

1 **First reported case of Thunderstorm Asthma in Israel**

2
3 Yoav Yair^{1,*}, Yifat Yair², Baruch Rubin², Ronit Confino-Cohen³, Yosef Rosman³
4 Eduardo Shachar^{4,&} and Menachem Rottem^{5,&}

5 1 – Interdisciplinary Center (IDC) Herzliya, School of Sustainability, Israel

6 2 – Hebrew University of Jerusalem, Faculty of Agriculture, food and Environment, Rehovot, Israel

7 3 – Meir Medical Center, Kfar-Saba, Israel

8 4 - Rambam Medical Center, Haifa, Israel

9 5 – Ha'Emek Medical Center, Afula, Israel

10 Submitted to

11 Natural Hazards and Earth System Sciences

12 April 2019

13 Revised

14 September 2019

15 ***Corresponding author**

16 Prof. Yoav Yair

17 School of Sustainability, Interdisciplinary Center (IDC) Herzliya

18 P.O. Box 167 Herzliya 4610101 Israel

19 (p) +972-9-9527952 (m) +972-52-5415091 (f) +972-9-9602401

20 Email: yoav.yair@idc.ac.il

34 **Abstract.** We report on the first recorded case of thunderstorm asthma in Israel, that
35 occurred during an exceptionally strong Eastern Mediterranean multicell-cell
36 thunderstorm on October 25th 2015. The storms were accompanied by intensive
37 lightning activity, severe hail, downbursts and strong winds followed by intense rain. It
38 was the strongest lightning-producing storm ever recorded by the Israeli Lightning
39 Detection Network since it began operations in 1997. After the passage of the gust front
40 and the ensuing increase in particle concentrations, documented by air-quality sensors,
41 the hospital emergency room presentation records from three hospitals – two in the
42 direct route of the storm (Meir Medical Center in Kfar-Saba and Ha'Emek in Afula) and
43 the other just west of its ground track (Rambam Medical Center in Haifa) showed that
44 the amount of presentation of patients with respiratory problems in the hours
45 immediately following the storm increased compared with the average numbers in the
46 days before This pattern is in line with that reported by Thien et al., (2018) for the
47 massive thunderstorm asthma epidemic in Melbourne, Australia. The increase in patient
48 presentations to the emergency rooms persisted for additional 48-72 hours before going
49 back to normal values, indicating that it was likely related to the multi-cell outflow. We
50 discuss how the likelihood of incidence of such public-health events associated with
51 thunderstorms will be affected by global trends in lightning occurrence.

52

53 **1. Introduction.**

54 Thunderstorms and lightning are natural hazards, lethal and destructive with
55 important implications on human societies. They are often accompanied by severe
56 weather, hail and flash floods that entail significant economic and human losses (Yair,
57 2018; Petrucci et al., 2019; Cooper and Holle, 2019). Public health effects of
58 thunderstorms that are not related to direct lightning strikes of people may be the result
59 of flooding, fallen trees, objects hurled by strong winds, impact of heavy hail, smoke
60 from ignited forest fires and the consequences of disruptions to daily routines such as
61 industrial accidents, loss of electricity, car accidents and limitation to air travel
62 (Krausmann et al., 2011; Yair et al., 2018).

63 Research had shown that during the development stage of thunderstorms, updrafts carry
64 surface aerosols and pollen particles into the cloud, where the high humidity and contact
65 with liquid water causes pollen to rupture (Knox, 1993; Taylor et al., 2004a; Miguel et
66 al., 2006; Vaidayanathan et al., 2006). At the mature stage of thunderstorm
67 development, characterized by intense electrical activity and precipitation (typically

68 lasting tens of minutes), downdrafts carry such pollen fragments to the ground. When
69 the downdrafts impinge on the surface they diverge and the outflow enhances the
70 concentrations of airborne particles by causing uplift of additional concentration of
71 pollen and dust particles into the air. If such outflows occur in dry desert areas, this
72 often leads to the formation of well-known dust-wall known as "Haboob" that makes
73 the gust front clearly visible and is portrayed in many Youtube videos (Williams et al.,
74 2007). The gust front - the storm scale boundary caused by the outflow from the
75 thunderstorm – quickly spreads and diverges from beneath it and propagates along the
76 storm track. The airborne pollen fragments and particles often release allergens in the
77 size range < 2.5 micrometers that can be inhaled into the respiratory system and cause
78 an acute allergic response. If occurring during the flowering season of specific plants,
79 this may result in "*Thunderstorm Asthma*" epidemics (Bellomo et al. ,1992; Packe and
80 Ayers, 1995; Venables et al., 1997; Wardman et al., 2002; Dales et al., 2003; D'Amato
81 et al., 2016; 2017), which are expressed as severe respiratory problems, especially in
82 sensitive populations (infants, senior citizens and people with prior allergic
83 susceptibility). A thorough review of the present theories of thunderstorm asthma
84 mechanisms is presented by Harun et al. (2019) and some unique cases are described
85 below.

86 Grass pollen is a well-known cause of hay-fever and allergic asthma, and has
87 been implicated as the cause of two cases of thunderstorm asthma epidemics, in
88 Melbourne (1987/1989) and in London (1994). Knox (1993) discuss the fact that grass
89 pollen is too large to penetrate into the lower airways and trigger the allergic response
90 and suggested that osmotic shock of caused by rainwater led to the rupture of grass
91 pollen particles and the release of the major allergen Lol p 5;

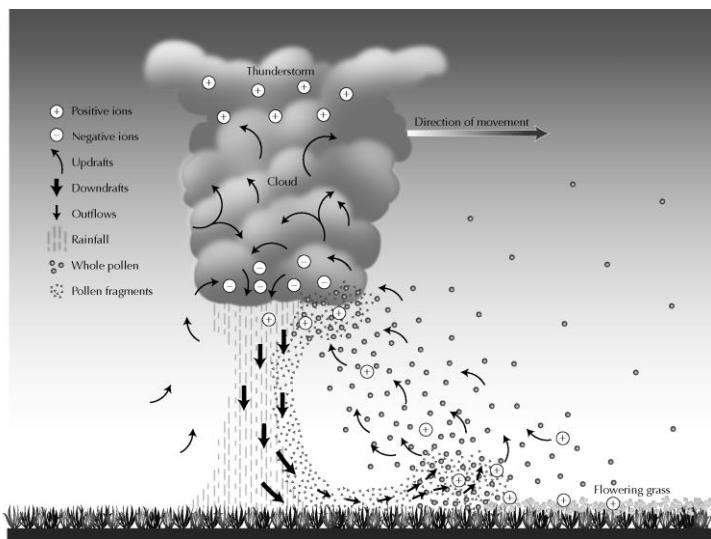
92

93 **Figure 1:** A schematic
 94 description of the mechanism that
 95 enhances the concentrations of
 96 airborne aerosols (either pollution
 97 particles or pollen) ahead of a
 98 mature thunderstorm (Taylor and
 99 Jonsson, 2004).

