
 1 

Anomalies of dwellers’ collective geo-tagged behaviors in response to rainstorms: a case study 1 
of eight cities in China using smartphone location data 2 
Jiawei Yi1,2, Yunyan Du1,2*, Fuyuan Liang3, Tao Pei1,2, Ting Ma1,2, Chenghu Zhou1,2 3 
1State Key Laboratory of Resources and Environmental Information System, Institute of 4 
Geographic Science and Natural Resources Research, Chinese Academy of Sciences, Beijing, China 5 
2University of Chinese Academy of Sciences, Beijing, China 6 
3Department of Earth, Atmospheric, and Geographic Information Sciences, Western Illinois 7 
University, Macomb, IL, USA 8 
*Corresponding author: duyy@lreis.ac.cn 9 

 10 

Abstract 11 

Understanding city residents’ collective geo-tagged behaviors (CGTB) in 12 

response to hazards and emergency events are important in disaster mitigation and 13 

emergency response. It is a challenge, if impossible, to directly observe the CGTB in a 14 

real-time matter. This study used the number of location request (NLR) data 15 

generated by smartphone users for a variety of purposes such as map navigation, car 16 

hailing, and food delivery etc. to infer the dynamic of the CGTB in response to 17 

rainstorms in eight cities of China. We examined the rainstorms, flooding, NLR 18 

anomalies, as well as the associations among them in eight selected cities across the 19 

mainland China. The time series NLR clearly reflects cities’ general diurnal rhythm 20 

and the total NLR is moderately correlated with the total city population. Anomalies 21 

of NLR were identified at both the city and grid scale using the S-H-ESD method. 22 

Analysis results manifested that the NLR anomalies at the city and grid levels are well 23 

associated with rainstorms, indicating city residents request more location-based 24 

services (e.g. map navigation, car hailing, food delivery, etc.) when there is a 25 

rainstorm. However, sensitivity of the city residents’ collective geo-tagged behaviors 26 

in response to rainstorms varies in different cities as shown by different peak rainfall 27 

intensity thresholds. Significant high peak rainfall intensity tends to trigger city 28 

flooding, which lead to increased location-based requests as shown by positive 29 

anomalies on the time series NLR.  30 
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1 Introduction 35 

Global climate change is making rainfall events heavier and more frequent in 36 

many areas. Powerful rainstorms may flood a city once the rainfall exceeds the 37 

discharge capacity of a city’s drainage system. Inundation of cities’ critical 38 

infrastructures and populated communities tends to disrupt urban residents’ social 39 
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and economic activities and even cause dramatic life and property losses 1 

(Papagiannaki et al. 2013; Spitalar et al. 2014; Liao et al. 2019). Floods nowadays are 2 

the most common type of natural disaster, which poses a serious threat to the safety 3 

of life and property in most countries (Alexander et al. 2006; Min et al. 2011; Hu et al. 4 

2018). According to the released survey in the Bulletin of Flood and Drought 5 

Disasters in China, more than 104 cities were struck by floods in 2017, affecting up to 6 

2.18 million population and causing over 2.46 billion US dollars direct economic 7 

losses (China National Climate Center 2017). 8 

The impacts of a rainstorm are usually evaluated with respect to the interactions 9 

among rainfall intensity, the population exposure, the urban vulnerability, and the 10 

society coping capacity (Spitalar et al. 2014; Papagiannaki et al. 2017). The rainfall 11 

intensity that may trigger flood disasters has been extensively investigated and 12 

many studies have examined the relationship between rainfall intensities and social 13 

responses (Ruin et al. 2014; Papagiannaki et al. 2015; Papagiannaki et al. 2017). 14 

Nowadays the peak rainfall intensity is widely used to determine the critical rainfall 15 

threshold for issuing flash flood warnings (Cannon et al. 2007; Diakakis 2012; Miao 16 

et al. 2016).  17 

The population exposure refers to the spatial domain of population and 18 

properties that would be affected by a rainfall hazard (Ruin et al. 2008). Gradual 19 

increase in the proportion of population living in urban areas due to urbanization 20 

makes more people exposed and vulnerable to urban flash floods, posing great 21 

challenge to flood risk reduction (Liao et al. 2019). Reduction of vulnerability 22 

therefore becomes critical in urban disaster mitigation. Vulnerability is usually 23 

assessed by comprehensively considering related physical, social, and 24 

environmental factors (Kubal et al. 2009; Adelekan 2011; Zhou et al. 2019), and 25 

their dynamic characteristics across space and time (Terti et al. 2015). 26 

Coping capacity reflects the ability of a society to handle adverse disaster 27 

conditions and it is one of the most important things to consider in disaster 28 

mitigation (UNISDR 2015). The coping capacity is usually evaluated by examining the 29 

human behaviors in response to disasters, which are mainly collected by 30 

post-disaster field investigation and questionnaires (Taylor et al. 2015). Such 31 

conventional approaches only provide limited samples that may not be able to fully 32 

and timely reflect disaster-induced human behaviors. Recently, researchers have 33 

learned the advantages of using unconventional data sets such as insurance claims 34 

