven model to investigate how hazard, exposure, and 
vulnerability may describe trajectories of risk in space and time along the US Atlantic 
Coast, from Massachusetts to South Florida, at the county-level for the past 47 years (Fig. 
1). We restrict our analysis of risk to three specific components: shoreline change (hazard), 
valuation of owner-occupied housing units (exposure), and beach nourishment – the active, 
and typically repeated, placement of sand on a beach to counteract chronic erosion 
(vulnerability). We do not address socioeconomic or demographic exposure or vulnerability 
(Cutter and Emrich, 2006; Cutter and Finch, 2008; Cutter et al., 2006, 2008), nor the 
exposure of infrastructural aspects of the built environment beyond owner-occupied 
housing value. Neither do we address other types of coastal hazard, such as storm strikes 
or flooding, or types of hazard mitigation other than beach nourishment. Despite this 
tightly defined framing, our analysis captures underlying quantitative relationships between 
risk components. Our findings suggest that spatially explicit modelling efforts to predict 
future coastal risk need to address feedbacks between hazard, exposure, and vulnerability 
to capture emergent patterns of risk in space and time." 

 

Lines 4-7: Add citations to these sentences 

We have amended P2, L3, to emphasise that all of these definitions are those used by the 
US National Research Council. 

 

Lines 14-18: I think you can elaborate on this paragraph more and perhaps make it more about 
geomorphic change. 

We have fixed this issue by removing the paragraph break (P2, L19). Our discussion of 
geomorphic change is more appropriate later in the manuscript, as we move into specifics 
types of hazard. 

 

Line 24: Put the parenthetical and the citation in the same parentheses 

Amended for clarity. 

 

Line 25: This paragraph needs more connective tissue and elaboration. Also needs to be focused more on 
geomorphic hazard. Could also talk about “levee effects” as another example of safe development paradox. 

We have addressed this comment by amending the final paragraph of the Introduction (P2, 
L36) (excerpted above). We have also added references to the land-use-management 
and/or levee paradox (P2, L26): White, 1945; Burby & French, 1981; and Di Baldassare et 
al., 2016. 

 

Lines 30-36: This paragraph still doesn’t tell the reader what to expect going forward. Need to add 
objectives and specify that you are looking at shoreline change and beach renourishment as a subset of 
coastal risk. 
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Changes to the final paragraph of the Introduction (P2, L36) likewise address this 
comment. 

 

Page 3: Line 7: How many counties? 

Amended (P3, L13) to state that we examine 51 coastal (ocean-facing) counties. 

 

Line 20: Are there different points in time for the first survey? 

We have amended this line (blue text), at P3, L29, to read: 

"Because the dates of shoreline surveys vary by location, following Armstrong and Lazarus 
(2019) we calculate shoreline-change rates using the available surveys at each transect that 
are closest to the start- and end-date of each period. We calculated…" 

 

Page 4: Lines 20-28: The exposure you define here is capital exposure. Could you add in number of 
structures as a way to estimate count or some variable related to population number. Additionally, you are 
using the whole county as a way to get at the value of just beach front properties. This assumption could be 
wrong in places where there is less of a beach front community or tourism. You are assuming that the whole 
county is exposed to beachfront erosion. 

We agree that parcel-scale granularity of the housing stock would be optimal, especially 
because waterfront properties tend to be more expensive than inland ones. But using the 
county-scale data is not the same as assuming the whole county is directly exposed to 
erosion. It is simply an indicator of relative exposure. Because three factors contribute to 
risk, a hypothetical county like the one R1 is imagining – with high county-scale exposure 
but little beach-front development – may return a low risk index if its erosion rates are low 
and/or it doesn't nourish. 

Still, in the context of beach nourishment (and hazard mitigation more broadly), 
oceanfront landowners are not the only people involved in mitigation actions. "Local 
governance" can include decision-making at the county scale, and governance processes 
vary by state. With the Census data available (which we use because they offer maximum 
spatial and temporal coverage of the domain), there is neither a perfect metric for 
exposure, nor an alternative metric that is unequivocally better than the one we choose 
(total value divided by length of county oceanfront).  

 

Line 23: How are you dealing with uncertainty in this dataset? If there are whole counties missing, how 
much of other counties is missing? Would it be valuable to only use counties with low missingness? 

We use the Census data with the most complete coverage available. The other areas of 
uncertainty in this analysis – the shoreline change measurements, our treatment of 
vulnerability – mean that whatever vagaries exist in the Census data are no more extreme 
than those inherent in the other components. 

We do test the sensitivity of the analysis to those elements with the greatest potential to 
systematically affect our results. We present the various trajectories defined by different 
treatments of shoreline change rates, and by different parameters in our representation of 
temporal dynamics of beach nourishment. Through these tests, we understand what the 
model is doing – and that is perhaps the best way we can deal with uncertainty in this 
exploratory context.  
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Line 31: The vulnerability you are talking about here is just geomorphic vulnerability. These terms do not 
capture social vulnerability or built environment vulnerability. You should be clear about this from the 
beginning of the paper. 

Now addressed by clarifications in the Introduction and Discussion. 

 

Page 5: Lines 7: What dataset is the beach width coming from? 

We do not use a dataset for beach width. At P5, L11, we state that "because real 
measurements are unavailable, we assumed that in 1970 all counties had the same beach 
width." There are no annual surveys of beach width for the US Atlantic Coast; this aspect 
of our model is parameterized based on best-available references. 

 

Line 13: What about places that have a beach shoreline and then an interior shoreline (i.e. coastal 
lagoons)? 

We now state at P5, L18, that we do not consider back-bay (interior) shorelines. 

 

Line 18: Does the size of the renourishment play a role in the vulnerability change? Seems like the size 
would determine the change in vulnerability across the county. 

We agree, but the nourishment dataset does not include volume for all projects over time 
(especially for projects farther back in time). We use total number of projects as a way to at 
least represent relative volume and/or renourishment activity over time. Indeed, not all 
nourishment projects involve the same volume of sediment, but the US does not (yet) use 
singular, Dutch-style "mega-nourishments" either. 

 

Page 6: Result Overall: The results section needs to be rewritten. At the moment, much of it just describing 
figures without much narrative. Start your paragraphs out with a verbal description of the main finding for 
the paragraph and then get into the details. Additionally, there are results described here that are not 
discussed in the methods section (statistical analyses). Also some paragraphs are very short – two sentences 
in not a paragraph. 

We appreciate the suggestion, but perhaps do not see the same issue. None of the topic 
sentences in our Results, as written, simply introduce figures. R1 notes, "Start your 
paragraphs out with a verbal description of the main finding for the paragraph and then get 
into the details," but by our reading, we do that. (Where there is perhaps more "narrative", 
R1 suggests in a comment below that the text be moved to the Discussion.) 

We have added a statistical analysis section to the Methods, as recommended. 

With our amendments to the framing of the argument and analysis, we have tried to more 
clearly motivate the Results overall. 

 

Page 7: Line 18: Table 1 is a great example of why this risk analysis needs to be reframed. Although 
Miami-Dade is subject to high probably of hurricane and king tides and high social vulnerability, it has a 
coastal risk of 0.08. This shows how this analysis is not a full reflection of total coastal risk, but more of 
geomorphic or shoreline erosion risks. 



 6 

We do not claim that this work is a "full reflection" of total coastal risk. We have aimed to 
better align readers' expectations with our changes to the Introduction. 

 

Lines 35-37: Your findings would be more realistic if you only included parts of the county that were most 
at risk of hazards from the coast and not the whole county. 

We agree – but see related comment above. 

 

Page 8: Line 11: Could you add some numbers about the peak of mode or the skew- ness to add some 
quantitative metrics to this description? 

