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Abstract 12 

 13 

Rips currents and other surf hazards are an emerging public health issue globally. Lifeguards, 14 

warning flags and signs are important and to varying degrees they are effective strategies to 15 

minimize risk to beach users. In the United States and other jurisdictions around the world, 16 

lifeguards use coloured flags (green, yellow and red) to indicate whether the danger posed by the 17 

surf and rip hazard is low, moderate, or high respectively. The choice of flag depends on the 18 

lifeguard(s) monitoring the changing surf conditions along the beach and over the course of the 19 

day using both regional surf forecasts and careful observation. There is a potential that the chosen 20 

flag is not consistent with the beach user perception of the risk, which may increase the potential 21 

for rescues or drownings. In this study, machine learning is used to determine the potential for 22 

error in the flags used at Pensacola Beach, and the impact of that error on the number of rescues. 23 

Results of a decision tree analysis indicate that the colour flag chosen by the lifeguards was 24 

different from what the model predicted for 35% of days between 2004 and 2008 (n=396/1125).  25 

Days when there is a difference between the predicted and posted flag colour represent only 17% 26 

of all rescue days but those days are associated with ~60% of all rescues between 2004 and 2008. 27 

Further analysis reveals that the largest number of rescue days and total number of rescues is 28 

associated with days where the flag deployed over-estimated the surf and hazard risk, such as a 29 

red or yellow flag flying when the model predicted a green flag would be more appropriate based 30 

on the wind and wave forcing alone. While it is possible that the lifeguards were overly cautious 31 

it is argued that they most likely identified a rip forced by a transverse-bar and rip morphology 32 

common at the study site.  Regardless, the results suggest that beach users may be discounting 33 

lifeguard warnings if the flag colour is not consistent with how they perceive the surf hazard or 34 

the regional forecast. Results suggest that machine learning techniques have the potential to 35 

support lifeguards and thereby reduce the number of rescues and drownings.  36 

 37 
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Introduction  39 

 40 

Rip currents are the main hazard to recreational swimmers and bathers, and, in recent years, 41 

have been recognized as a serious global public health issue (Brighton et al., 2013; Woodward et al., 42 

2013; Kumar and Prasad et al., 2014; Arozarena et al., 2015; Brewster et al., 2019; Vlodarchyk et al., 43 

2019). Rips are strong, seaward-directed currents that can develop on beaches characterized by 44 

wave breaking within the surf zone (Castelle et al., 2016), and are capable of transporting 45 

swimmers a significant distance away from the shoreline into deeper waters. Weak swimmers or 46 

those who try and fight the current can become stressed and experience panic (Brander et al., 2011; 47 

Drozdzewski et al., 2015) leading to increased adrenaline, an elevated heart rate and blood 48 

pressure, and rapid and shallow breathing. On recreational beaches in Australia and the United 49 

States, rips have been identified as the main cause of drownings and are believed to be responsible 50 

for nearly 80% of all rescues (Brighton et al., 2013; Brewster et al., 2019). It is estimated that the 51 

annual number of rip current drownings exceeds the number of fatalities caused by hurricanes, 52 

forest fires, and floods in Australia, the United States (Brander et al., 2013; NWS, 2017), while 53 

rip-related drownings on a relatively small number of beaches in Costa Rica account for a 54 

disproportionately large number of violent deaths in the country (Arozarena et al., 2015).  55 

However, recent evidence suggests that public knowledge of this hazard is limited (Brander et al., 56 

2011; Williamson et al., 2011; Brannstrom et al., 2014; 2015; Gallop et al., 2016; Fallon et al., 57 

2018; Menard et al., 2018; Silva-Cavalcanti et al., 2018; Trimble and Houser, 2018), and that few 58 

people are interested in rip currents compared to other hazards (Houser et al., 2019).  59 

Many beaches have warning signs at primary access points to warn beach users of the rip 60 

hazard, but recent studies suggest that signs may not be effective (e.g. Matthews et al., 2014; 61 