100

101

102


103

104

105

106

107

108 Nasser and Pulimood (2009) reviewed the role of fungal spores such as *Alternaria*
 109 in outbreaks of thunderstorm asthma and showed that the sudden increase in spore
 110 concentrations in the air following large-scale thunderstorm cold flows affects atopic,
 111 sensitized people, and may lead to asthmatic response. There are numerous reports from
 112 many countries about cases of thunderstorm asthma (Dabrera et al., 2012; Andrew et
 113 al., 2017; Beggs, 2017). For example, the Wagga-Wagga epidemic in Australia on
 114 October 30th 1997 led to 215 ER visits by asthmatic subjects with 41 hospitalizations,
 115 a fact that created an unusual burden on the health services there (Girgis et al., 2000).
 116 The most extreme case on record occurred in Melbourne, Australia, in November 2016
 117 (Thien et al., 2018), when a thunderstorm asthma epidemic following a gust front
 118 induced by a multicell thunderstorm system resulted in more than 3000 presentations
 119 to Emergency Departments (ED) at hospitals for allergy and respiratory problems, with
 120 10 fatalities (and see Table 1 in Harun et al., 2019). The allergic response of the
 121 population followed (or was prompted) by a chain-reaction commencing with the
 122 dynamics of the cold outflow from the thunderstorm. D'Amato et al. (2015)
 123 characterized the main aspects of thunderstorm-associated asthma epidemics (based on
 124 their Table 2): (a) The epidemics are limited to seasons when there are high
 125 concentrations of airborne allergenic and/or fungal spores. There is a close temporal
 126 association between the start of the thunderstorm and the onset of the epidemics. (c)
 127 There are not high levels of pollution related gasses and particles during the
 128 thunderstorm asthma outbreak (d) People who stay indoors with windows closed are
 129 not affected and (e) there is a major risk for subjects who are not optimally treated for

130 asthma; subjects with pollen-induced allergic rhinitis and without prior asthma are also
131 at risk.

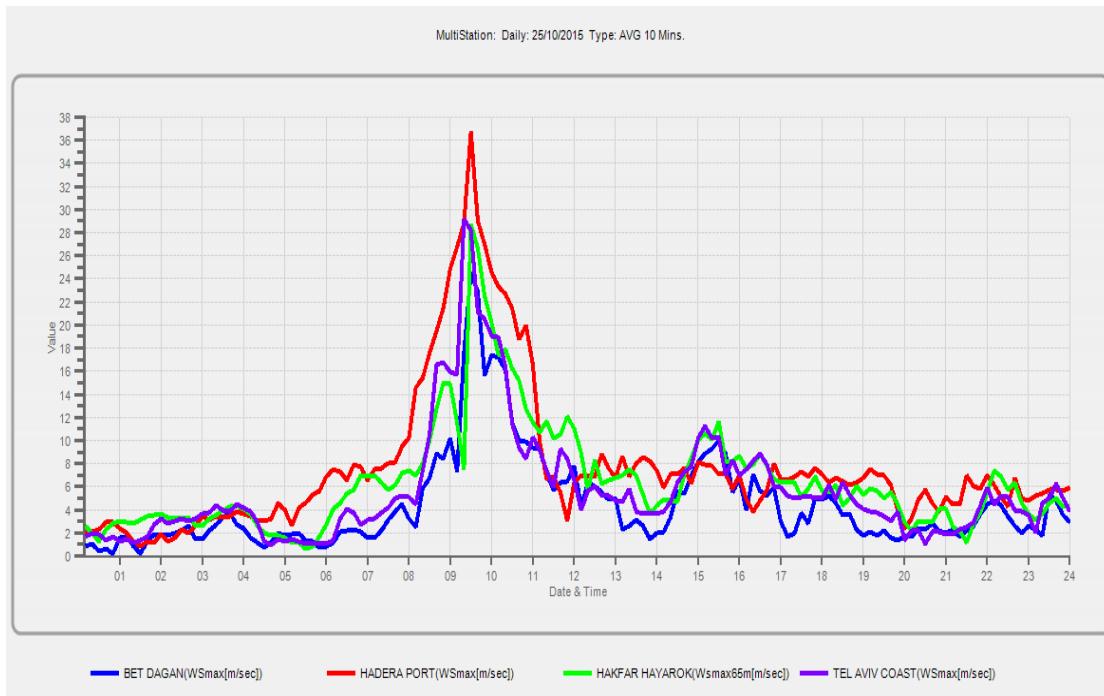
132 While this definition of thunderstorm asthma focuses on the allergic responses to
133 airborne pollen or fungal spores, some reports consider other environmental factors
134 such as humidity, temperature and pressure changes (Rossi et al., 1993; Ito et al., 1989).
135 A chemical effect of lightning activity that may also play a role in thunderstorm asthma
136 epidemics is the production of significant amounts of NO and O₃ near the surface.
137 Ozone by itself is a potent oxidizer and is known to create severe respiratory response
138 when inhaled (Molfino et al., 1991; Gleason et al., 2014). Indeed, Campbell-Hewson et
139 al. (1994) considered several types of pollen and fungal spores, but also ozone
140 concentrations and lightning, in the context of a thunderstorm asthma epidemic in
141 Cambridge and Peterborough in southern England in June 1994. They reported an
142 increase by a factor ~2 of ozone concentration (45 ppb compared with daily average of
143 28.7 ppb) and high pollen counts before the rain and concluded that the causes of the
144 epidemic were likely multifactorial. It should be pointed out that although there were
145 37 lightning strikes in that region, the authors did not attribute the rise in ozone
146 concentrations to lightning but rather to local pollution. This aspect of lightning activity
147 was not considered in the present study.

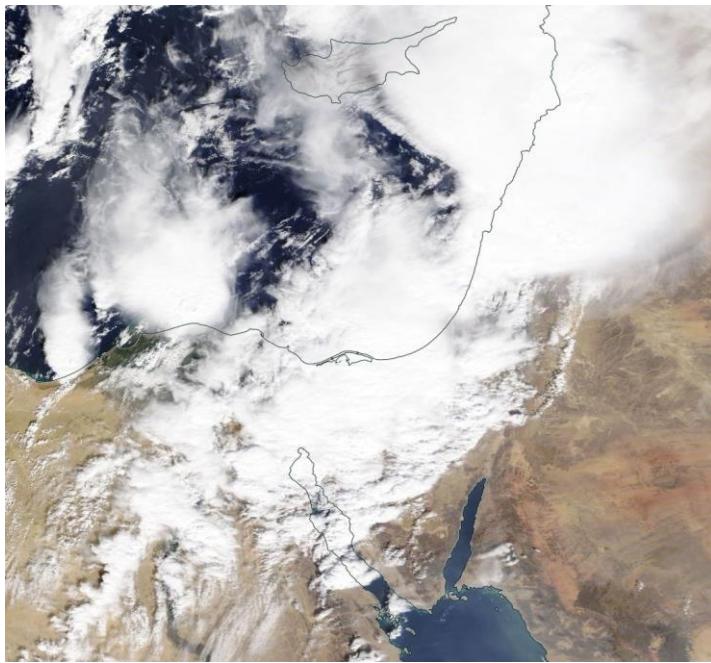
148 A thorough review published by the World Allergy Organization (D'Amato et al.,
149 2015) surveyed the expected changes in the occurrence of thunderstorm asthma and
150 concluded that people with hypersensitivity to pollen allergy should be advised to stay
151 indoors when there are clear indications that thunderstorm activity is expected. Such
152 early-warning capabilities for lightning are becoming operational in some countries (for
153 example the Lightning Potential Index [LPI] which is used in Weather and Forecasting
154 Research model (WRF; Lynn and Yair, 2010; Lynn et al., 2012), but there seems to be
155 a gap between forecasting lightning and administrating public-health warnings, and
156 sensitive populations are not always effectively alerted when thunderstorms are
157 expected.

158 2. Data Sources

159 We used data from various sources for studying possible correlations between
160 meteorological conditions, lightning occurrence, aerosol concentrations, pollen counts
161 and respiratory illnesses for central Israel.

- 163 a. Lightning data was obtained from the Israeli Lightning Detection Network
164 (ILDN) operated by the Israeli Electrical Corporation (IEC). The system and its
165 capabilities are described by Shalev et al. (2011).
- 166 b. Meteorological data – temperature, humidity, wind and pressure data were
167 obtained from the Israeli Meteorological Service (IMS) for selected stations
168 throughout the country.
- 169 c. Aerosol data – we used the PM_{2.5} and PM₁₀ data that are collected routinely by
170 the Ministry of Environmental Defense in Israel, that operates a national
171 network of > 40 stations. These stations report particle concentrations at 5-
172 minute intervals. That system also records Ground Level Ozone data.
- 173 d. Pollen data – The daily average pollen and spore concentrations (number/m³)
174 were obtained from the Ted Arison Laboratory for Monitoring Airborne
175 Allergens at Tel-Aviv University. The species are listed in Appendix 1.
- 176 e. Hospital presentationpresen~~ation~~ion records for patients with respiratory
177 symptoms of specific ICD codes at the Emergency Room (ER) were collected
178 from 3 Israeli hospitals for a specific list of allergy-related illnesses. Approval
179 of the internal Helsinki committee in each hospital were obtained. The long-
180 term averages were obtained from hospital records to establish the baseline.