We have added summary statistics in a supplementary table (Table S5.) 

 

Lines 13-15: Add these statistical steps to the methods section. 

Amended as suggested at P7, L8.  

 

Lines 25-27: Again add numbers about modes and skewness to add quantitative metrics to the description. 

As above. 

 

Lines 28-34: Much of this paragraph seems like discussion. 

Noted. As written, this paragraph ties off the findings and what they mean, setting up the 
wider implications in the Discussion. Given its technical detail, we have opted to leave it in 
the Results (P9, L18), rather than move it into the less technical Discussion. 

 

Page 9: Discussion overall: Again, this goes very broad and general for a study that is on geomorphic risk. 
I think you should really find those 2-3 results you want to highlight and talk about them here without 
taking it too broad. Would also consider making the analysis explicitly spatial (see comment below). 

We appreciate the suggestion – but again perhaps this comes down to a difference of 
stylistic preference. With the amended framing of the Introduction, the broader scope we 
consider in the Discussion should now be better anchored. 

 

Lines 7-9: This is a great finding! And should be highlighted in the abstract. 

We have amended the Abstract as suggested (excerpted above). 

 

Line 20: Also no measures of social or built environment vulnerability. . .. 

Amended (blue text) to read: 

"…thus excluding other potential measures of exposure, such as socio-economic indices 
(e.g., Cutter et al., 2006, 2008; Neumann et al., 2015; NRC, 2014; Samuels and Gouldby, 
2009; Strauss et al., 2012), and requiring that we spatially aggregate our analysis to county 
scales. Finally, our measure of vulnerability – intended to represent "susceptibility" (NRC, 
2014; Samuels and Gouldby, 2009) without double-counting exposure or hazard – includes 
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no method of shoreline protection other than beach nourishment, and no explicit inclusion 
of storm recurrence or severity.…" 

 

Line 29: I think you could really hit this out of the park with some spatial discussion. What are the 
regional trends? What types of counties seems to be most at risk? A map color coded for risk would also be 
a great addition. 

We offer that these are the color-coded patterns shown in Figs. 1 & 2. We have opted not 
to include a spatially explicit map in part because the trajectories of risk become more 
difficult to render, as opposed to in the matrix format we use. (Secondarily, the matrices 
also help reinforce that these results, though interesting and robust, are exploratory.) 

 

Figure 1: Why does it seem that some counties have more rows than others? Are you just labelling some of 
them? Or do some counties have multiple rows? 

This scaling is explained at the very start of the Results (P7, L18), but we have added this 
explanation to the caption. 

 

Figure 5: How are these rates calculated? What is the difference between historical and long-term? 

Explanation of these trajectories (and the relative differences in their calculation) are 
provided on P3, L28. 

 

Figures 7 and 9: How are the counts so high in these figures? If you only have 51 counties, shouldn’t they 
be lower? Otherwise you are applying the same county level exposure number across multiple shoreline 
transects? I would suggest making these figures over counties and not transects. Additionally, is exposure 
normalized by area? Because otherwise this just shows that bigger counties with more resources for 
nourishment are adding more property, if I am reading this correctly (not sure if I am reading it correctly 
because of the count issue I brought up above). 

We have amended the captions to specify that the distributions are transect-level, and have 
added the following text (in blue) to the beginning of Section 3.2, on "Component 
relationships" (P8, L26): 

Finally, we compared the statistical distributions of exposure in high- and low-hazard 
counties, and in high- and low-intensity nourishing counties (as an aspect of vulnerability), 
to examine whether the three components of risk, as we represent them, reflect temporal 
interrelationships. In keeping with the scaled stripes in Figures 1, 2, and 4, we present these 
distributions (Figs. 7, 8) at the transect scale rather than the county scale to better represent 
the contributions of counties by their coastal extents. For example, Queens County, NY, 
hosts a high density of exposure per alongshore kilometere – very high exposure and a 
short coastline – and contributes only four transects to the total (Fig. 2). Likewise, because 
of its size, Dare County, NC, has both high exposure and a longer shoreline, resulting in a 
lower value of exposure per alongshore kilometre that accounts for over 100 transects of 
the domain. Overall, Dare County is less densely developed than Queens County. 
However, our treatment of exposure does overlook concentrated areas of high-density 
development within otherwise low-density counties – hotspots at which hazard, exposure, 
and vulnerability (i.e. nourishment activity) may be closely related. 
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Figure 8 and 10: The p-value part of the figures is a bit unnecessary. I think you could use words in the 
results section to describe this. Also the y-axes, particularly in Figure 8, are misleading. It makes it look 
like the difference in exposure is huge, when in reality it is less than 0.1. Please make axes consistent 
(across historical and recent) and bigger range on the figure to better represent what is actually happening. 

We have amended these figures for clarity, but also shifted them to the Supplement, given 
their supportive roles for Figs 7 & 8 (formerly Fig. 9), respectively. 

 

 

REVIEWER #2 (JLT) Comments 

Page 4-Line31: . . . that tracks the vulnerability associated with beach width (Vbw) and beach 
nourishment (Vbn)... 

Corrected. 

 

Page 5-Lines 5-10: Equation (3) suggests that Vbw is equal to 1 when x=xo. Is 1 just an arbitrary 
value? If this is the case, I suggest the authors clarify this in the text. Additionally, the authors normalize 
Vbw by the min and max of Vbw (as we can see in Figure 3 and 6, for instance). Being this the case, 
would it be easier to write the normalized expression as Vbw = 1-x/xo? 

We have corrected Eq. (3), and clarified that Vbw is a normalised value. 

 

Page 5-Line 7: . . . in 1970 all counties had the same beach width (x). . .. The use of “x” in this case 
might be misleading. I believe “x” is the beach width at any point in time, not just in 1970. 

Corrected (by deleting reference to x). 

 

Line 15-20: I suggest the authors include the equation used to calculate Vbn. Including this expression will 
also help to better understand lines 20-32 in the results section (page 7). 

We have added a new Eq. 4 (P5, L25) to show the expression we describe. 

 

Additionally, I suggest the authors better explaining why as beach nourishment volume and frequency 
increases, the vulnerability of a coastal community increases. I can see why this is the case, but it might not 
be intuitive. Is it perhaps due to the community becoming dependent on such practices, which in turn depend 
on the availability of a limited resource? 

Addressed with new text and citations at P7, L1. 

The new text (in blue) reads: 

"Like a ratchet, the cumulative beach-nourishment factor (Vbn) increases each time a 
county nourishes. This assumption represents the fact that nourishment projects for 
shoreline protection (as opposed to reactionary projects for emergency storm response) are 
cyclical within multi-decadal programmes (NRC 1995, 2014). Nourishment at a given site 
rarely occurs only once. A community that initiates a nourishment programme will likely 
depend on periodic nourishment into the future. By comparison, the beach-width factor 
(Vbw) is more dynamic, reflecting the oscillatory behaviour of a nourishment cycle at multi-
annual time scales by dropping to a minimum after a nourishment project (as the wide 
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beach buffers property from hazard) and then increasing as the nourished beach erodes 
and coastal properties become more susceptible to hazard." 

 

Page 7 – Line 15: Would it be useful to mention here that the shoreline erosion rate predicted by bathtub 
models often underestimates the natural rate of erosion? This is particularly the case in barrier island 
environments, which are quite common in the region of study included in this manuscript. 

We have added this caveat and an appropriate reference at P4, L15, and at P7, L31: 

Our estimation is effectively a "bathtub model" of change, controlled only by topography 
with no incorporation of wave-driven sediment transport or other shoreline dynamics. 
Bathtub models tend to underpredict shoreline erosion rates in wave-dominated, sandy 
barrier settings, such as those of the US Mid-Atlantic (Lorenzo-Trueba and Ashton, 2014; 
Wolinsky and Murray, 2009). 