Brannstrom et al. 2015). Many beaches also use a combination of beach flags to either designate 62 

the location of supervised and safe swimming areas (e.g. Australia and the United Kingdom), or 63 

areas and times to avoid entering the water (e.g. Costa Rica and the US). Unfortunately, not every 64 

country uses the same flagging convention and there are regional variations that can lead to 65 

confusion amongst beach users. The United States and Canada use green, yellow, and red coloured 66 

flags to indicate whether the danger posed by the surf and rip hazard is low, moderate, or high, 67 

respectively (ILSF, 2004). A beach manager or lifeguard decides on the surf hazard and the flag 68 

colour to fly based on a combination of daily updates on rip conditions provided by local lifeguards 69 
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as well as a rip forecast from the US National Weather Service (NWS). Most rip forecasts are 70 

based on a simple correlation between the number of rip-related rescues and meteorological and 71 

oceanographic conditions on that day (Lushine, 1991a, b; Lascody, 1998; Engle, 2002; Dusek and 72 

Seim, 2013; Kumar and Prasad, 2014; Scott et al., 2014; Moulton et al., 2017). These forecasts do 73 

not account for the surf zone morphology, which may be conducive to the development of rips on 74 

days when wave breaking is relatively weak. Even under ‘green flag’ days, the presence of shore-75 

attached nearshore bars (called a transverse bar and rip morphology; Wright and Short, 1984) can 76 

force a current of ~0.5 m s-1 that can pose a threat to weak swimmers (Houser et al, 2013).  77 

Rip currents can still be present even if a regional forecast predicts that the hazard potential 78 

is low based on wind and wave conditions. Beach users can be at risk if the flag colour is based 79 

solely on the regional forecast.  To be effective, the flag system requires lifeguards to continuously 80 

assess surf conditions and monitor swimmers and bathers, and ultimately intervene if someone 81 

does not heed the warning implied by a yellow or red flag indicating moderate and high (‘do not 82 

enter the water’) hazard levels respectively. Recent evidence suggests that many beach users do 83 

not adhere to warnings if their own experience (whether accurate or not) or behavior of others on 84 

the beach, contradicts the hazard, as indicated by the warning flag (Houser et al., 2017; Menard et 85 

al., 2018). Beachgoers may lose trust in authority (i.e. the lifeguards) if a forecast is perceived, 86 

wrongly or rightly, to be inaccurate (Espluga et al., 2009). If the forecast is for dangerous surf 87 

conditions and a yellow or red flag is placed on the beach when conditions appear to the beach 88 

user to be relatively calm, the beach user may discount or ignore the forecast now and, in the 89 

future, if they enter the water and do not experience any difficulties. Trust and confidence in the 90 

authority figures can be eroded if they believe that the lifeguards are being overly cautious. It can 91 

be difficult to change (or ‘reset’) public perception about the accuracy of the flag system as soon 92 

as a discrepancy is perceived, and subsequent visits and experiences may confirm the biases of the 93 

beach user (Houser et al., 2018). It is a situation analogous to the boy who cries “wolf” (Wachinger 94 

et al., 2013).  95 

This study examines the consistency of flag warnings at Pensacola Beach, Florida between 96 

2004 and 2008 when daily data is available for flag colour, wind and wave forcing, as well as the 97 

daily number of rescues performed by lifeguards. A decision tree, a form of machine learning, is 98 

used to predict the posted flag colour using lifeguard observations in combination with wind and 99 

wave forcing. The modelled flag colour, based solely on wave and wind forcing, can be compared 100 
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to the flag colour posted by the lifeguards on a particular day to identify days when there is a 101 

difference and how that influences the number of rescues performed on that day. It is hypothesized 102 

that there will be a greater number of rescues performed on days when there is a difference between 103 

the predicted and posted flag colour.  Specifically, it is hypothesized that a greater number of 104 