182 **3. Meteorological Conditions**


183 The synoptic condition leading to the unusual event described here are summarized
184 by Razy et al. (2018) and will be briefly described below. During October 24th 2015 the
185 eastern Mediterranean was dominated by a Red-Sea Trough (RST, Ben-Ami et al.,
186 2014), a low-pressure region extending from the south along the Red-Sea northward to
187 the eastern Mediterranean. This system transported tropical air toward Egypt, Jordan,
188 Israel, Lebanon and Cyprus in the lower-levels (850 hPa). At the upper-levels (500
189 hPa), a pronounced trough was situated with the axis slanted between Crete and
190 Cyprus. This trough had two effects: one is a transport of tropical air by the south-
191 southwesterly winds aloft and second is upward motion at the mid-levels, induced by
192 positive vorticity advection ahead of this trough. Prior to the beginning of the storm, a
193 cold front was noted west of the Israeli coast. At the same time a meso-scale cyclone
194 was formed over the Sinai Peninsula and the southeastern Mediterranean, organizing
195 the flow that advected moist air from the sea. During the morning hours of October 25th,
196 the cyclone, together with the cold front, moved toward inland. Around 07 UTC this

197 multi-cellular cold front crossed central Israel, accompanied by extremely developed
198 thunderclouds, with tops reaching 17 km height. The highly populated area of central
199 Israel, extending from the coastal region inland, was subjected to torrential rains for 1-
200 2 hours and large hailstorm with over 5cm diameter. Rain-gauge data obtained from the
201 Israeli Meteorological Service show that in several places in central Israel the 10-minute
202 rain rate exceeded 100 mm h^{-1} with a total of $>50 \text{ mm}$ in the entire event (constituting
203 $\sim 10\%$ of the annual average). The intensity of the storm can be attributed, at least
204 partly, to the tropical nature of the warm air transported from south by the RST, ahead
205 of the storm. The supercell subsided upon reaching the Jordan rift in eastern Israel.
206 The entire event caused 1 fatality, extensive flooding in several Israeli cities and
207 agricultural damages. It also impacted the national electrical grid with power outages
208 lasting up to 3 days in central Israel. This was the most powerful thunderstorm ever
209 observed in Israel since the Israeli Lightning Detection Network (ILDN) became
210 operational in 1997.

211 a. **Wind** – Based on the Israeli Meteorological Service data, the storm was
212 typified by destructive south-westerly winds that exceeded 25 m s^{-1} , with gusts
213 of $>36 \text{ m s}^{-1}$, which can be attributed to the downbursts from the active cells.
214 Figure 2 presents wind speeds measured at several locations. The distance from
215 Tel-Aviv coast (purple line) to Hadera port (red line) is approximately 40 km,
216 indicating a very wide gust front that swept across central Israel together with
217 the movement of the active cells. The sustained high winds lasted for more than
218 two hours, and caused a significant increase in amounts of airborne particulate
219 matter (see below).

220

239

240

241

242

243

244

245

Figure 3: (left) Visible MODIS Satellite image at 12 UT when the cold front and thunderstorms already moved into Israel (right, lightning strokes detected on October 25th 2015 by the ILDN (Israel Lightning Detection Network) operated by the Israeli Electrical Corporation. Each point is a ground stroke. The panels show cumulative values at 30 minutes intervals, local time indicated and the location of the 3 hospitals involved in this research.