The alongshore mean rate derived from sea-level rise shows close agreement with the mean 
"recent" shoreline-change rate, suggesting that our simplified "bathtub" representation of 
hazard is a reasonable proxy on a multi-decadal time scale (Fig. 5), even though bathtub 
models tend to underestimate shoreline erosion rates along barrier coastlines (Lorenzo-
Trueba and Ashton, 2014; Wolinsky and Murray, 2009). 

 

Page 7 – Line 18: . . .we ranked each county by its risk. . . 

Corrected. 
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Reconstructing patterns of coastal risk in space and time along the 
US Atlantic Coast, 1970–2016 
Scott B. Armstrong1 and Eli D. Lazarus1 
1Environmental Dynamics Lab, School of Geography & Environmental Science, University of Southampton, UK 

Correspondence to: Eli Lazarus (E.D.Lazarus@soton.ac.uk); Scott Armstrong (S.B.Armstrong@soton.ac.uk) 5 

Abstract. Despite interventions intended to reduce impacts of coastal hazards, the risk of damage along the US Atlantic 

Coast continues to rise. This reflects a long-standing paradox in disaster science: even as physical and social insights into 

disaster events improve, the economic costs of disasters keep growing. Risk can be expressed as a function of three 

components: hazard, exposure, and vulnerability. Risk may be driven up by coastal hazards intensifying with climate change, 

or by increased exposure of people and infrastructure in hazard zones. But risk may also increase because of interactions, or 10 

feedbacks, between hazard, exposure, and vulnerability. Using empirical records of shoreline change, valuation of owner-

occupied housing, and beach nourishment projects to represent hazard, exposure, and vulnerability, respectively, here we 

present a data-driven model that describes trajectories of risk at the county scale along the US Atlantic Coast over the past 

five decades. We also investigate quantitative relationships between risk components that help explain these trajectories. We 

find higher property exposure in counties where hazard from shoreline change has appeared to reverse from high historical 15 

rates of shoreline erosion to low rates in recent decades. Moreover, exposure has increased more in counties that have 

practiced beach nourishment intensively. The spatio-temporal relationships that we show between exposure and hazard, and 

between exposure and vulnerability, indicate a feedback between coastal development and beach nourishment that 

exemplifies the "safe development paradox", in which hazard protections encourage further development in places prone to 

hazard impacts. Our findings suggest that spatially explicit modelling efforts to predict future coastal risk need to address 20 

feedbacks between hazard, exposure, and vulnerability to capture emergent patterns of risk in space and time. 

  



2 
 

1 Introduction 

Risk reduction in developed coastal zones is a global challenge (Parris et al., 2012; Sallenger et al., 2012; Witze, 2018; 

Wong et al., 2014). Risk can be expressed as a function of hazard, exposure, and vulnerability. In the terminology of the US 

National Research Council (NRC, 2014; Samuels and Gouldby, 2009), hazard is typically expressed as the likelihood that a 

natural hazard event will occur (e.g., a recurrence interval for a storm of a given magnitude) or as a chronic rate of 5 

environmental forcing (e.g., a rate of sea-level rise). Exposure tends to capture either the economic value of property and 

infrastructure that a hazard could negatively impact, or the number of people a hazard could affect. Vulnerability can reflect 

a wide variety of dimensions, but in physical terms (relative to social metrics) vulnerability generally represents the 

susceptibility of exposed property to potential damage by a hazard event (NRC, 2014). Although the reduction of disaster 

risk – across all environments, not only coastal settings – is an intergovernmental priority (UNISDR, 2015), a paradox has 10 

troubled disaster research for decades. Even as scientific insight into physical and societal dimensions of disaster events get 

clearer and more nuanced, the economic cost of disasters keeps rising (Blake et al., 2011; Mileti, 1999; Pielke Jr. et al., 2008; 

Union of Concerned Scientists, 2018). 

 

There are a number of possible explanations for this trend. Economic costs could be rising because natural hazards, 15 

exacerbated by climate change, are getting worse (Estrada et al., 2015; Sallenger et al., 2012); because with migration and 

population growth more people are living in hazard zones (NOAA, 2013); or because more infrastructure of economic value, 

from highways to houses, now exists in hazard zones (AIR Worldwide, 2013; Desilver, 2015; Union of Concerned 

Scientists, 2018). These drivers are typically addressed separately – but they are not mutually exclusive. A parallel 

explanation for the disaster paradox is that environmental, population, and infrastructural drivers are systemically 20 

intertwined, resulting in "disasters by design" (Mileti, 1999) – unintended consequences of coupled interactions, or 

feedbacks, between natural forcing and societal shaping of the built environment. An example of one such feedback is when 

infrastructure development in hazard zones destroys natural features that would otherwise buffer hazard impacts, such as the 

loss of coastal wetlands that would have absorbed storm surge (Barbier et al., 2011; Arkema et al., 2013; Temmerman et al., 

2013). An example of another feedback is when hazard defences stimulate further infrastructure development behind them – 25 

a phenomenon called the "land-use-management paradox", "levee effect" or "levee paradox", or the "safe development 

paradox" (Armstrong et al., 2016; Burby and French, 1981; Burby, 2006; Di Baldassarre et al., 2016; Keeler et al., 2018; 

McNamara and Lazarus, 2018; Werner and McNamara, 2007; White, 1945). While both feedbacks can increase hazard 

impacts without any change in natural forcing, climate change accelerates them. 

 30 

Investigations of coastal risk tend to focus on case studies of hazard, exposure, and/or vulnerability (Smallegan et al., 2016; 

Taylor et al., 2015), or on projections of future risk (e.g., Brown et al., 2016; Hinkel et al., 2010; Neumann et al., 2015). Few 

examine patterns of risk across large spatial scales (~102–103 km) or retrospectively over longer time scales (>101 yrs). Here, 

we develop a data-driven model to investigate how hazard, exposure, and vulnerability may describe trajectories of risk in 

space and time along the US Atlantic Coast, from Massachusetts to South Florida, at the county-level for the past 47 years 35 

(Fig. 1). We restrict our analysis of risk to three specific components: shoreline change (hazard), valuation of owner-

occupied housing units (exposure), and beach nourishment – the active, and typically repeated, placement of sand on a beach 

to counteract chronic erosion (vulnerability). We do not address socioeconomic or demographic exposure or vulnerability 

(Cutter and Emrich, 2006; Cutter and Finch, 2008; Cutter et al., 2006, 2008), nor the exposure of infrastructural aspects of 

the built environment beyond owner-occupied housing value. Neither do we address other types of coastal hazard, such as 40 

storm strikes or flooding, or types of hazard mitigation other than beach nourishment. Despite this tightly defined framing, 

our analysis captures underlying quantitative relationships between risk components. Our findings suggest that spatially 
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explicit modelling efforts to predict future coastal risk need to address feedbacks between hazard, exposure, and 

vulnerability to capture emergent patterns of risk in space and time. 

 

2 Methods 

 5 

Using the components of risk broadly defined by the US National Research Council (NRC, 2014; Samuels and Gouldby, 

2009), we represent coastal risk as a function of time (t) with the expression: 

 

𝑹(𝒕)  =  𝑯 𝑬 𝑽            (1) 
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where R is coastal risk, H is natural hazard, E is exposure, and V is vulnerability. We define hazard (H) in terms of chronic 

shoreline erosion (as opposed to the likelihood of a hazard event). We define exposure (E) in terms of the total property 

value of owner-occupied housing units in 51 US Atlantic coastal (ocean-facing) counties. We address vulnerability (V) as a 

function of beach width, modulated by beach nourishment, which functions as a buffer between hazard and exposure 

(Armstrong and Lazarus, 2019; Armstrong et al., 2016). 15 

 

2.1 Hazard 

 

We calculated rates of shoreline change in two different ways to compare their respective effects on risk over time. 