rescues will occur on days when the model underestimated the hazard level compared to the 105 

lifeguard who made their decision based on local observations including the presence of semi-106 

permanent rip channels.  In this scenario, the public may believe that the lifeguard is being overly 107 

cautious leading to people entering the water.     108 

 109 

Study Site 110 

 111 

The analysis was completed at Pensacola Beach, Florida (Figure 1), where there is 112 

available records of daily flag colours, wind and wave forcing, and lifeguard-performed rescues 113 

between 2004 and 2008. The beaches of the Florida Panhandle have been described ‘‘as the worst 114 

in the nation for beach drowning’’ (The Tuscaloosa News, 2002), based on the presence of semi-115 

permanent rips along the length of the island (Houser et al., 2011; Barrett and Houser, 2012). These 116 

rips can be active and pose a threat to swimmers when conditions may appear to be safe for 117 

swimming (Houser et al., 2013). During the period of the study (2004-2008), the Santa Rosa Island 118 

Authority maintained a flagging system to alert beach users about the heavy surf and rip hazard 119 

based on the NWS rip forecast. The highest flag colour for that day was recorded by the Island 120 

Authority, along with the number of prevents, assists, and rescues. The Island Authority reserve 121 

the rescue definition for those persons in extreme difficulty who, in the opinion of the lifeguard, 122 

would have drowned without assistance.  123 

Rescues, assists, and prevents are recorded regardless of whether they are conducted in a 124 

‘guarded’ area, a designated swimming area where there are typically many beach users (Casino 125 

Beach, Fort Pickens Gate Beach, and Park East), or along the ~13 kms of unguarded beach where 126 

lifeguards conduct regular patrols and respond to emergency calls. As shown by Barrett and 127 

Houser (2013), there are rip current hotspots with semi-permanent alongshore variation in the 128 

nearshore morphology due to a ridge and swale bathymetry on the inner shelf. The innermost bar 129 

varies alongshore at a scale of ~1000 m, consistent with the ridge and swale bathymetry (Houser 130 

et al., 2008), and tends to exhibit a transverse bar and rip morphology immediately landward of 131 
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the deeper swales (Barrett and Houser, 2012; see Figure 1). Historically, most drownings and 132 

rescues on this popular beach have occurred at these rip hotspots because they correspond to the 133 

main access points along the island (Houser et al., 2015; Trimble and Houser, 2018).  134 

 Santa Rosa Island experienced widespread erosion and washover during Hurricane Ivan in 135 

September 2004. The storm reinforced the alongshore variation in the nearshore bar morphology 136 

and forced the bars farther offshore. As described in Houser et al. (2015), the nearshore bars 137 

migrated landward and recovered to the beachface for 3 years following the storm. During this 138 

period, the inner-bar morphology transitioned from a rhythmic bar and beach morphology to a 139 

transverse bar and rip morphology before ultimately attaching to the beachface in May 2008 140 

(Houser and Barrett, 2010). This changing bar morphology is a primary control on the presence of 141 

rip channels, with the greatest density of rips present in 2005 as the inner-most bar first started to 142 

develop a transverse bar and rip morphology (Houser et al., 2011).  143 

 144 

Methodology 145 

 146 

Offshore wave conditions and wind forcing function are based on long-term meteorological 147 

and oceanographic records from an offshore wave buoy located ~100 km southeast of the study 148 

area (buoy 42039; Figure 1). Between 2004 and 2008, this was the closest buoy to Pensacola Beach 149 

and had been previously used to estimate the incident wave field (Wang and Horwitz, 2007; 150 

Claudino-Sales et al., 2008; 2010; Houser et al., 2011) and was the basis for the rip hazard at 151 