(Barberia et al. 2014), newspapers (Llasat et al. 2009), and emergency operations 35 

and calls (Papagiannaki et al. 2015; Papagiannaki et al. 2017) to quantify the coping 36 

capacity.  37 

The growing use of smartphones and location-based services (LBS) in recent 38 
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years has generated massive geospatial data, which could be used to infer the 1 

collective geo-tagged human activities. The geospatial data thus provides a new 2 

perspective to study normal urban rhythm in regular days (Ratti et al. 2006; Ma et al. 3 

2019) and abnormal human behaviors in response to emergencies (Goodchild & 4 

Glennon 2010; Wang & Taylor 2014; Kryvasheyeu et al. 2016). Bagrow et al. (2011) 5 

found the number of phone calls spiked during earthquake, blackout, and storm 6 

emergencies. Dobra et al. (2015) explored the spatiotemporal variations in the 7 

anomaly patterns caused by different emergencies. Gundogdu et al. (2016) reported 8 

that it is possible to identify the anomalies inflicted by emergencies or 9 

non-emergency events from mobile phone data using a stochastic method. In 10 

addition to the afore-mentioned applications, more studies are needed to explore 11 

the full potential of the mobile phone data in terms of revealing human collective 12 

behaviors, particularly in response to hazards and emergencies. 13 

This study explored the urban anomalies and their variations in response to 14 

rainstorms using the NLR requests from smartphone users. We selected eight 15 

representative cities in the mainland China to examine how urban residents response 16 

to typical summer rainstorms in different regions. The anomalies of LBS requests 17 

caused by rainstorms were identified using a time series decomposition method and 18 

then described by multiple indices, which are used to study how rainstorms affect 19 

geo-tagged human behaviors collectively. The rest of the paper is organized as 20 

follows. Section 2 introduces the selected cities and the smartphone NLR dataset. 21 

Section 3 presents the anomaly detection and description methods. Section 4 22 

provides the analysis results including rainfall statistics, normal rhythms, and 23 

rainstorm-triggered anomalies in the selected cities. Section 5 concludes the study 24 

and discusses the future work. 25 

 26 

2 Materials 27 

2.1 Study area 28 

We selected eight representative cities across the mainland China for this study 29 

(Fig. 1). Two cities were selected from each region except the northwestern and 30 

southwestern China (Table 1). The eight cities vary significantly with respect to their 31 

total population, footprint areas, and urbanization rate. In this study, the footprint of 32 

a city is composed of the grids that have an hourly number of location requests (NLR) 33 

no less than the median of the daily NLR time series of that grid over the whole 34 

month, i.e., the grids with at least one NLR every hour in average.  35 

Haikou and Zhuhai are located in southern China which has mean annual 36 

precipitation between 1600 mm and 3000 mm. Among the eight cities, Zhuhai is the 37 
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least populated city but with the highest urbanization rate. In central China, we 1 

selected Hefei and Xiangyang, which have mean annual precipitation between 800 2 

mm and 1600 mm. Two cities, Lanzhou and Hengshui, were selected from a 3 

semi-humid region in northern China with mean annual precipitation between 400 4 

mm and 800 mm. Hengshui has the largest footprint area but the least urbanization 5 

rate among the cities. Harbin and Jilin are located in the Northeastern China. The 6 

mean annual precipitation of Harbin and Jilin ranges from 400 mm to 800 mm and 7 

between 800 mm and 1600 mm, respectively. Harbin is the most populated among 8 

the eight cities. 9 

 10 
Figure 1 A map showing the geographic locations, annual precipitation, and 11 
footprints of the eight cities in this study. 12 
 13 
Table 1 Statistics of the cities 14 

Region City Population 
(104) 

Footprint area 
(km2) 

Urbanization 
rate (%) 

Southern China 
Haikou 227.21 625 78.21 
Zhuhai 176.54 567 89.37 

     