 20 

2.1.1 Shoreline-change rates from shoreline surveys 

 

First, we calculated "end-point" rates of change from surveys of shoreline position published by the US Geological Survey 

(USGS) (Himmelstoss et al., 2010; Miller et al., 2005). An end-point rate is the cross-shore distance between two surveyed 

shoreline positions, divided by the time interval between the surveys. Using the Digital Shoreline Analysis System (DSAS) 25 

tool for Arc GIS (Thieler et al., 2008), we cast cross-shore transects every 1 km alongshore to intersect the surveyed 

shorelines, and at each transect calculated the end-point rate for three time periods (Armstrong and Lazarus, 2019): 

"historical", from the first survey to 1960; "recent", from 1960 to the most recent survey; and "long-term", from the first 

survey to most recent (Fig. 2a, e, i; Fig. 3a). Because the dates of shoreline surveys vary by location, following Armstrong 

and Lazarus (2019) we calculate shoreline-change rates using the available surveys at each transect that are closest to the 30 

start- and end-date of each period. We calculated the median historical, recent, and long-term rates of shoreline change for 

each county alongshore. 

 

We used 1960 to differentiate between historical and recent shoreline-change rates because during that decade, beach 

nourishment overtook shoreline hardening to become the predominant form of coastal protection in the United States (NRC, 35 

1995, 2014). Cumulative, diffuse effects of nourishment are therefore embedded in recent and long-term rates of shoreline 

change (Hapke et al., 2013; Johnson et al., 2015). We report long-term end-point rates for context, because they are common 

in other shoreline-change studies, particularly for the US Mid-Atlantic region (Hapke et al. 2013). However, a historical rate 

calculated from shorelines surveyed prior to 1960 may better reflect environmental forcing in the effective absence of beach 

nourishment (Armstrong and Lazarus, 2019). Historical rates are not "natural" rates: human alterations to the US Atlantic 40 

Coast began long before 1960, with engineered protection, including seawalls, groyne fields, and limited beach-nourishment 

projects (Hapke et al., 2013). Here, we consider them a pre-nourishment "background" rate of chronic forcing. 
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2.1.2 Shoreline-change rates from sea-level change rates 

To test an independent measure of chronic shoreline-change hazard, we also derived rates of shoreline change (Fig. 4a, e) 

from recorded rates of sea-level change (Holgate et al., 2013; PSMSL, 2018) and a USGS dataset of cross-shore slope for the 

US Atlantic Coast (Doran et al., 2017). We calculated spatially distributed rates of sea-level rise from annual tide-gauge 

records maintained by the Permanent Service for Mean Sea Level (PSMSL) (Holgate et al., 2013; PSMSL, 2018). For each 5 

tide-gauge record, we linearly interpolated across gaps in the annual data. We smoothed the resulting continuous record with 

a 10-year moving average, and calculated the annual rate of sea-level change (Table S1). Because the tide-gauge locations 

are not evenly distributed alongshore, to find rates of sea-level change for the full extent of the US Atlantic Coast we linearly 

interpolated rates of sea-level change between tide-gauge stations, and calculated the median annual rate of sea-level change 

at each coastal county. To convert a vertical change in sea level to a horizontal change in shoreline position, we shifted 10 

shoreline position at each transect up (or down) cross-shore slope from USGS coastal lidar surveys (Doran et al., 2017) 

(Table S2). Linking the slope measurements to county shapefiles with a spatial join, we calculated median slope per county 

and then the horizontal distance that each annual vertical change in sea level moved the shoreline (Fig. 4a). 

The relationship between sea-level change and shoreline position is more complicated than the one abstracted in our 

deliberate simplification (Cooper and Pilkey, 2004; Lentz et al., 2016; Nicholls and Cazenave, 2010). Our estimation is 15 

effectively a "bathtub model" of change, controlled only by topography with no incorporation of wave-driven sediment 

transport or other shoreline dynamics. Bathtub models tend to underpredict shoreline erosion rates in wave-dominated, sandy 

barrier settings, such as those of the US Mid-Atlantic (Lorenzo-Trueba and Ashton, 2014; Wolinsky and Murray, 2009). 

However, for this exercise, our method is useful for its simplicity – especially given the spatial scales under consideration – 

and for the independent estimation of shoreline change that it provides. 20 

2.1.3 Sign convention 

By the sign convention in our calculations, a negative rate of shoreline change denotes accretion (reducing hazard), and a 

positive rate denotes erosion (increasing hazard) (Fig. 2a, e, i). Hazard magnitudes are normalized by the minimum and 

maximum rates to range between 0–1. 

2.2 Exposure 25 

To represent exposure along the US Atlantic Coast, we used county-level Census data for the total value (adjusted to 2018 

$USD) of owner-occupied housing units in 51 coastal (ocean-facing) counties for each decade from 1970 (Table S3) 

(Minnesota Population Center, 2011). Because property value data are sparse for the 2010 Census community survey (16 

Atlantic coastal counties are missing), we instead used the 2009–2013 Census five-year survey. Several five-year Census 

surveys incorporate 2010, but we chose the 2009–2013 survey because it provides full overage of all the Atlantic coastal 30 

counties, and its mean of total values is closest to the 2010 Census community survey (for those Atlantic coastal counties 

surveyed in 2010). We adjusted the county-total values of owner-occupied housing units to 2018 $USD and divided by the 

number of transects in each county to yield a proxy for property value per alongshore kilometre. Because of the range of 

values along the coast, we took a log-transform and normalized the results to fall between 0–1 (Fig. 2 b, f, j; Fig. 3 b). 

 35 
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2.3 Vulnerability 

We represented vulnerability (V) with a two-part relationship based on beach width (Vbw) and beach nourishment (Vbn) over 

time: 

𝑽 =  𝟎.𝟓𝑽𝒃𝒏  +  𝟎.𝟓𝑽𝒃𝒘            (2) 

Because the value of exposed property is not included in Vbw or Vbn, this formulation disentangles vulnerability from 5 

exposure – a subtle but important conceptual departure from the definition used by the National Research Council (NRC, 

2014; Samuels and Gouldby, 2009), which includes property values in vulnerability. 

We made the beach-width component (Vbw) inversely related to beach width, such that vulnerability increases as beach width 

decreases. We express the normalised beach-width component as: 

𝑽𝒃𝒘 =  𝒙𝟎 ! 𝒙
𝒙𝟎 ! 𝒙𝒎𝒊𝒏

            (3) 10 

where x0 is maximum beach width, xmin is minimum beach width, and x is beach width. Because real measurements are 

unavailable, we assumed that in 1970 all counties had the same initial beach width. (In the results presented here, xmin = 10 m 

and x0 = 50 m; see also Table S4). From this baseline, the county-scale shoreline erodes or accretes according to the linear 

rate determined by the hazard condition (historical, recent, long-term, or sea-level derived). Because we used counties as the 

smallest spatial unit of comparison, our assumption implies that each county is fronted by beach. The physical geography of 15 

the real coastline is, of course, more spatially heterogeneous. Our analysis is too coarse to capture, for example, change at 

isolated pocket beaches in a predominantly rocky coastline, but counties with rocky coastlines will reflect very low or null 

rates of shoreline change. We consider only oceanfront shoreline, and do not account for back-bay or estuarine shoreline. 