Pensacola Beach until a new buoy was placed closer to the beach in 2009.  The available wave 152 

data from buoy 42039 included offshore significant wave height, significant wave period, and 153 

direction, and the wind data included speed and direction.  Local water level data was acquired 154 

from a station at the Port of Pensacola just north of the study site. A decision tree analysis was 155 

used to determine what combination of wave and wind forcing was associated with the flag posted 156 

by the Santa Rosa Island Authority on that day. After training on the available dataset, the model 157 

produces a decision tree that can be used for future decisions about what flag colour should be 158 

posted, although further training would be required to validate the model and operationalize. The 159 

modelled (i.e. predicted) flag colour is then compared to the posted flag colour for all days to 160 

determine if there is a relationship between the flag colour and the number of rescues. The 161 
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comparison is also used to determine if there is a specific combination of wind and wave forcing 162 

on the days when the modelled flag colour and the posted flag colour do not align.  163 

A decision tree model was developed using the Chi-square Automatic Interaction Detector 164 

(CHAID) technique developed by Kass (1980). The goal of CHAID analysis is to build a model 165 

that helps explain how independent variables (wind speed, wave height, wave period, wave 166 

direction, wind direction and water level) can be merged to explain the results in a given dependent 167 

variable. To develop a decision tree, the first step is declaring the root node, this corresponds to 168 

the target variable that will be predicted throughout the model. Then, the independent variable that 169 

provides the most information about the target values is identified. The root node is then split on 170 

this independent variable into statistically significant different subgroups using the F-test. These 171 

subgroups are then split using the predictor variables that provide the most information about them. 172 

CHAID analysis continues this process until terminal nodes are reached and no splits are 173 

statistically significant.  Previous use of CHAID analysis in hazard studies include landslide 174 

prediction (e.g. Althuwaynee et al., 2014), farmer perception of flooding hazard (Bielders et al., 175 

2003; Tehrany et al., 2015), and property owner perception and decision making along an eroding 176 

coast (Smith et al., 2017). 177 

 178 

Results 179 

 180 

The decision tree model was trained on the 1125 days with complete data between 2004 181 

and 2008.  Over this same period there were 145 days with rescues. The annual number of rescues 182 

and rescue days (ie. days with one or more rescues) varied by year, with a peak in both the total 183 

number of rescues and the number of rescue days in 2005. The number of rescues was at a 184 

minimum in 2007, while the number of rescue days was at a minimum in 2006 (Figure 3). The 185 

number of rescues decreased linearly between 2005 and 2007 as the nearshore bar morphology 186 

continued to recover following Hurricane Ivan and welded to the beachface consistent with 187 

previous observations at the site (Houser et al., 2011).  It is important to note that the CHAID 188 

Analysis does not incorporate nearshore morphology as an independent variable because changes 189 

in nearshore morphology were not tracked daily over the study period.  In this respect, differences 190 

between the posted and predicted flag colour may reflect lifeguard observations of nearshore 191 
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morphology conducive to the development of rip currents despite winds and waves typical of green 192 

flag conditions.   193 

The decision tree analysis suggests that the posted flag colour was not predicted by the 194 

model on 35% of days between 2004 and 2008 (n=396). There was a total of 342 rescues over 66 195 

days when the model predicted a different flag than was posted representing over 60% of all 196 

rescues (Table 1). By comparison, 40% of all rescues (n=224) occurred over 79 days when the 197 

predicted and posted flags were the same. Chi-square analysis suggests that the number of rescue 198 

days is significantly greater at the 95% confidence level when the predicted and posted flags are 199 

different (c2=7.77, r~0.005). This supports the hypothesis that there are a greater number of 200 

rescues performed on days when there is a discrepancy between the predicted and posted flag 201 

colour.   202 

 203 

Table 1.  Results of Chi-square analysis of posted and predicted flag colour versus rescue and no 204 
rescue days at Pensacola Beach, Florida between 2004 and 2008.   205 
 206 

 Rescue Days No Rescue Days  

Posted=Predicted 79 650 c2=7.77, r~0.005 

Posted≠Predicted 66 330 

 207 

Chi-square analysis was also used to determine if the number of rescue days depends on 208 

whether the model predicts a flag of greater or lesser hazard compared to the posted flag (Table 209 