Central China 
Hefei 796.50 1927 73.75 
Xiangyang 565.40 1817 59.65 

     

Northern China 
Lanzhou 372.96 1219 81.02 
Hengshui 446.04 2997 50.60 
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Northeastern 
China 

Harbin 1092.90 2083 64.50 
Jilin 415.35 704 52.80 

 1 

2.2 Data collection 2 

The smartphone location data was obtained from the Tencent big data portal 3 

(https://heat.qq.com/). The portal provides location request records of the global 4 

smartphone users via the Tencent Map API. A location request record is generated 5 

when a smartphone user requests any LBS, which include but are not limited to 6 

navigation, car hailing, food and merchandise delivery, or social media check-ins. 7 

Table 2 lists the popular LBS applications that collect user’s location requests. These 8 

apps are developed for diverse purposes, including social communication, 9 

entertainment video watching, mobile web browsing, e-commerce trading and 10 

shopping, mobile game playing, traveling and transportation, and so on. Every 11 

application has a large group of active users who request LBS using a large number of 12 

monthly unique devices across China. 13 

The Tencent big data portal releases the number of location requests per 14 

0.01×0.01 degree regular grid for every 4-5 minutes. Comparing with other Chinese 15 

social media platforms, Tencent is the most popular one with the largest social 16 

community, which is reported to have nearly 1.1 billion monthly active users for 2018 17 

(https://www.tencent.com/en-us/company.html). Ma (2019) compared the NLR 18 

dataset with visitor numbers in a few places and confirmed that the NLR data is a 19 

good proxy for investigating dynamic population changes. We collected the NLR data 20 

of the grids within the administrative boundaries of the eight cities from August 1 to 21 

31, 2017.  22 

This study used the Version 05B GPM/IMERG 30-minute precipitation dataset 23 

(Huffman et al. 2018), which has a spatial resolution of 0.1´0.1 degrees. This dataset 24 

has been evaluated and widely used (Wang et al. 2017; Zhao et al. 2018; Su et al. 25 

2018). The news reports about the flooding events in the eight cities were mainly 26 

collected from the Chinese mainstream online media, including Xinhuanet, Ecns.cn, 27 

Sohu, etc. 28 

Table 2. Common smartphone applications using location-based services 29 

Applications Types Usages 

Monthly 
unique 
devices* 
(billion) 



 6 

WeChat 
Mobile messaging 
app 

Share location with friends 1.123 

Mobile QQ 
Mobile messaging 
app 

Share location with friends 0.706 

Tencent 
Video 

Mobile video app Upload geo-tagged videos 0.576 

QQ Browser 
Mobile web 
browser app 

Push notifications of local 
news and weather 

0.450 

QQ Music Mobile music app Listen to music while running 0.309 

Tencent News Mobile news app 
Push notifications of local 
news 

0.265 

JingDong 
(JOYBUY) 

Mobile 
e-commerce 
platform 

Location-based product 
recommendation 

0.242 

Wangzhe 
Rongyao 

Mobile game Interact with nearby players 0.142 

Dianping 
Mobile review and 
rating app 

Location-based 
recommendation of 
restaurants, hotels, shops, 
etc. 

0.112 

DiDi 
Mobile 
transportation 
platform 

Location-based car hailing 0.055 

Qzone 
Social network 
platform 

Post geo-tagged microblogs 0.034 

Meituan 
Waimai 

Mobile 
on-demand 
delivery app 

Location-based restaurant 
recommendation 

0.025 
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*The monthly unique devices denote the total number of unique devices that have 1 
used the application over a month. The data was collected by iResearch company in 2 
July, 2019 (available at https://index.iresearch.com.cn/app). 3 
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3 Methods 5 

3.1 Time series anomaly detection 6 

The smartphone location request record can be represented by a series of 7 

spatial points: {(xi,yi,Tsi)}, i=1,2,…,n. Each point contains its geographic coordinates (x, 8 

y) and a time (T) when the LBS is requested. The NLR was then aggregated to time 9 

series per grid or per city as illustrated below. 10 

At the city level, a time series hourly NLR was established by adding up all 11 

location requests of the grids within the footprint area of that city. The magnitudes 12 

of the NLR in different cities vary significantly due to the different numbers of smart 13 

phone users. To make the NLR in different cities comparable, we normalized the NLR 14 