For the beach-nourishment factor (Vbn), we collated beach-nourishment projects since 1970 by county from the beach-

nourishment database maintained by the Program for the Study of Developed Shorelines (PSDS, 2017). We took Vbn as the 20 

running total number of nourishment projects per county (nc) over time (t, summed annually), and normalized Vbn by the 

maximum number of projects among counties as of 2016 (nc
*), such that the county that nourished the most has Vbn = 1 in 

2016. Each county starts with Vbn = 0 in 1970, and Vbn increases incrementally with every nourishment project within the 

county boundary: 

𝑽𝒃𝒏  =  𝒏𝒄𝟏𝟗𝟕𝟎!𝒕
𝟏𝟗𝟕𝟎
𝒎𝒂𝒙(𝒏𝒄∗)

            (4) 25 

We initiated Vbn in 1970 to match the Census data for exposure (E). Because 80% of beach nourishment projects on the US 

Atlantic Coast have occurred since 1970, we excluded a relatively small number of events. To test the sensitivity of our 

vulnerability and risk results to the 1970 start date, we examined the relative effects of (1) initiating Vbn from the first 

nourishment project in our record (in 1930), and (2) excluding the Vbn term altogether (Fig. S1). Although the risk patterns 

resulting from these sensitivity tests changed in detail, their general characteristics did not. 30 
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In our routine, until a county nourishes for the first time, beach width (x) changes according to the county median linear 

erosion rate (γ): 

𝒙 𝒕 = 𝒙𝒕!𝟏 +  𝜸𝒕            (5) 

The linear erosion rate (γ) applied to each county is either the (pre-normalised) historical, recent, or long-term shoreline 

change rate, or the rate derived from sea-level change, depending on the hazard scenario. The sign convention for γ is 5 

negative for erosion, and positive for accretion. 

Once a county has nourished – as determined by the empirical dataset of nourishment projects (PSDS, 2017) – beach width 

becomes a function of a linear erosion rate (γ), as in Eq. (5), and a nonlinear erosion rate (θ), which is applied to the 

nourished fraction of the total beach width (µ) to capture cross-shore and alongshore diffusion of nourishment deposition 

across and along the shoreface (Dean and Dalrymple, 2001; Lazarus et al., 2011; Smith et al., 2009): 10 

𝒙(𝒕)  =  (𝟏 − µ)𝒙𝟎  +  µ𝐞!𝜽𝒕𝒙𝟎  +  𝜸𝒕𝒕
𝟏          (6) 

where x0 is maximum beach width, θ is nonlinear erosion rate, µ is the fraction of the total beach width that the nonlinear 

rate applies to, γ is linear erosion rate, and t is the number of years since the last nourishment project. If a county nourishes at 

least once in a given year, its beach is restored to a maximum width in that year before it begins to erode. (Our minimum 

temporal increment was 1 year, and we assumed that nourishment always occurs at the end of a given year.) Maximum 15 

beach width (x0), nonlinear erosion rate (θ), and the fraction of beach width affected by the nonlinear rate (µ) are variables 

applied to the full spatial domain. Beach width (at the county scale) thus changes at a linear rate (γ), where a negative value 

is erosion and a positive value is accretion, with an additional nonlinear erosion rate (θ) over a fraction of the beach (µ) when 

nourishment occurs, until the beach is restored to maximum width by a subsequent nourishment project or reaches a 

specified minimum width (here, 10 m). The Vbn term is ultimately normalised by the maximum and minimum beach width. 20 

Because vulnerability is normalised, the minimum beach width that we specify (xmin = 10 m) affects the length of time it 

takes to reach maximum Vbw, but does not affect the overall magnitude of V. A wider minimum threshold means that Vbw 

reaches a maximum faster, and vice versa. We used a minimum width of 10 m to avoid the numerical instabilities in Vbw that 

arise with a minimum width equal to or less than 0 m. The minimum width threshold does not affect the cumulative beach-

nourishment factor. 25 

We test the effect of altering x0, θ, and µ on both vulnerability and risk, under historical hazard and linear erosion rates (Fig. 

S1; Table S4). Sensitivity testing shows that vulnerability over time is highest in the case of a narrow beach (x0 = 25 m) with 

a high nonlinear erosion rate (θ = 0.75) affecting a large fraction of the beach (µ = 0.75). Vulnerability over time is lowest in 

the opposite case (x0 = 100 m, θ = 0.05, µ = 0.25) (Fig S1). In calculating our results, we used a case in the middle of these 

extremes (x0 = 50 m, θ = 0.5, µ = 0.33), applying a value of µ similar to the value (µ = 0.35) used by Smith et al. (2009) and 30 

Lazarus et al. (2011). 
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Like a ratchet, the cumulative beach-nourishment factor (Vbn) increases each time a county nourishes. This assumption 

represents the fact that nourishment projects for shoreline protection (as opposed to reactionary projects for emergency storm 

response) are cyclical within multi-decadal programmes (NRC 1995, 2014). Nourishment at a given site rarely occurs only 

once. A community that initiates a nourishment programme will likely depend on periodic nourishment into the future. By 

comparison, the beach-width factor (Vbw) is more dynamic, reflecting the oscillatory behaviour of a nourishment cycle at 5 

multi-annual time scales by dropping to a minimum after a nourishment project (as the wide beach buffers property from 

hazard) and then increasing as the nourished beach erodes and coastal properties become more susceptible to hazard. 

2.4 Statistical tests 

We examine relationships between the resulting spatial distributions of hazard, exposure, and vulnerability over time using a 

Kolmogorov-Smirnov test that quantifies, to 95% confidence, relative differences between pairs of distributions. A 10 

Kolmogorov-Smirnov test does not require parametric distributions, and evaluates the null hypothesis that a given pair of 

distributions are sampled from the same parent distribution. Rejection of the null hypothesis thus means the distributions are 

significantly different.  

3 Results 

3.1 Risk trajectories 15 

Our data-driven model generates a pattern of coastal risk that varies in space and time at county scale along the US Atlantic 

Coast (Fig. 1). From 1970, each county generates its own risk trajectory that represents the interaction of hazard, exposure, 

and vulnerability in that county (Fig. 1 a). For visualisation and analysis, we scaled each county by the number of 1 km 

transects they comprise (Fig. 1 a). The result is a matrix of 2386 km over 47 years, in which each of the 2386 (1 km) rows is 

associated with a county. Alongshore mean values for the whole US Atlantic Coast are taken from the full matrix so that 20 

they reflect the relative alongshore scale of each county (Fig. 1 b). 

We find that the collective trajectory of risk increases from 1970 to 2016 for all hazard scenarios – despite the occurrence of 

998 beach-nourishment projects, ostensibly intended to reduce risk, during the same period (Figs., 2, 3). The influence of 

beach-nourishment projects on vulnerability means that county-scale risk varies over time even if hazard forcing remains 

constant. Because hazard based on measured shoreline change (historical, recent, and long-term) is spatially variable but 25 

temporally static (Figs. 2, 3), changes in risk over time under this model condition are driven by either exposure or 

vulnerability.  

The overall risk trajectory also increases with the spatio-temporally variable hazard condition derived from rates of sea-level 

rise (Fig. 4). The alongshore mean rate derived from sea-level rise shows close agreement with the mean "recent" shoreline-

change rate, suggesting that our simplified "bathtub" representation of hazard is a reasonable proxy on a multi-decadal time 30 

scale (Fig. 5), even though bathtub models tend to underestimate shoreline erosion rates along barrier coastlines (Lorenzo-

Trueba and Ashton, 2014; Wolinsky and Murray, 2009). 