2). Results suggest that the number of rescue days is greater when the model predicts hazardous 210 

surf (i.e. red or yellow flag), but the posted flag was either yellow or green (c2=18.11, r~0.0001). 211 

The number of rescue days was over-represented when the posted flag colour was red or yellow, 212 

but the model predicted that the flag should have been yellow or green, respectively, suggesting 213 

that posting what a beach user may perceive as an overly cautious flag can present a danger. These 214 

47 days were associated with 268 of the total 566 rescues between 2004 and 2008, or ~7.2 rescues 215 

per day when the island authority posted a more cautious flag then was predicted by the model . 216 

In comparison, the number of rescues (n=298) was under-represented on days when the posted 217 

flag suggested conditions were not as hazardous (n=74) as the model or were identical to the model 218 

(n=224).  219 

 220 
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Table 2.  Results of Chi-square analysis of posted and predicted flag colour versus rescue and no 221 
rescue days at Pensacola Beach, Florida between 2004 and 2008.   222 
 223 

 Rescue Days No Rescue Days  

Posted>Predicted 47 171 c2=18.11, r~0.0001 

Posted<Predicted 19 159 

Posted=Predicted 79 650 

 224 

The greatest number of rescues were performed on days when the posted flag was yellow 225 

(moderate hazard, moderate surf and/or currents), but the model predicted a green flag (low hazard, 226 

relatively calm surf and/or currents) based on the wind and wave forcing. Specifically, a total of 227 

231 rescues were performed on 37 of the 168 days when the posted flag was yellow, and the model 228 

predicted that the flag colour should be green. In comparison, there were only 12 rescues on 3 of 229 

20 days when the posted flag was red (high hazard, strong surf and/or currents) and the model 230 

predicted flag colour was green.. Finally, there were 25 rescues preformed on 7 of 30 days when 231 

a red flag was posted, and the model predicted a yellow flag was appropriate. The number of 232 

rescues and rescue days when the posted flag was more cautious than predicted by the model were 233 

at a maximum in 2005 and linearly decreased to a minimum in 2007 as the bar morphology 234 

recovered from Hurricane Ivan.  235 

While there were fewer than expected rescue days when the posted flag was green or 236 

yellow and the model predicted a yellow or red flag, rescues were still performed on those days. 237 

There was a total of 66 rescues on 13 of 80 days when the posted flag was yellow, but the model 238 

predicted a red flag should be posted (Table 3). Only 7 rescues were performed on 5 of the 83 days 239 

when the posted flag was green and the model predicted a yellow flag, with even fewer rescues 240 

performed on days when the posted flag was green, but should have been red. The number of 241 

rescues and rescue days when the posted flag was lower than the predicted flag decreased from 242 

2004 to 2007, with a statistically significant outlier in 2008. The large number of rescues in 2008 243 

is the result of 2 days with 13 rescues each (April 19 and September 14), when a yellow flag was 244 

being flown, but the model predicted a red flag was more appropriate.  This suggests that the 245 

difference between posted and predicted flag colours can vary inter-annually with changes in the 246 

nearshore morphology and/or changes in the individual who makes the flag decision.   247 

 248 
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Table 3. Number of days and rescues (in brackets) based on the combination of posted and 249 
predicted flag colours.  250 
  Predicted Flag 

  G Y R 

Posted Flag G 475 (48) 83 (7) 15 (1) 

Y 168 (231) 154 (125) 80 (66) 

R 20 (12) 30 (25) 100 (51) 

 251 

Discussion 252 

Results of the present study suggest that over 60% of all rescues at Pensacola Beach, 253 