using the median-interquartile normalization method, which is more robust to 15 

anomalies than other common approaches using sample mean and standard 16 

deviation (Geller et al. 2003). 17 

We employed the S-H-ESD method (Vallis et al. 2014) to detect anomalies from 18 

the time series NLR, which can be represented by the following additive model 19 

Ts=T+S+R                                 (1) 20 

where T, S, and R denote the trend, seasonality and residual components in the time 21 

series data, respectively. The S-H-ESD method assumes that the trend and the 22 

seasonality would not be significantly disrupted by rapid-evolving events that last for 23 

only a few hours. Two major steps are involved in the method. First, it uses the 24 

piecewise median method to fit and remove the long-term trend and then the STL to 25 

remove seasonality (Cleveland et al. 1990). Using the STL to remove the long-term 26 

trend would introduce artificial anomalies (Vallis et al. 2014). In this study, the 27 

underlying trend in the time series NLR is approached using a piecewise combination 28 

of the biweekly medians, which show little changes over the whole time series. 29 

In the second step, the S-H-ESD method employs the generalized Extreme 30 

Studentized Deviate (GESD) statistic (Rosner 1975) to identify the significant 31 

anomalies in the residuals. The GESD calculates the statistic (G) based on the mean ( ) 32 

and the standard deviation (s) of the observations: 33 

 (2) 34 

Given the upper bound of u suspected anomalies, the GESD performs u 35 

separate tests. In each test, the GESD re-computes the statistic G after removing the 36 
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observation rj that maximizes  and then compares G with the critical value l 1 

as defined below: 2 

 (3) 3 

where k denotes the number of the observations in the time series after eliminating 4 

a suspected anomaly in the last run, and  represents the pth percentile of a t 5 

distribution with a degree of freedom d. In this study, we set the significance level a 6 

as 0.05 and the number of anomalies no more than 25% of the total observations. 7 

Each test identifies one anomaly in the residuals when G > l. The identified anomaly 8 

is either a positive or negative, depending upon whether the residual is greater or 9 

smaller than 0, respectively. 10 

 11 

3.2 Anomaly measures and scores 12 

In this study, an individual anomaly is represented with a vector,  13 

v=(x, y, t, obs, res)                             (4) 14 

where x and y denote the coordinates of the grid centroid, t denotes the observation 15 

time, obs and res denote the observation and the residual (R in equation 1) in the 16 

time series. This study uses an anomaly’s absolute residual to describe its unusual 17 

deviation from its expectation. 18 

A rainstorm disaster, once significantly impacts the cities, usually can trigger an 19 

outbreak of NLR anomalies in multiple places across the city. To collectively 20 

characterize the abnormal human responses, this study defines three indices: the 21 

total number (Nt), the total residual (Rt), and the mean density (Dt) of the positive or 22 

negative anomalies. The mean density is defined as follows: 23 

 (5) 24 

where Bi denotes the number of neighborhood anomalies within a Manhattan 25 
distance of a 5-grid (~5 km) radius of the ith anomaly. The radius is large enough to 26 
cover most urban facilities nearby the anomaly. 27 

An anomaly score is then defined based on the afore-mentioned indices to 28 

evaluate the city residents’ responses to a rainstorm event. First, we surveyed the 29 

hourly changes of the indices and calculated the quartiles (Q1, Q2, Q3) and 30 

interquartile range (IQR) of each index for every hour every day. The score of an 31 

index is defined by: 32 
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 (6) 1 

where Vt represents one of the three indices at time t. According to Tukey’s fences 2 
(Tukey 1977), the score is considered an outlier if its absolute value is greater than 3 
1.5 or an extreme if it is greater than 3. The final anomaly score is the mean of the 4 
three index scores. 5 
 6 

3.3 Characterization of a rainfall event 7 

In this study, we examined the city residents’ responses to the rainfall events in 8 

August 2017. The national average precipitation of this month is 124.6 mm, which is 9 

the highest in 2017 and 21.3% more than the August average precipitation in 10 

previous years.  11 

We defined a rainfall event as a precipitation process that lasts for at least two 12 

hours and with no rain preceding it for at least one hour. The severity of a rainfall 13 

event is described by its duration, accumulated precipitation, and peak rainfall 14 

intensity. The duration refers to how long a rainfall event lasts, and the accumulated 15 

precipitation is the total precipitation received during a rainfall event. The peak 16 

rainfall intensity (Id) is widely used to estimate the possible rainfall intensity 17 

threshold that triggers city (Cannon et al. 2007; Diakakis 2012) and is defined as 18 

below:  19 

 (7) 20 

where Pi denotes the precipitation during the ith time interval, N denotes the total 21 

number of the time intervals in a rainfall time series, and d denotes the width of the 22 

moving time window that was used to search for the maximum accumulated 23 

precipitation in a rainfall event. Based on the peak rainfall intensity, the August 24 

rainfall events in the eight cities can be categorized into moderate rainstorm (0.5 25 

mm/h < I1 ≤ 4 mm/h), heavy rainstorm (4 mm/h < I1 ≤ 8 mm/h), and violent rainstorm 26 