Individually, not all counties register rising risk trajectories over time. To compare how individual counties contribute to 

mean risk, we ranked each county by its risk index in 2016 (Table 1). We also examined in detail two examples of how 
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individual counties responded to different hazards and beach-nourishment cycles (Fig. 6). Plymouth County, Massachusetts, 

demonstrates how vulnerability may respond to linear erosion rates (γ) that vary from eroding (negative, under the 

"historical" condition), to static (under the "long-term" and sea-level derived conditions), to accreting (positive, under the 

"recent" condition) (Fig. 6 a-d). Ocean County, New Jersey, demonstrates how the cumulative beach-nourishment factor 

(Vbn) can drive up risk (Fig. 6 e-h). There, Vbn causes the local maxima and minima in vulnerability to increase over time 5 

(Fig. 6 g), such that even when beaches are at full width, exposed property is still subject to vulnerability V > 0. Ocean 

County highlights how the cumulative beach-nourishment factor functions as a ratchet that forces vulnerability to only 

increase over time. Because not every county practices beach nourishment, it is possible for a county to have V = 0 if its 

shoreline is accreting (e.g., Camden and McIntosh Counties, Georgia). A county that never nourishes will have a Vbn = 0, and 

if a county nourishes only once or twice then their Vbn will remain negligible (but not negative). However, mean 10 

vulnerability is greater – and therefore mean risk is greater – when Vbn is left out (V = Vbw) (Fig. S1 c, d), because its 

inclusion makes vulnerability less sensitive to changes in beach width. For example, a county that does not nourish could 

have a narrow beach but a low Vbn, and therefore a lower vulnerability score than if its vulnerability were only a function of 

beach width. 

Alongshore mean risk in our model also increases because of a well-documented national trend in exposure (NOAA, 2013). 15 

Exposure in an individual county may increase or decrease from one decade to the next, but mean exposure along the full 

span of the coast increases over time (NOAA, 2013; Union of Concerned Scientists, 2018). The 51 coastal counties in this 

analysis represent 1.6% of all US counties, but since 1970 have constituted 6.9–9.25% of the total value of all owner-

occupied housing units in the country (Fig. S2). Thus, while our data-driven model includes simplifying assumptions, we 

suggest that the increasing risk trends in our findings represent a real phenomenon, since exposure has risen at the coast 20 

decade on decade in real terms, and our cumulative beach-nourishment factor both dampens mean vulnerability and 

highlights the reality of long-term risk in counties that nourish continually. 

3.2 Component relationships 

Finally, we compared the statistical distributions of exposure in high- and low-hazard counties, and in high- and low-

intensity nourishing counties (as an aspect of vulnerability), to examine whether the three components of risk, as we 25 

represent them, reflect temporal interrelationships. In keeping with the scaled stripes in Figures 1, 2, and 4, we present these 

distributions (Figs. 7, 8) at the transect scale rather than the county scale to better represent the contributions of counties by 

their coastal extents. For example, Queens County, NY, hosts a high density of exposure per alongshore kilometere – very 

high exposure and a short coastline – and contributes only four transects to the total (Fig. 2). Likewise, because of its size, 

Dare County, NC, has both high exposure and a longer shoreline, resulting in a lower value of exposure per alongshore 30 

kilometre that accounts for over 100 transects of the domain. Overall, Dare County is less densely developed than Queens 

County. However, our treatment of exposure does overlook concentrated areas of high-density development within otherwise 

low-density counties – hotspots at which hazard, exposure, and vulnerability (i.e. nourishment activity) may be closely 

related. 

To explore potential relationships between exposure and hazard, we sorted the exposure time series (Fig. 2) into counties 35 

associated with "high hazard" (eroding shorelines) and "low hazard" (accreting shorelines) for historical and recent shoreline 

change (Figs. 7 and S3). We find that exposure increases each decade in zones of high and low hazard, alike, for both 

historical and recent shoreline change. Under “historical” shoreline-change hazard, exposure of property value is greatest in 
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zones of high hazard (Fig. 7 a-h, Fig. S3 a). Conversely, exposure to high hazard is relatively low for "recent" shoreline-

change rates (Fig. 7 i-p, Fig S3 d), in part because recent shoreline-change rates tend to be less erosional than their historical 

counterparts (Fig. 3 a). The difference between relative distributions of exposure in high and low hazard zones for historical 

shoreline-change rates increases in significance decade on decade, with a decreasing Kolmogorov-Smirnov p-value that 

reflects the significance of their divergence (Fig. S3 c). There is no such temporal divergence of exposure in high and low 5 

hazard zones for recent shoreline-change rates (Fig. S3 f). 

To explore, in parallel, potential relationships between exposure and vulnerability, we sorted the exposure time series into 

nourishing and non-nourishing counties, and then by the intensity of beach nourishment (high or low) according to whether 

counties fell above or below the 2016 median value of cumulative Vbn (Figs. 8, S4). We find that although exposure increases 

each decade in nourishing and non-nourishing counties, alike, more property is ultimately exposed in nourishing counties. 10 

Moreover, the mean value of that exposed property increases at a greater rate than in non-nourishing counties (Figs. 8 a-h, 

S4 a-c). Initially, all property is exposed in counties where nourishment intensity is present but low (their Vbn sits below the 

2016 median) – which we expect, because for counties to accrue enough nourishment events to match the 2016 median 

cumulative-nourishment factor requires time (Fig. 8 i, m). Exposure in intensively nourished counties (counties that accrue 

enough nourishment projects to have Vbn above the 2016 median) shows a marked increase in the 1980s (Fig. S4 d). Total 15 

exposure in intensively nourished counties overtakes total exposure in sparsely nourished counties by the 2010s (Fig. S4 e), 

such that more property ends up exposed in counties where nourishment intensity is high (Figs. 8 i-p, S4 d-f). 

Both of these temporal relationships in spatial patterns of exposure and hazard (Fig. 7) and exposure and vulnerability (Fig. 

8) are likely two vantages of same feedback, catalysed by beach nourishment. Higher property value is exposed where 

historical shoreline-change hazard was high (Fig. 7, a–d) and recent shoreline-change hazard is low (Fig. 7, m–p) because 20 

those places also practice relatively intensive use of beach nourishment (Fig. 9). The cumulative effect of beach nourishment 

may be sufficiently strong to mask "true" rates of shoreline change (Armstrong and Lazarus, 2019) – a defensive intervention 

that, by reducing apparent hazard, may spur further development (Fig. 8), increasing exposure and creating demand for 

additional protection (Armstrong et al., 2016). 

4 Discussion and implications 25 

Our data-driven, spatio-temporal model of risk along the US Atlantic Coast produces trajectories that vary in space and, on 

average, rise over time for all four chronic hazard scenarios that we test (Fig. 5). We know from the underlying data that real 

exposure increases over time, but we suggest that our modelled risk trajectories also reflect intrinsic feedbacks between 

hazard, exposure, and vulnerability (Mileti, 1999). We find higher property exposure in counties with "high hazard" 

historical shoreline-change rates and "low hazard" recent shoreline-change rates (Fig. 7), and that exposure has increased 30 

more in places that have practiced beach nourishment intensively (Fig. 8). The spatio-temporal relationships that we show 

between exposure and hazard (Fig. 7) and exposure and vulnerability (Fig. 8) may reflect a feedback between coastal 

development and beach nourishment (Fig. 9) (Armstrong et al., 2016; Armstrong and Lazarus, 2019) – a manifestation of the 

"safe development paradox" (Burby, 2006), in which hazard protections encourage further development in places prone to 

hazard impacts (Armstrong et al., 2016; Burby and French, 1981; Burby, 2006; Di Baldassarre et al., 2013, 2016; Keeler et 35 

al., 2018; Lazarus et al., 2016;  McNamara and Lazarus, 2018; McNamara et al., 2015; Mileti, 1999; Smith et al., 2009; 

Werner and McNamara, 2007; White, 1945). 
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Our model is exploratory, and we reiterate its main caveats. Although there are many kinds of coastal hazard (e.g., storm 

impacts, flooding), we represented "chronic" hazard with shoreline-change rates that are spatially heterogeneous but 

temporally static. An alternative derivation of shoreline change, from sea-level rise rates and simplified shore slopes, varies 

in both space and time, and yielded overall results similar to those returned by the "recent" shoreline-change scenario. 