Florida between 2004 and 2008 occurred on days when the posted hazard flag was different from 254 

the flag colour predicted by a decision tree model.  The posted flag colour was not predicted by 255 

the model on 35% of days between 2004 and 2008 (n=396), with one or more rescues occurring 256 

on 66 of those days (~17%). While rescues did not occur on a vast majority of the days when the 257 

posted and predicted flag colours were different, days when the predicted and posted flag colours 258 

were different accounted for a majority of the rescues. This is not to suggest that Santa Island 259 

Authority made a mistake in their flag choice. Rather, the results suggest that the difference 260 

between the posted and predicted flag colour could be associated with the lifeguards noting that 261 

the nearshore had a transverse bar and rip morphology, which is common at this location.   The 262 

morphology of the nearshore and other variables that could influence whether a beach user will 263 

enter the water or not (e.g. weather, number of beach users or presence of seaweed) are not 264 

captured by the current model, which is based on wind and wave forcing alone.  The model 265 

developed in this study is similar to rip forecasts produced by the US National Weather Service 266 

(NWS), and does not include local variables known to the beach manager based on experience and 267 

years of careful observation.  Discrepancies between the predicted and posted flag colours provide 268 

a basis for future model development and expansion.  Incorporating more data into the model will 269 

it to evolve and better capture the variables that influence the colour of flag chosen by the 270 

lifeguards, while ensuring that the model remains computationally efficient.  Introducing 271 

additional variables, such as nearshore morphology, to the model has the potential to better capture 272 

a lifeguard or beach manager’s understanding of what constitutes dangerous surf conditions at 273 

their beach.  At the same time, it is also important to examine the accuracy of beach managers and 274 

lifeguards in assessing the nearshore morphology and potential for rip development.   275 
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The model predictions and most forecasts are based solely on wind and wave forcing 276 

(Lushine, 1991a, b; Lascody, 1998; Engle, 2002; Dusek and Seim 2013; Arun Kumar and Prasad, 277 

2014; Scott et al., 2014; Moulton et al., 2017). Noticeably absent from the current model is surf 278 

zone morphology, which ultimately determines whether a rip can develop under those conditions 279 

or not. The beach manager and lifeguard can observe the nearshore morphology and assess the 280 

potential for rip development, which would lead to them putting out a yellow or red flag when the 281 

model would predict a green or yellow flag as being appropriate. While beach managers and 282 

lifeguards are being prudent, their assessment may not conform to those of the beach user who 283 

decides on whether the water is safe or not based on wave breaking conditions (Caldwell et al., 284 

2013; Brannstrom et al., 2013; 2015). Most beach users assume that larger breaking waves are 285 

more dangerous, and many will not enter the water if they (and the model) believe that it is a ‘red’ 286 

flag condition. This may partially explain why there were fewer than expected rescues on days 287 

when the posted flag colour was green or yellow flag and the model predicted a yellow or red flag, 288 

respectively. Independent of the flag or warning signs, beach users appear to be making personal 289 

decisions about the surf and rip hazard (Brannstrom et al., 2015) based on experience at the site or 290 

elsewhere (see Houser et al., 2018). Whether this causes beach users to lose confidence in the 291 

lifeguards and other authorities managing the beach is an important question for future research.  292 

 A large number of rescues occurred when the posted flag was yellow, but the model 293 

predicted the wind and wave forcing warranted a green flag. Rightly or wrongly, the beach user 294 

will observe that wave breaking is limited and assume that conditions must be safe. As shown by 295 

Caldwell et al. (2013) and Brannstrom et al. (2013) most beach users along the Gulf Coast of the 296 

United States assume that the calm flat water of a rip is safer than adjacent areas where the waves 297 

are breaking. The lifeguard, however, may observe a bar morphology that is conducive to the 298 

development of rips and post a yellow flag to warn about the potential for rips, despite the weak 299 

wind and wave forcing. As observed by Houser and Barrett (2012), rips with speeds of ~0.5 m/s 300 

can develop on ‘green flag’ days because of the transverse bar and rip morphology that is present 301 

in the inner-nearshore. This would suggest that posting a green flag should never be permitted 302 

when wind and swell waves are breaking over the bar, even if the regional forecast suggests a low-303 

level hazard that day.  As shown by Scott et al. (2014), rescues are still possible with seemingly 304 