250

251

252

253

254

255

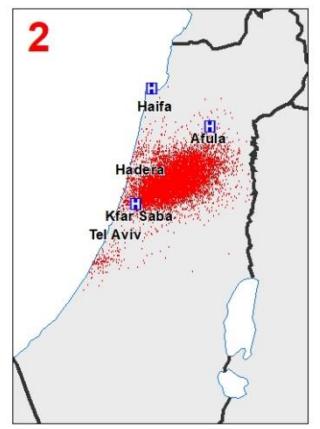
256

257

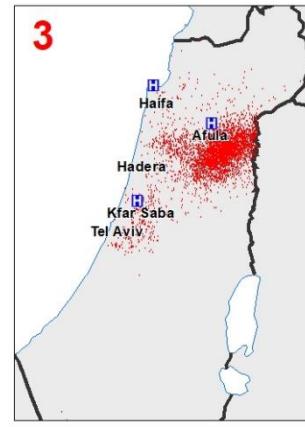
258

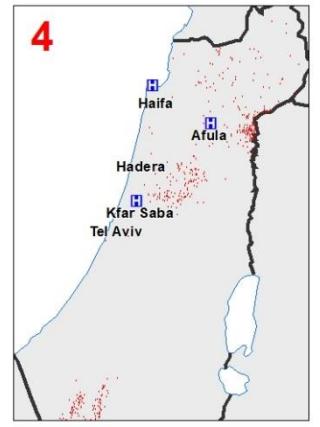

259

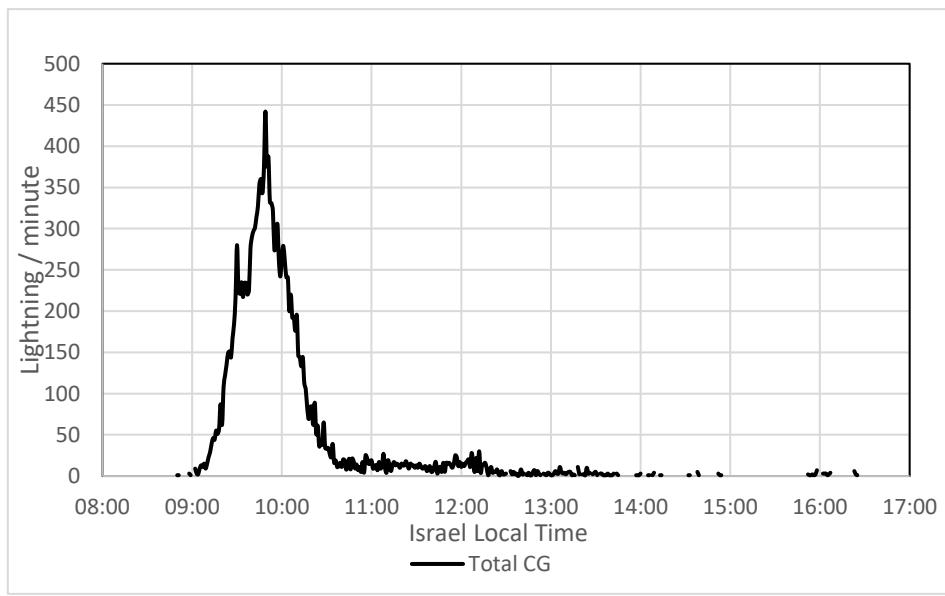
260


261

262

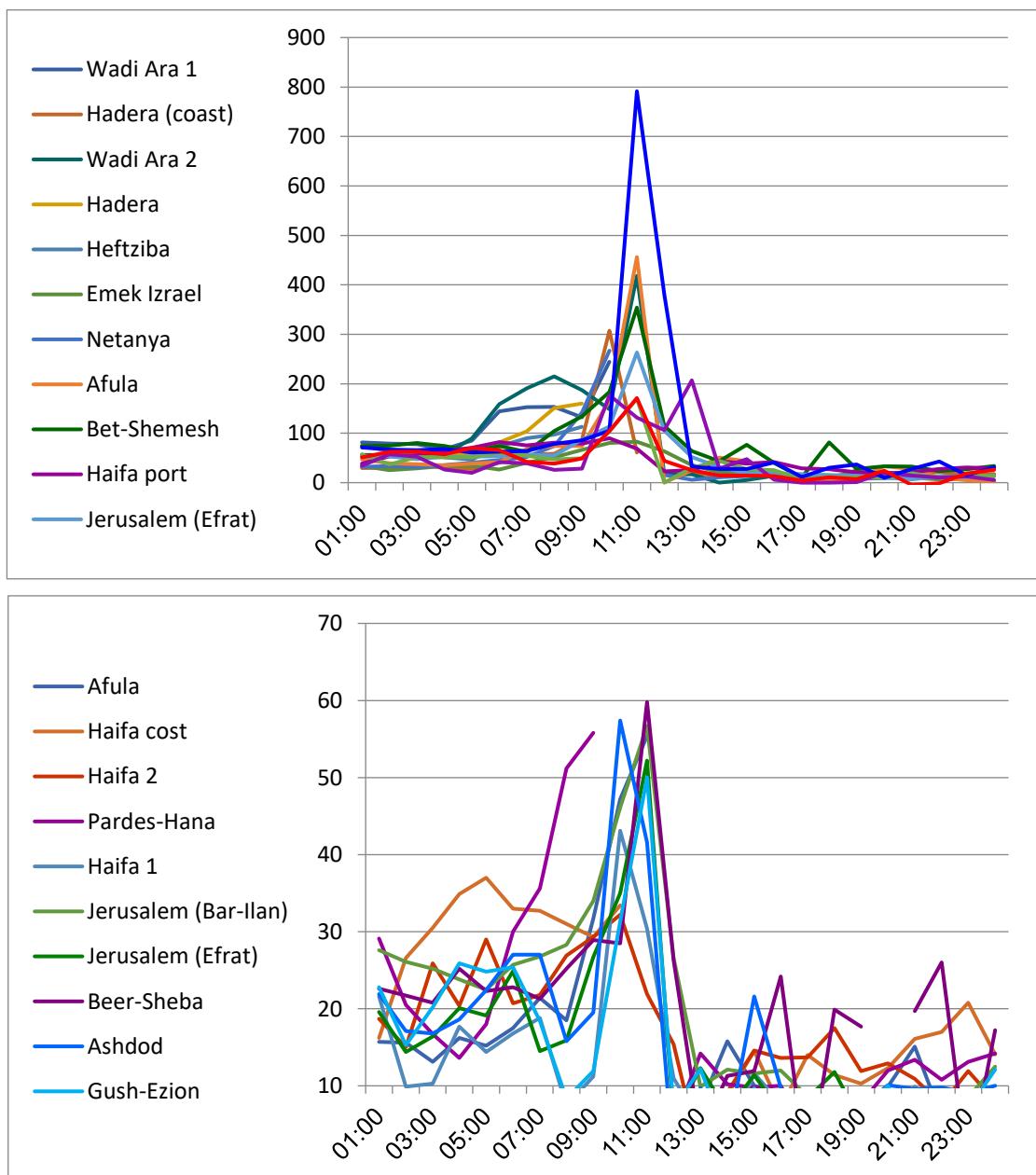

263


Time frame 9:00-9:30


Time frame 9:30-10:00

Time frame 10:00-10:30

Time frame 10:30-11:00

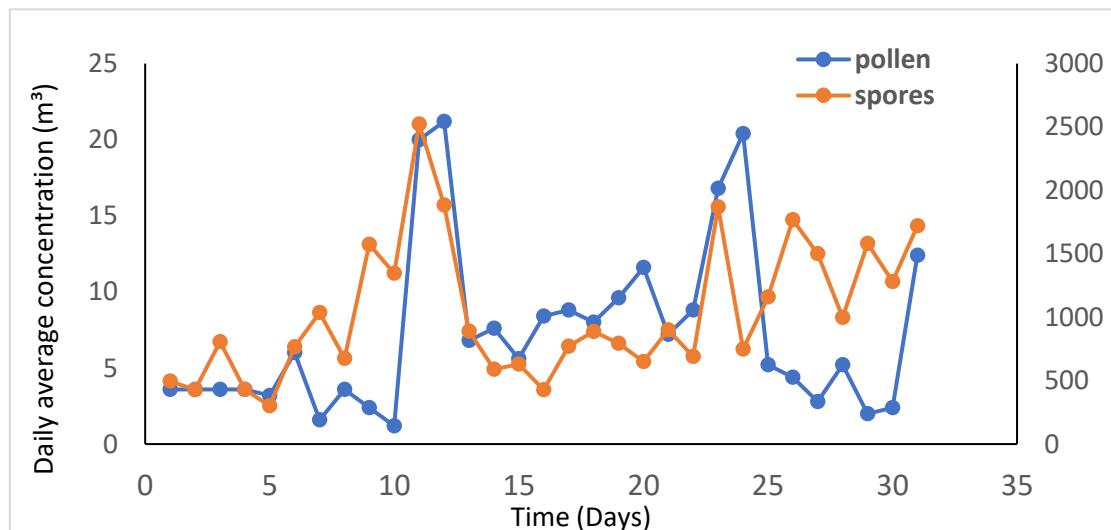

264

265 **Figure 4:** 1-minute accumulated lightning numbers detected on October 25th 2015 as a function of local
 266 time. The total cloud-to-ground stroke rate exhibits a sharp maximum around 09:45 local time, as the
 267 cells passed over central Israel.

268

269 **4. Particle Concentrations**

270 The results from the Israeli Ministry for Environmental Protection's air-quality
 271 monitoring network show a remarkable increase in the concentrations of PM 2.5
 272 particles, up to 10-fold the normal values (Figure 5). This is due to the very strong winds
 273 ahead of the cells, that picked up considerable amounts of dust, pollen and other types
 274 of aerosols from the surface.


275

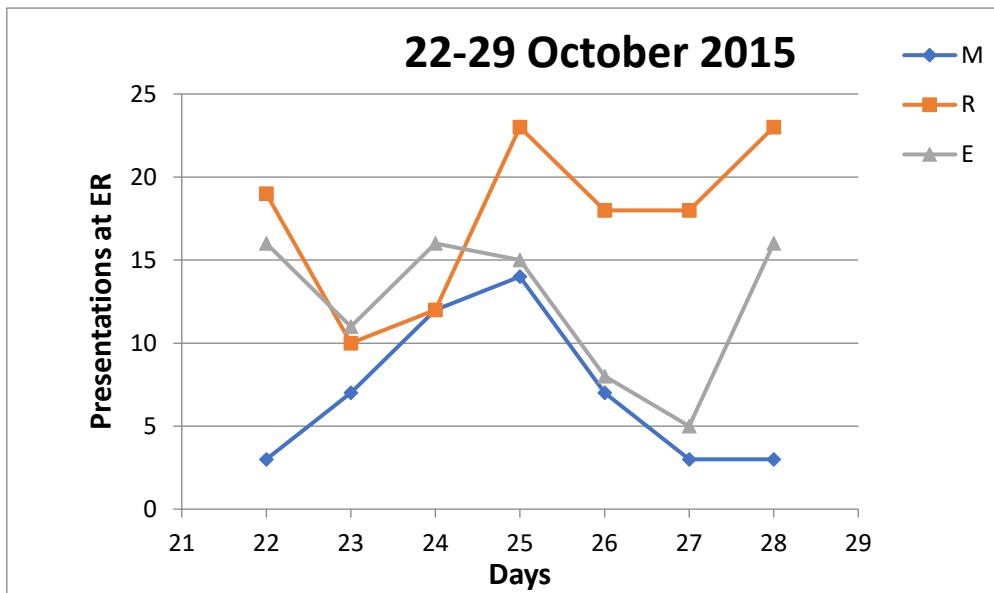
276

277 **Figure 5: (a)** Mass concentration of PM10 aerosols for several stations in central Israel, 25th October
 278 2015. Data is given in $\mu\text{g m}^{-3}$. Note the peak around 1100 local time, coinciding with the passage of the
 279 gust front. The sharp, strong peak was measured at the Rambam Medical Center in haifa. (b) The same as
 280 in (a), for PM2.5 aerosol concentrations.