Exposure in our model only accounts for the monetary value of owner-occupied properties in coastal counties, as captured 5 

by the US Census, thus excluding other potential measures of exposure, such as socio-economic indices (e.g., Cutter et al., 

2006, 2008; Neumann et al., 2015; NRC, 2014; Samuels and Gouldby, 2009; Strauss et al., 2012), and requires that we 

spatially aggregate our analysis to county scales. Finally, our measure of vulnerability – intended to represent 

"susceptibility" (NRC, 2014; Samuels and Gouldby, 2009) without double-counting exposure or hazard – includes no 

method of shoreline protection other than beach nourishment, and no explicit inclusion of storm recurrence or severity. 10 

Furthermore, our treatment of dynamic vulnerability is underpinned by a set of broad assumptions: that beaches comprise 

shorelines at the county scale; that in 1970, all counties have the same initial beach width; that a beach-nourishment project 

always restores a beach to its full width; and that counties with intensive nourishment programmes may render themselves 

more vulnerable over time by masking a chronic erosion problem (Armstrong and Lazarus, 2019; Pilkey and Cooper, 2014; 

Woodruff et al., 2018). We do not directly address alongshore spatial interactions within or between counties (Lazarus et al., 15 

2011; Ells and Murray, 2012; Lazarus et al., 2016). Despite these assumptions, our model captures temporal interactions 

among the components of risk that ultimately yield large-scale spatial patterns similar to those identified in recent, fully 

empirical studies (Armstrong and Lazarus, 2019; Armstrong et al., 2016). 

We suggest that models intended to test different coastal management policies, interventions, and scenarios should aim to 

include feedbacks between hazard, exposure and vulnerability. In our data-driven model, traces of these feedbacks – and 20 

perhaps others – are likely embedded in the data we use. More detailed work at the intersection of theory and empiricism is 

necessary to resolve how feedbacks between hazard, exposure, and vulnerability dynamically affect each component of risk, 

and to explore how different management interventions may mitigate – or exacerbate – the “safe development paradox”. 
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Figures 

 
Figure 1: Evolution of (a) county-level risk (a function of hazard, exposure, and vulnerability) modelled for the US Atlantic Coast, from 

1970–2016. Hazard in this simulation reflects historical erosion rates. For visualisation and analysis, each county is scaled by the number 

of 1 km transects it comprises. The result is a matrix of 2386 km over 47 years, in which each of the 2386 (1 km) rows is associated with a 5 
county. Note that risk in Norfolk County, MA, exceeds the maximum scale bar value of 0.15 (2016 risk = 0.418; see Table 1). (b) 

Alongshore mean values through time for the whole US Atlantic Coast are taken from the full matrix (a), reflecting the relative alongshore 

scale of each county. 
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Figure 2. Columns show hazard, exposure, and vulnerability components and resulting risk. Each row of panels illustrates a different rate 
of shoreline change (i.e., hazard condition): (a–d) historical, (e–h) recent, and (i–l) long-term. Risk in Norfolk County, MA, exceeds the 
maximum scale bar value of 0.15 (2016 risk = 0.418; see Table 1). Each county is scaled by the number of 1 km transects it comprises; the 
northern- and southern-most counties are labelled. 5 
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Figure 3. Evolution over time of alongshore mean risk components – (a) hazard, (b) exposure, and (c) vulnerability – and the resulting (d) 
mean risk, given historical (solid black), recent (dashed black), and long-term (dotted black) shoreline-change rates as hazard conditions. 

 

 5 
Figure 4. County-scale component (a) hazard, (b) exposure, (c) vulnerability and (d) overall risk evolution over time, and (e–h) 
corresponding means, using shoreline-change rates derived from sea-level change as the hazard condition. Each county is scaled by the 
number of 1 km transects it comprises; not all counties are labelled. 
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Figure 5. Comparative evolution of mean risk over time under different representations of shoreline-change rate (hazard condition): 
historical (solid black), recent (dashed black), long-term (dotted black), and sea-level-derived (red). 

 
Figure 6. Evolution of (a–c) mean components and (d) risk for Plymouth County, Massachusetts, and (e–h) Ocean County, New Jersey. 5 
Line type indicates results under a given hazard condition. Note that the vulnerability time series for Ocean County (panel g) shows the 
"ratchet effect" of cumulative vulnerability from repeated beach nourishment episodes. 
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Figure 7. Transect-level distribution of exposure per coastal kilometre, by decade, under (a–h) high and low historical and (i–p) high and 
low recent shoreline-change hazard. "High" hazard here is a value greater than 0.272 (the normalised value for a shoreline-change rate of 
zero); "low" hazard is a value greater than 0.272. High hazard therefore indicates erosion, and low hazard indicates accretion. Summary 
statistics for these distributions are provided in Table S5. 5 
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Figure 8. Transect-level distribution of exposure per coastal kilometre, by decade, (a–h) in counties that have and have not nourished, and 
(i–p) in counties that have nourished above and below the 2016 median cumulative beach-nourishment index (Vbn = 0.168). The 2016 
median Vbn denotes the normalised value of the overall median cumulative number of nourishments across the domain. Summary statistics 
for these distributions are provided in Table S5. 5 
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Figure 9. Cumulative beach-nourishment index (Vbn), as of 2016, at transects (across all counties) that express both high "historical" and 
low "recent" rates of shoreline erosion (see Fig. 7, a–d and m–p). Dotted line indicates the overall median Vbn = 0.168 in 2016 for the full 
domain. For this component distribution, median Vbn = 0.178 (mean = 0.251). This spatial correspondence between a major reversal in 
shoreline-change trend (from erosion to accretion) and above-average nourishment intensity is an indication of a coupling between chronic 5 
erosion (hazard) and defensive intervention (vulnerability). 
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Tables 

Table 1. Counties ranked by risk in 2016, calculated with historic, long-term, recent, and sea-level-derived shoreline-change rates. 

 
Historical		

	  
Long-term		

	  
Recent		

	  