‘fine weather’ conditions when a green flag would be predicted by the model or in regional 305 
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forecasts.  Even in the presence of small swell wave, breaking can be induced as water levels fall 306 

with the tide (Castelle et al. 2016).   307 

It is difficult for beach users to spot a rip or assess the potential for rip development, and 308 

they may assume that the lifeguard is being overly cautious if they perceive fine-weather 309 

conditions and the lifeguard posts a yellow or red flag. Going to the beach is a reward-based 310 

activity, and many people commit significant personal and financial investment to be at the beach 311 

(Houser et al., 2018). If they believe that the lifeguard is ‘wrong’ they will ignore the warning and 312 

remain committed to entering the water. The longer and more times that their perceptions are 313 

inconsistent with the experience and knowledge of the lifeguard, the more trust in authority is lost 314 

- a beach that is perceived to be safe based on experience will always be safe despite warnings to 315 

the contrary (Menard et al., 2018). This is an example of confirmation bias, in which an opinion 316 

quickly becomes entrenched and subsequent evidence is used to either bolster the belief or is 317 

rapidly discarded. How this can be addressed to reduce the number of rescues is an important focus 318 

for future research on rips and other hazards in general.  319 

The results of this study also highlight the limitations of regional rip forecasts that are used 320 

in the United States and elsewhere around the world. A forecast based solely on the wind and wave 321 

forcing does not account for the nearshore morphology, which determines the potential for rip 322 

development. This raises one of the most important considerations for future modeling efforts 323 

based on machine learning techniques - the model will only be accurate if the bar morphology and 324 

conceptual knowledge of the lifeguard is included as input variables. Getting the beach user to 325 

observe and heed that forecast and warning, however, will remain a challenge.   326 

 327 

Conclusions 328 

Lifeguards and beach managers decide on warnings and flag colours based on careful 329 

monitoring of the changing surf conditions along the beach and over the course of the day using 330 

both regional surf forecasts and direct observation. A decision tree analysis predicts a flag colour 331 

different to the one flown on ~35% of days between 2004 and 2008 (n=396/1125), and that those 332 

differences account for only 17% of all rescue days and ~60% of the total number of rescues. The 333 

posting of a yellow flag when the model would predict a green flag based solely on the wind and 334 

wave forcing was found to be responsible for the largest number of rescues over the study period. 335 

Variables such as the nearshore morphology and the potential for rip development is not included 336 
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in traditional forecasts or the model developed in this paper, and most beach users use a simple 337 

assessment of wave breaking to determine if the water is safe. Even though a lifeguard will post 338 

the appropriate flag based on direct observation of the bar morphology and experience, the beach 339 

user, like simple models based solely on meteorological data, may not believe that warning and 340 

still enter the water. This suggests that reducing the number of rip and surf rescues will require 341 

that we are able to address confirmation bias on the part of the beach user, which can cause them 342 

to lose their confidence in the lifeguards.  343 
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Figures 470 

 471 

 472 
 473 

Figure 1. Map of study site showing location of flagged section of beach and approximate 474 
location of the wave buoy used in the analysis and for regional rip forecasts.   475 

 476 

 477 

 478 

 479 

 480 

 481 

 482 
 483 
 484 
 485 
 486 

 487 
Figure 2.  Satellite image of the flagged section of beach in 2004 (before Hurricane Ivan) 488 
showing the presence of transverse-bar and rip morphology of the innermost bar and the variable 489 
nature of the outermost bar for the flagged section of beach.  The aerial image is not necessarily 490 
representative of the nearshore morphology throughout the remainder of the study.  491 
 492 
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 493 
Figure 3.  Interannual variation in number of rescues and rescue days at Pensacola Beach between 494 
2004 and 2008.   495 
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