281

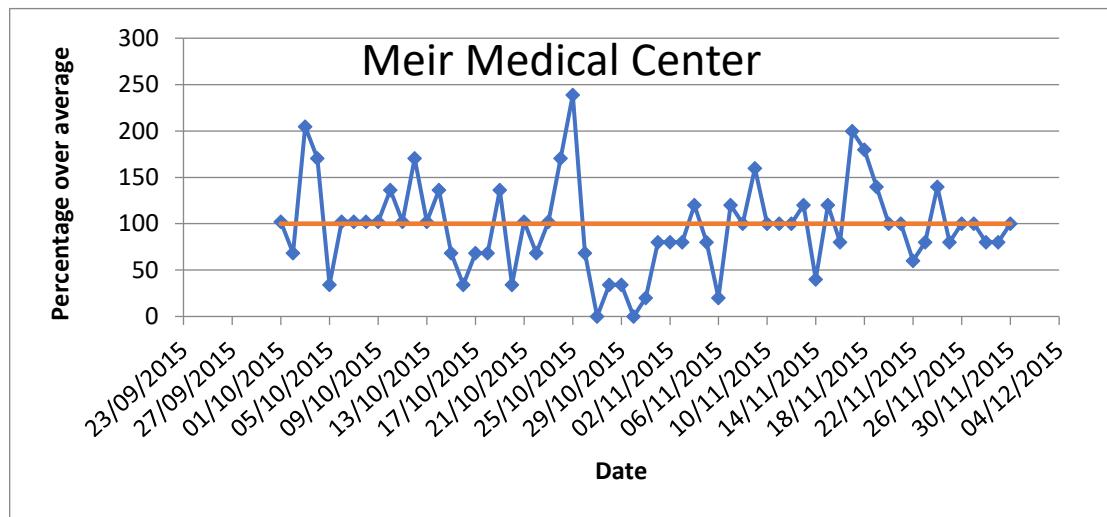
282 The daily pollen amounts for October 2015 (Figure 6) exhibit two significant peaks,
 283 which are related to severe weather events. It should be noted that before the onset of
 284 the storm on October 25th, there were already larger than usual amounts of pollen and
 285 spores in the air (up to a factor of 3). This supports the thunderstorm asthma hypothesis
 286 of pollen processing inside the storm by humidity and electric fields, that results in
 287 rupture and release of allergens into the cold outflow (D'Amatto et al., 2015; Beggs,
 288 2017). The decrease in pollen concentrations after the storm is explained by washout
 289 and dilution after the rain and winds associated with passage of the active cells. The list
 290 of flowering allergenic plants in October in Israel is presented in Appendix A.

291


292 **Figure 6:** Daily average concentrations of pollen and spore numbers for October 2015, based on
 293 data collected at Tel-Aviv University's monitoring station in the botanical gardens on campus (Data
 294 courtesy of Prof. Amram Eshel, the Laboratory for Pollen Monitoring, Tel-Aviv University).

295

296 5. Hospital ER presentations


297 The hospital presentation records of patients with respiratory problems were
 298 obtained from three Israeli hospitals. The Meir Medical Center is located in the city of
 299 Kfar-Saba (population 110,000), 15 km north-east of Tel-Aviv in the central coastal
 300 plain. The Ha'Emek Medical Center is located in the city of Afula (population 43,000),
 301 a regional urban center located in an agricultural and rural part of northern Israel, close

302 to Mt. Tabor. The Rambam Medical Center is located in Israel's largest port city of
303 Haifa (population 280,000) and is the largest of the three. Figure 7 shows the records
304 of a full week with numbers of patients, starting 3 days before the event. The ER
305 presentation records show that the numbers of presentations of patients on October 25th
306 increased compared with the numbers of the days before the storm. Although in
307 absolute numbers the numbers may seem low, the values admitted on the day of the
308 thunderstorm represent a clear deviation from monthly average for October. At the Meir
309 (located just below the ground-track of the storm cells) and Rambam (located west of
310 the ground-track) hospitals there was a clear increase in the number of ER presentations
311 which can be related to the passage of the gust-front in the surrounding areas and the
312 ensuing increase in particle concentrations. Based on records of arrival times at the ER,
313 we noted that within several hours after the thunderstorm there was a noticeable
314 increase in the number of patients with respiratory problems of a specific nature (a list
315 of diagnoses only related to asthma and allergic respiratory diseases), in line with the
316 pattern reported by Newson et al. (1997) and Thien et al. (2018). At the Ha'Emek
317 medical center in Afula there was no significant increase and the numbers were
318 practically the same as the day before. In all three hospitals, this increase in patient
319 presentation to the ER with respiratory problems persisted for 24 hours and a clear
320 decline was noticed in the following day, likely related to a wash-out effect by
321 precipitation that followed the passage of the active cells. This decline was more
322 pronounced at the Meir and Ha'Emek hospitals which experienced heavy rains during
323 of the storm, lasting for 48 hours. At the Rambam Medical Center in Haifa the numbers
324 of ER presentations with respiratory problems rose again to high values, likely due to
325 the ambient values of air pollution related to aerosols in the Bay of Haifa, a well-known
326 source of industrial emissions (Sa'aroni et al., 2018).
327

328 **Figure 7:** Emergency room presentations at 3 Israeli hospitals in the 3 days preceding and following the
 329 October 25th 2015 super-cell event: M = Meir Medical center (blue), R = Rambam medical center
 330 (orange), E = HaEmek medical center (grey).

331
 332

333 **Figure 8:** Two months of ER presentations of patients with respiratory problems at the Meir Medical
 334 Center in Kfar-Saba, central Israel (for the period 1.10.2015-30.11.2015). The October 25th record shows
 335 a 250% increase above the long-term average in a single day.

336

337 **6. Discussion**

338 In most reported cases of thunderstorm asthma in Europe, Canada, US and
 339 Australia, the initiating agents were spring or summer convective storms, and their
 340 occurrence coincided with the flowering season of many plant species whose pollen is
 341 known to be highly allergenic. In Israel, thunderstorms and lightning occurs mainly
 342 during winter months ((December-January-February) and are associated with the
 343 passage of Cyprus Lows or Red-Sea Trough [RST] (Ziv et al., 2008; Shalev et al., 2011;

344 Yair et al., 2014; Ben-Ami et al., 2015). During these months there is little flowering
345 and pollen concentrations are low (Keinan, 1992). However, some of the most severe
346 convective events in Israel occur during fall and spring months, when the RST pressure
347 system transports mid-level moisture into the eastern Mediterranean and the
348 atmosphere is unstable, enabling deep convection and intense lightning activity. These
349 events occur mostly in October-November and March-May, and coincide with
350 flowering of various allergen-bearing plant species, for example *Ambrosia* spp. (Waisel
351 et al., 1997; Waisel et al., 2008; Appendix A), and so have the potential to instigate
352 thunderstorm-asthma epidemics.

353 The October 25th 2015 super-cell event was by far one of the strongest thunderstorm
354 episodes ever recorded in Israel. The unique synoptic circumstances of this event
355 coincided with massive flowering of *Ambrosia* spp. already shown to be highly
356 allergenic and wide-spread in central Israel (Yair et al., 2017; 2018). Previous studies
357 suggested that the mechanism by which thunderstorm dynamics recycle ambient
358 aerosols is very effective in releasing allergens from pollen particles, that may
359 otherwise not reach and affect sensitized populations (Taylor and Jonsson, 2004;
360 D'Amato et al., 2015). The strong electric fields that existed during that thunderstorm,
361 manifested by the high flash rate, as well as the high humidity and presence of rain,
362 likely aided in rupturing the pollen membranes and enriching the air with respirable
363 allergens, that accompanied other aerosol particles already present in the environment.
364 The track of the storm passed directly above the densely populated, mostly urban part
365 of Israel, where the ambient concentrations of pollution particles was already high.
366 Additionally, as the spore counts indicate (Figure 6), the background levels of fungal
367 spores, that may play an important role in triggering allergic asthma (Packe and
368 Ayers, 1986; Dales et al., 2003), was high the day before the storm. Thus, it was the
369 convergence of several factors on the particular day that initiated the observed increase
370 in ER respiratory presentations. Admittedly, the public health data presented in this
371 study is limited, but follow-up research being presently conducted will help us to
372 understand the characteristics of admitted patients (as performed by Thien et al., 2018).