Sea-level-
derived	

	  
Rank	 County	 State	

2016	
Risk	 County	 State	

2016	
Risk	 County	 State	

2016	
Risk	 County	 State	

2016	
Risk	

1	 Norfolk	 MA	 0.4176	 Sussex	 DE	 0.1303	 Essex	 MA	 0.1451	 Cape	May	 NJ	 0.0995	

2	 Sussex	 DE	 0.1456	 Jasper	 SC	 0.1176	 Liberty	 GA	 0.1304	 Sussex	 DE	 0.0899	

3	 Plymouth	 MA	 0.1427	 Liberty	 GA	 0.1171	 Accomack	 VA	 0.1130	 Miami-Dade	 FL	 0.0809	

4	 Northampton	 VA	 0.1400	 Hyde	 NC	 0.0999	 Sussex	 DE	 0.1010	 Palm	Beach	 FL	 0.0807	

5	 Jasper	 SC	 0.1382	 Dukes	 MA	 0.0946	 Bristol	 MA	 0.0867	 Queens	 NY	 0.0763	

6	 Hyde	 NC	 0.1328	 Nantucket	 MA	 0.0924	 Nantucket	 MA	 0.0790	 Duval	 FL	 0.0661	

7	 Nantucket	 MA	 0.1026	 Beaufort	 SC	 0.0828	 Palm	Beach	 FL	 0.0696	 Monmouth	 NJ	 0.0647	

8	 Liberty	 GA	 0.1009	 Virginia	Beach	 VA	 0.0808	 Currituck	 NC	 0.0682	 Virginia	Beach	 VA	 0.0640	

9	 Dukes	 MA	 0.1008	 Palm	Beach	 FL	 0.0806	 Queens	 NY	 0.0642	 Norfolk	 MA	 0.0637	

10	 Beaufort	 SC	 0.1002	 Northampton	 VA	 0.0798	 Barnstable	 MA	 0.0634	 New	Hanover	 NC	 0.0621	

11	 Charleston	 SC	 0.0953	 Cape	May	 NJ	 0.0787	 Brunswick	 NC	 0.0497	 Suffolk	 NY	 0.0613	

12	 Virginia	Beach	 VA	 0.0949	 Charleston	 SC	 0.0732	 New	Hanover	 NC	 0.0488	 Brunswick	 NC	 0.0529	

13	 Palm	Beach	 FL	 0.0940	 Monmouth	 NJ	 0.0700	 Atlantic	 NJ	 0.0435	 Martin	 FL	 0.0512	

14	 Monmouth	 NJ	 0.0895	 New	Hanover	 NC	 0.0700	 Brevard	 FL	 0.0420	 Beaufort	 SC	 0.0495	

15	 Barnstable	 MA	 0.0841	 Suffolk	 NY	 0.0618	 Washington	 RI	 0.0419	 Charleston	 SC	 0.0490	

16	 Miami-Dade	 FL	 0.0758	 Brunswick	 NC	 0.0610	 Indian	River	 FL	 0.0412	 Atlantic	 NJ	 0.0484	

17	 Ocean	 NJ	 0.0737	 Ocean	 NJ	 0.0583	 Virginia	Beach	 VA	 0.0405	 Horry	 SC	 0.0483	

18	 New	Hanover	 NC	 0.0711	 Martin	 FL	 0.0549	 Colleton	 SC	 0.0403	 Nassau	 FL	 0.0467	

19	 Cape	May	 NJ	 0.0711	 Norfolk	 MA	 0.0542	 Charleston	 SC	 0.0389	 Essex	 MA	 0.0463	

20	 Martin	 FL	 0.0708	 Queens	 NY	 0.0514	 Cape	May	 NJ	 0.0366	 Nassau	 NY	 0.0461	

21	 Accomack	 VA	 0.0694	 Miami-Dade	 FL	 0.0497	 Ocean	 NJ	 0.0365	 Brevard	 FL	 0.0456	

22	 Duval	 FL	 0.0692	 Colleton	 SC	 0.0481	 St.	Lucie	 FL	 0.0350	 Broward	 FL	 0.0453	

23	 Brunswick	 NC	 0.0690	 Barnstable	 MA	 0.0460	 Pender	 NC	 0.0350	 Bristol	 MA	 0.0444	

24	 Essex	 MA	 0.0639	 Plymouth	 MA	 0.0457	 Martin	 FL	 0.0330	 Volusia	 FL	 0.0439	

25	 Suffolk	 NY	 0.0596	 Duval	 FL	 0.0437	 Carteret	 NC	 0.0328	 Plymouth	 MA	 0.0438	

26	 Colleton	 SC	 0.0578	 Essex	 MA	 0.0427	 Suffolk	 NY	 0.0308	 Ocean	 NJ	 0.0395	

27	 Horry	 SC	 0.0545	 Brevard	 FL	 0.0419	 Dare	 NC	 0.0302	 Washington	 RI	 0.0382	

28	 Bristol	 MA	 0.0484	 Washington	 RI	 0.0411	 Norfolk	 MA	 0.0296	 Barnstable	 MA	 0.0380	

29	 Broward	 FL	 0.0468	 Bristol	 MA	 0.0397	 Beaufort	 SC	 0.0287	 St.	Johns	 FL	 0.0376	

30	 Brevard	 FL	 0.0455	 Horry	 SC	 0.0377	 Broward	 FL	 0.0282	 Indian	River	 FL	 0.0372	

31	 Queens	 NY	 0.0415	 Broward	 FL	 0.0377	 Worcester	 MD	 0.0271	 Glynn	 GA	 0.0371	

32	 Currituck	 NC	 0.0408	 St.	Lucie	 FL	 0.0354	 Horry	 SC	 0.0252	 Carteret	 NC	 0.0369	

33	 St.	Lucie	 FL	 0.0402	 Indian	River	 FL	 0.0350	 Monmouth	 NJ	 0.0225	 Pender	 NC	 0.0360	

34	 Pender	 NC	 0.0370	 Dare	 NC	 0.0348	 Dukes	 MA	 0.0223	 Colleton	 SC	 0.0321	

35	 Washington	 RI	 0.0364	 Accomack	 VA	 0.0346	 Volusia	 FL	 0.0190	 Chatham	 GA	 0.0321	

36	 Dare	 NC	 0.0364	 Carteret	 NC	 0.0333	 Nassau	 NY	 0.0161	 St.	Lucie	 FL	 0.0318	

37	 Worcester	 MD	 0.0346	 Worcester	 MD	 0.0323	 Onslow	 NC	 0.0157	 Worcester	 MD	 0.0312	

38	 Indian	River	 FL	 0.0344	 Pender	 NC	 0.0317	 St.	Johns	 FL	 0.0156	 Dukes	 MA	 0.0275	

39	 Nassau	 NY	 0.0314	 Currituck	 NC	 0.0315	 Georgetown	 SC	 0.0155	 Nantucket	 MA	 0.0274	

40	 Glynn	 GA	 0.0311	 Atlantic	 NJ	 0.0303	 Chatham	 GA	 0.0143	 Dare	 NC	 0.0253	

41	 Nassau	 FL	 0.0276	 Volusia	 FL	 0.0299	 Miami-Dade	 FL	 0.0079	 Hyde	 NC	 0.0190	

42	 Volusia	 FL	 0.0271	 St.	Johns	 FL	 0.0287	 McIntosh	 GA	 0.0057	 Georgetown	 SC	 0.0188	

43	 Atlantic	 NJ	 0.0268	 Nassau	 NY	 0.0222	 Glynn	 GA	 0.0011	 Onslow	 NC	 0.0132	

44	 St.	Johns	 FL	 0.0260	 Glynn	 GA	 0.0184	 Plymouth	 MA	 0.0010	 Camden	 GA	 0.0083	



23 
 

 
Historical		

	  
Long-term		

	  
Recent		

	  

Sea-level-
derived	

	  
Rank	 County	 State	

2016	
Risk	 County	 State	

2016	
Risk	 County	 State	

2016	
Risk	 County	 State	

2016	
Risk	

45	 Carteret	 NC	 0.0248	 Georgetown	 SC	 0.0182	 Nassau	 FL	 0.0008	 Northampton	 VA	 0.0078	

46	 Flagler	 FL	 0.0223	 Nassau	 FL	 0.0170	 Hyde	 NC	 0.0006	 Jasper	 SC	 0.0069	

47	 Georgetown	 SC	 0.0206	 Onslow	 NC	 0.0128	 Flagler	 FL	 0	 Liberty	 GA	 0.0061	

48	 Onslow	 NC	 0.0136	 Chatham	 GA	 0.0007	 Duval	 FL	 0	 Accomack	 VA	 0.0058	

49	 Chatham	 GA	 0.0005	 Flagler	 FL	 0	 Camden	 GA	 0	 McIntosh	 GA	 0.0053	

50	 Camden	 GA	 0	 Camden	 GA	 0	 Jasper	 SC	 0	 Currituck	 NC	 0.0050	

51	 McIntosh	 GA	 0	 McIntosh	 GA	 0	 Northampton	 VA	 0	 Flagler	 FL	 0.0021	
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