373 What can be done to protect sensitized populations against thunderstorm
374 asthma, especially in light of the emerging trends of thunderstorm frequency (Romps
375 et al., 2016; Brooks, 2013; Diffenbaugh et al., 2013; Yair et al., 2018), the extended
376 period of plant flowering (Ziska et al., 2011) and the increase in allergen content in
377 pollen (Singer et al., 2005) in a warmer climate? A thorough review published by the

378 World Allergy Organization (D'Amato et al., 2015) surveyed the expected changes in
379 the occurrence of thunderstorm asthma and concluded that people with hypersensitivity
380 to pollen allergy should be advised to stay indoors when there are clear indications that
381 thunderstorm activity is expected. Silver et al. (2018) examined the seasonality and
382 predictability of asthma-related presentation at Melbourne hospitals, using time-series
383 ecological approach. They suggest that the observed spring peak in asthma patient
384 numbers may be related to thunderstorm asthma as they are associated with rainfall,
385 high humidity, and enhanced grass pollen levels, but the rarity of such events
386 undermines predictive capabilities. Indeed, early-warning capabilities for lightning are
387 becoming operational in some countries (for example the Lightning Potential Index
388 [LPI] calculated from the microphysical fields of numerical models such as the WRF
389 and which is being used for medium-range weather forecast models Lynn and Yair,
390 2010; Lynn et al., 2012) and pollen forecast models are also used to predict the onset
391 and spread of pollen concentrations (Sofiev et al., 2013; Zhang et al., 2014). However,
392 there seems to be a gap between a combined forecasting procedure of pollen and
393 lightning and administrating public-health warnings, and thus sensitive populations
394 may not be effectively alerted. We therefore suggest to include proper public health
395 alerts when there is clear indication for the coincidence of thunderstorms during plant
396 flowering season in specific regions where allergenic species are found.

397

398

399

400 **Acknowledgment:** This research is supported by the Israeli Science Foundation and
401 the National Chinese Science Foundation grant 2460/17. Pollen data courtesy Prof.
402 Amram Eshel, Tel-Aviv University. Lightning data obtained from the Israeli Electrical
403 Corporation (IEC). We wish to thank Dr. Nurit Keinan for her kind help with Appendix
404 A.

405 & - E. Shachar and M. Rotem contributed equally to this work.

406

407 **References**

408 Beggs, P. J. (2017). Allergen aerosol from pollen-nucleated precipitation: A novel
409 thunderstorm asthma trigger. *Atmos. Environ.*, 152, 455–457.

410 Bellomo R, Gigliotti P, Treloar A, Holmes P, Suphioglu C, Singh MB, and Knox
411 RB. (1992). Two consecutive thunderstorm associated epidemics of asthma in the city
412 of Melbourne. *Med. J. Aust.*, 156, 834–837.

413 Ben-Ami, Y., Altaratz, O. Yair Y. and Koren, I. (2015). Lightning characteristics
414 in Eastern Mediterranean thunderstorms during different synoptic systems. *Nat. Haz.*
415 *Earth Syst. Sci.*, 15, 2449–2459. doi:10.5194/nhess-15-2449-2015

416 .

417 Brooks, H. E. (2013). Severe thunderstorms and climate change. *Atmos. Res.*, 123,
418 129-138.

419 Cooper M.A. and R. L. Holle (2019) How to make baseline studies of lightning
420 deaths and damages. In: Reducing Lightning Injuries Worldwide. Springer Natural
421 Hazards. Springer. pp 150-163, doi:10.1007/978-3-319-77563-0_15

422 Dabrera, G., Murray, V., Emberlin, J., Ayres, J. G., Collier, C., Clewlow, Y., and
423 Sachon, P. (2012). Thunderstorm asthma: an overview of the evidence base and
424 implications for public health advice. *QJM: International J. Medicine*, 106(3), 207-217.

425 D'Amato, et al. (2015). Meteorological conditions, climate change, new emerging
426 factors and asthma and related allergic disorders. A statement of the World Allergy
427 Organization. *WAO J.*, 8, 25-52. DOI 10.1186/s40413-015-0073-0.

428 D'Amato, G, Vitale, C., D'Amato, M., Cecchi, L., Liccardi, C., Molino, A.,
429 Varella, A., Sanduzzi, A., Maesano, C. and Annesi-Maesano, I. (2016). Thunderstorm-
430 related asthma: what happens and why. *Clin. Exp. Allergy*, 46, 390-96.

431 D'Amato, G., Annesi Maesano, I., Molino, A., Vitale, C. and D'Amato, M. (2017).
432 Thunderstorm-related asthma attacks. *J. Allergy Clin. Immunol.*, 139, 1786-87.

433 Dales R. E., Cakmak S., Judek S., et al., 2003. The role of fungal spores in
434 thunderstorm asthma. *Chest*, 123, 745-750.

435 Diffenbaugh N. S., Scherer M. and Trapp, R. J., (2013). Robust increases in severe
436 thunderstorm environments in response to greenhouse forcing. *Proc. Natl. Acad. Sci.*,
437 101:16,361-6. doi:[10.1073/pnas.1307758110](https://doi.org/10.1073/pnas.1307758110).

438 Girgis ST, Marks GB, Downs SH, et al., (2000). Thunderstorm associated asthma
439 in an inland town in south-eastern Australia. Who is at risk? *Eur. Respir. J.*, 16:3-8.

440 Gleason, J. A., L. Bielroy and J. A. Fagliano (2014). Associations between ozone,
441 PM2.5, and four pollen types on emergency department pediatric asthma events during
442 the warm season in New Jersey: A case-cross over study. *Environ. Res.*, 132, 421-429.

443 Krausmann, E., Renni, E., Campedel, M. (2011). Industrial accidents triggered
444 by earthquakes, floods and lightning: lessons learned from a database analysis. *Nat
445 Haz.*, 59: 285. <https://doi.org/10.1007/s11069-011-9754-3>

446 Keinan, N. (1992), Comparison of pollen allergenicity of closely related plant
447 populations and species. Ph.D. dissertation, Tel-Aviv University, 115 pp (in Hebrew).

448 Lynn, B. and Yair, Y. (2010), Prediction of lightning flash density with the WRF
449 model, *Adv. Geosci.*, 23, 11-16, doi:10.5194/adgeo-23-11-2010.

450 Lynn, B., Yair, C. Price, G. Kelman and A. J. Clark (2012). Predicting Cloud-
451 to-Ground and Intracloud Lightning in Weather Forecast Models. *Weather and
452 Forecasting*, 27, 1470-1488, doi:10.1175/WAF-D-11-00144.1.

453 Marks G. B., Colquhoun J. R., Girgis S. T., et al., 2001. Thunderstorm outflows
454 preceding epidemics of asthma during spring and summer. *Thorax*, 56:468-471

455 Miguel, A. G., P. E. Taylor, J. James House, E. M. Glovsky and R. C. Flagan 2006).
456 Meteorological influences on respirable fragment release from Chinese Elm
457 pollen, *Aer. Sci. Tech.*, 40:9, 690-696, doi: 10.1080/02786820600798869

458 Molfino N. A., Wright S. C., Katz I., Tarlo S., Silverman F., McClean P. A. et al.,
459 1991. Effect of low concentrations of ozone on inhaled allergen responses in asthmatic
460 subjects. *Lancet*; 338:199-203.

461 Nasser S. M. and T.B. Pulimood, 2009. Allergens and thunderstorm asthma. *Curr.
462 Allergy Asthma Rep.*, 9 (5), pp. 384-390, doi:10.1007/s11882-009-0056-8.

463 Newson R., Strachan D. P., Archibald E., et al. (1997), Effect of thunderstorms
464 and airborne grass pollen on the incidence of acute asthma in England, 1990-
465 1994. *Thorax*, 52, 680-685.

466 Packe, G. E., and Ayres, J. (1985). Asthma outbreak during a thunderstorm. *The*
467 *Lancet*, 326 (8448), 199-204.

468 Packe, G. E., and Ayres, J. (1986). Aeroallergen skin sensitivity in patients with
469 severe asthma during a thunderstorm. *The Lancet*, 327 (8485), 851-852.

470 Pawar, S.D., V. Gopalakrishnan, P. Murugavel, N. E. Veremey and A. A. A.
471 Sinkevich, 2017. Possible role of aerosols in the charge structure of isolated
472 thunderstorms. *Atmos. Res.*, 183, 331-340.

473 Petrucci, O., L.Aceto, C.Bianchi, V.Bigot, R. Brázdil, S.Pereira, A.Kahraman,
474 Ö.Kılıç, V.Kotroni, M.C. Llasat, M. Llasat-Botija, K. Papagiannaki, A. A. Pasqua, J.
475 Řehoř, J. Rossello Geli, P. Salvati, F. Vinet, J.L. Zézere, 2019. Flood Fatalities in
476 Europe, 1980–2018: Variability, Features, and Lessons to Learn. *Water* 2019, 11, 1682;
477 doi:10.3390/w11081682

478 Rossi O. V. J., Kinnula V. L., Tienari J. and Huhti E., 1993. Association of severe
479 asthma attacks with weather, pollen, and air pollutants. *Thorax*, 48:244–8.

480 Romps et al. (2014), Projected increase in lightning strikes in the United States due
481 to global warming. *Science*, 346, 6211, 851-854.

482 Saaroni, H., E. Levi and B. Ziv (2018), Particulate matter in the summer season
483 and its relation to synoptic conditions and regional climatic stress – the case of Haifa,
484 Israel. *Water, air, soil poll.*, 229, 313. doi: 10.1007/s11270-018-3943-6.

485 Shalev, S., Saaroni, H., Izsak, T., Yair, Y. and Ziv, B. (2011), The spatiotemporal
486 distribution of lightning over Israel and the neighboring area and its relation to regional
487 synoptic systems, *Nat. Hazards Earth Syst. Sci.*, 11, 2125–2135, doi:10.5194/nhess-11-
488 2125-2011.

489 Silver JD, Sutherland MF, Johnston FH, Lampugnani ER, McCarthy MA, Jacobs
490 SJ, et al. (2018) Seasonal asthma in Melbourne, Australia, and some observations on
491 the occurrence of thunderstorm asthma and its predictability. *PLoS ONE* 13(4):
492 e0194929. <https://doi.org/10.1371/journal.pone.0194929>

493 Singer, B. D., L. H. Ziska, D. A. Frenz, D. E. Gebhard and J. G. Straka (2005).
494 Increasing Amb a 1 content in common ragweed (*Ambrosia artemisiifolia*) pollen as a
495 function of rising atmospheric CO₂ concentrations. *Functional Plant Biology*, 32, 667-
496 670.

497 Sofiev, M., Siljamo, P., Ranta, H., Linkosalo, T., Jaeger, S., Rasmussen, A., Rantio-
498 Lehtimäki, A., Severova, E., and Kukkonen, J. (2013). A numerical model of birch
499 pollen emission and dispersion in the atmosphere. Description of the emission module,
500 *Int. J. Biometeorol.*, 57, 45–58, doi:10.1007/s00484-012-0532-z.

501 Suphioglu, C. (1998). Thunderstorm asthma due to grass pollen. *Int. Arch. Allergy*
502 *and Immunology*, 116(4), 253-260.

503 Taylor, P. E., Flagan, R. C., Miguel, A. G., Valenta, R. and Glovsky, M. M. (2004a),
504 Birch pollen rupture and the release of aerosols of respirable allergens. *Clinical &*
505 *Experimental Allergy*, 34: 1591-1596. doi:[10.1111/j.1365-2222.2004.02078.x](https://doi.org/10.1111/j.1365-2222.2004.02078.x) Taylor,
506 P. E. and H. Jonsson (2004b). Thunderstorm asthma. *Curr. Allergy Asthma Rep.*, 4, 5,
507 409-413, doi: 10.1007/s11882-004-0092-3

508 Thien, F., Beggs, P. J., Csutoros, D., Darvall, J., Hew, M., Davies, J. M. and Byrne,
509 T. (2018). The Melbourne epidemic thunderstorm asthma event 2016: an investigation
510 of environmental triggers, effect on health services, and patient risk factors. *The Lancet*
511 *Planetary Health*, 2(6), e255-e263.

512 Trapp, R. J., N. S. Diffenbaugh, H. E. Brooks, M. E. Baldwin, E.D. Robinson and J.
513 S. Pal, (2007). Changes in severe thunderstorm environment frequency during the 21st
514 century caused by anthropogenically enhanced global radiative forcing. *Proc. Nat. Ac.*
515 *Sci.*, (50) 19719-19723; DOI:10.1073/pnas.0705494104

516 Vaidyanathan, V., Miguel, A. G., Taylor, P. E., Flagan, R. C., & Glovsky, M. M.
517 (2006). Effects of electric fields on pollen rupture. *Journal of Allergy and Clinical*
518 *Immunology*, 117(2) doi:<http://dx.doi.org/10.1016/j.jaci.2005.12.625>

519 Venables KM, Allitt U, Collier CG, Emberlin J, Greig JB, Hardaker PJ, Highham
520 JH, Laing—Morton T, Maynard RL, Murray V, Strachan D, Tee RD: Thunderstorm—
521 related asthma – The epidemic of 24/25 June 1994. *Clin Exp Allergy* 1997;27:725–736.

522 Waisel, Y., Ganor, E., Glikman, M., Epstein, V., & Brenner, S., (1997). Seasonal
523 distribution of airborne pollen in the coastal plain of Israel. *Aerobiologia*, 13, 127–134.

524 Waisel, Y., Eshel, A., Keynan, N., & Langgut, D. (2008). Ambrosia: A new
525 impending disaster for the Israeli allergic population. *Israel Medical Association*
526 *Journal*, 10, 856–857.

527 Wardman A. E., Stefani D. and J. C. MacDonald (2002), Thunderstorm associated
528 asthma or shortness of breath epidemic: a Canadian case report. *Can Respir J.*, 9, 267–
529 270.

530 Williams, E. R., N. Nathou, E. Hicks, C. Pontikis, B. Russell, M. Miller and M. J.
531 Bartholmew, (2007), The electrification of dust-lofting gust fronts ('haboobs') in the
532 Sahel. *Atmos. Res.*, 91, 2-4, 292-298.

533 Yair, Y., Z. Levin and O. Altaratz (1998). Lightning phenomenology in the Tel-
534 Aviv area from 1989 to 1996. *J. Geophys. Res.*, 103, D8, 9015-9025.

535 Yair, Y., S. Shalev, Z. Erlich, A. Agrachov, E. Katz, H. Saaroni, C. Price and B.
536 Ziv, 2014. Lightning flash multiplicity in eastern Mediterranean winter thunderstorms.
537 *Nat. Hazards Earth Syst. Sci.*, 14, 165-173, doi:[10.5194/nhess-14-165-2014](https://doi.org/10.5194/nhess-14-165-2014).

538 Yair, Y., Sibony, M., and Rubin, B. (2017). Four *Ambrosia* species in Israel:
539 Invasive, naturalized and casual alien plants. *Israel J. Plant Sci.*, 64, 93–98.

540 Yair, Y., (2018), Lightning hazards to human societies in a changing climate.
541 *Environ. Res. Lett.*, 13, 123002, doi: [10.1088/1748-9326/aaea86](https://doi.org/10.1088/1748-9326/aaea86)

542 Yair, Y., Sibony M, Goldberg A, Confino-Cohen R, Rubin B. and E. Shahar (2018).
543 Ragweed species (*Ambrosia* spp.) in Israel: Distribution and allergenicity.
544 *Aerobiologia*, doi.org/10.1007/s10453-018-9542-6

545 Zhang, R. T. Duhl, M. T. Salam, J. M. House, R. C. Flagan, E. L. Avol, F. D.
546 Gilliland, A. Guenther, S. H. Chung, B. K. Lamb and T. M. VanReken (2014).
547 Development of a regional-scale pollen emission and transport modeling framework
548 for investigating the impact of climate change on allergic airway disease. *Biogeosci.*,
549 11,1461-1478.

550 Ziv, B., H. Saaroni, Y. Yair, M. Ganot, H. Baarad and D. Isaschari (2008),
551 Atmospheric factors governing winter thunderstorms in the coastal regions of the
552 eastern Mediterranean. *Theor. Appl. Clim.*, 10.1007/s00704-008-0008-6.

553 Ziska, L. H. et al. (2011). Recent warming by latitude associated with increased
554 length of ragweed pollen season in central North America. *Proc. Nat. Acad. Sci.*, 108,
555 4248-4251.

556

557

558

559

560 **Figure Captions**

561

562 **Figure 1:** A schematic description of the mechanism that enhances the concentrations
563 of airborne aerosols (either pollution particles or pollen) ahead of a mature
564 thunderstorm (Taylor and Jonsson, 2004).

565

566 **Figure 2:** Wind speed at 4 different stations along Israel. Bet Dagan (in blue) is located
567 12 km southeast of Tel-Aviv. Hadera Port (red) is located on the coastline, 45 km north
568 of Tel-Aviv. Hakfar Hayarok (green) is 5 km northeast of Tel-Aviv, and Tel-Aviv coast
569 (purple) is located on the Mediterranean coastline. All stations recorded an abrupt and
570 short-lived increase in wind-speed around 10 AM local time, indicating the passage of
571 the gust front. Data courtesy the Israeli Meteorological Service.

572

573 **Figure 3:** (left) Visible MODIS Satellite image at 12 UT when the cold front and
574 thunderstorms already moved into Israel (right)Lightning strokes detected on October
575 25th 2015 by the ILDN (Israel Lightning Detection Network) operated by the Israeli
576 Electrical Corporation. Each point is a ground stroke. The panels show cumulative
577 values at 30 minutes intervals, local time indicated and the location of the 3 hospitals
578 involved in this research.

579

580 **Figure 4:** 1-minute accumulated lightning numbers detected on October 25th 2015 as a
581 function of time. The total cloud-to-ground stroke rate (grey) exhibits a sharp maximum
582 around 09:45 local time, as the cells passed over central Israel.

583

584 **Figure 5:** Mass concentration of PM10 aerosols for 16 stations in Israel, 25th October
585 2015. Data is given in $\mu\text{g m}^{-3}$. Note the peak around 1000 local time, coinciding with
586 the passage of the gust front. The sharp, strong peak was measured at the Rambam
587 Medical Center in haifa.

588

589 **Figure 6:** Daily average concentrations of pollen and spore numbers for October 2015,
590 based on data collected at Tel-Aviv University's monitoring station in the botanical
591 gardens on campus (Data courtesy of Prof. Amram Eshel, the Laboratory for Pollen
592 Monitoring, Tel-Aviv University).

593

594 **Figure 7:** Emergency room presentations at 3 Israeli hospitals in the 3 days preceding
595 and following the October 25th 2015 super-cell event: Meir Medical center (blue),
596 Rambam medical center (orange), HaEmek medical center (grey).

597

598 **Figure 8:** Two months of ER presentations of patients with respiratory problems at the
599 Meir Medical Center in Kfar-Saba, central Israel (for the period 1.10.2015-30.11.2015).
600 The October 25th record shows a 250% increase in a single day.

601

602

604 **Appendix A**

605

606 Table showing flowering months for various allergenic plants in Israel (based on
607 Keinan, 1992). Yellow marks little flowering, dark brown marks massive flowering.

608

	1	2	3	4	5	6	7	8	9	10	11	12
<i>Cynodon dactylon</i>	Y	Y	OB	Y	Y	Y						
<i>Hyparrhenia hirta</i>		Y	Y	OB	OB	OB	OB	OB	OB	Y	Y	Y
<i>Pennisetum clandestinum</i>		Y	OB	Y	Y							
<i>Stenotaphrum secundatum</i>			Y	OB	OB	OB	OB	OB	OB			
<i>Paspalum vaginatum</i>			Y	OB	OB	OB	OB	OB	OB	Y	Y	
<i>Zoisia</i> sp.			Y	OB	Y	Y						
<i>Sorghum halepense</i>			Y	OB	OB	OB	OB	OB	OB	Y	Y	
<i>Chloris gayana</i>			Y	OB	OB	OB	OB	OB	OB	Y	Y	
<i>Poa</i> sp.		Y	OB	OB	OB							
<i>Hordeum</i> sp.		Y	OB	OB	OB							
<i>Lolium</i> sp.		Y	OB	OB	OB							
<i>Bromus</i> sp.		Y	OB	OB	OB	Y						
<i>Dactylis glomerata</i>		Y	OB	OB	OB	OB	Y					
<i>Avena</i> sp.		Y	OB	OB	OB	OB	Y					
<i>Parietaria</i> sp.		Y	OB	OB	OB	OB	OB	OB	Y	Y	Y	
<i>Ricinus communis</i>			Y	OB	OB	OB	OB	OB	OB	Y	Y	
<i>Chenopodium</i> sp.			Y	OB	OB	OB	OB	OB	OB	Y	Y	
<i>Urtica</i> sp.		Y	OB	OB	OB							
<i>Mercurialis annua</i>		Y	OB	OB	OB	OB						
<i>Plantago</i> sp.			OB	OB	OB	OB	Y					
<i>Amaranthus</i> sp.			Y	OB	OB	OB	OB	OB	OB	Y		
<i>Inula viscosa</i>				OB	Y							
<i>Ambrosia</i> sp.				OB	Y							
<i>Xanthium</i> sp.					OB	OB	Y	OB	OB	OB	Y	
<i>Salsola kali</i>								OB	OB	OB	OB	
<i>Atriplex halimus</i>								OB	OB	OB	Y	
<i>Artemisia monosperma</i>								OB	OB	OB	OB	
<i>Artemisia herba alba</i>									OB	Y	OB	
<i>Eucalyptus</i> sp.		Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	
<i>Thuja</i> sp.		Y	OB	Y	Y							
<i>Cupressaceae</i>		Y	OB	OB	OB	Y						
<i>Phoenix dactylifera</i>		Y	OB	OB	OB	Y						
<i>Quercus ithaburensis</i>			OB									
<i>Quercus calliprinos</i>			OB	OB	OB	OB	Y					
<i>Pistacia lentiscus</i>			Y	OB	OB	OB	Y					
<i>Pistacia palaestina</i>			OB	OB	OB							
<i>Olea europaea</i>			Y	OB	OB	OB	Y					
<i>Acacia</i> sp.			Y	OB	OB	OB						
<i>Carya illinoiensis</i>			Y	OB	OB	OB						
<i>Ailanthus glandulosa</i>			Y	OB	OB	OB						
<i>Ceratonia siliqua</i>			Y	OB	OB				OB	OB	Y	
<i>Schinus</i> sp.									OB	OB	Y	
<i>Casuarina</i> sp.									Y	Y	Y	