(I1 ≥ 8 mm/h). 27 

For calculation purpose, we downscaled the precipitation data to the same 28 

spatial resolution as that of the NLR using the nearest-neighbor interpolation method. 29 

At the city level, the rainfall of a city is defined as the total of the half-hour TRMM 30 

precipitation within the human footprint. At the grid level, the rainfall of each grid 31 

refers to the total precipitation received by that grid within a certain time period. 32 

 33 
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4 Results 1 

4.1 Rainfall characteristics and peak rainfall intensity thresholds 2 

The eight cities could be categorized into two groups in terms of the total 3 

precipitation amount in August 2017 (Fig. 2a). The first group includes Haikou, Zhuhai, 4 

and Hefei, with total precipitation more than 400 mm. The summer monsoon brings 5 

plenty of water to the two coastal cities (i.e. Haikou and Zhuhai). The Typhoon Hato, 6 

when it made landfall on August 23, further dumped 68- and 108-mm water to 7 

Hiakou and Zhuhai, respectively. By contrast, the inland city Hefei, received 47.6% 8 

more precipitation in 2017 than the average mainly due to a few unusual rainstorms 9 

in August 2017 (Hydrology and Water Resource Bureau of Hefei 2018) 10 

The second group includes all the other cities, which have less than 400 mm 11 

precipitation in August 2017. The city Lanzhou is located in the dry northwestern 12 

China and has the least precipitation of 250 mm. The two inland cities, Xiangyang 13 

and Hengshui both have slightly higher precipitation of 300 mm. The precipitation of 14 

the two northeastern cities, Harbin and Jilin, ranges between 320 and 350 mm and is 15 

mainly brought in by the northwestern vortexes. 16 

There are at least 15 rainstorms and two flooding events in each city. The city 17 

Haikou, Lanzhou, and Harbin witnessed more than 20 rainstorms and about 1/4 out 18 

of them caused serious flooding problems. The number of rainstorms in the other 19 

cities ranges from 15 to 20 and about two to four out of them caused flooding 20 

problems in the cities. 21 

We identified the peak rainfall intensity threshold value that likely triggers city 22 

flooding using the method developed by Cannon et al. (2008) and Diakakis (2012). 23 

The method plots peak rainfall intensity of different time windows against the 24 

corresponding rainfall duration. The flood-triggering threshold is defined as the 25 

upper limit of the peak rainfall intensity that tends to lead to urban flooding but 26 

actually not. As shown in Fig. 2b, for the rainfall thresholds calculated based on 0.5-, 27 

1-, 2-, and 3-hour time window, the city ranking shows no change with an order of 28 

Haikou, Jilin, Hengshui, Zhuhai, Hefei, Lanzhou, Harbin, and Xiangyang. The ranking 29 

shows some fluctuations when the flooding-triggering rainfall threshold values were 30 

calculated with a more than 3-hour time window. However, Haikou and Harbin are 31 

always the top two cities whereas Xiangyang is the last one on the ranking list. It is 32 

worthy to note that a rainstorm with a peak rainfall intensity over the threshold 5 33 

mm/h would definitely trigger floods in Xiangyang. However, in Haikou, such a 34 

threshold value is 30 mm/h. In other words, city flooding would occur in Haikou 35 

when it is hit by a rainstorm with peak rainfall intensity over 30mm/h. In general, the 36 

difference between the threshold values among these cities reduces with a longer 37 
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time window, indicating that the rainfall in a shorter time window is more critical to 1 

evaluate whether a city is prone to flooding. 2 

 3 

Figure 2. Total August precipitation and frequency of rainfall and city flooding events 4 
(a). Variations in peak rainfall intensity (circles) and the flooding-triggering 5 
precipitation threshold values (lines) that are derived from time windows ranging 6 
from 0.5 to 24 hours (b).  7 
 8 

4.2 Normal rhythm of city 9 

The NLR records can serve as a proxy of the city residents’ normal daily routine. 10 

The normalized NLR show the eight cities have a similar diurnal rhythm (Fig. 3a). The 11 

normalized NLR median climbs from a minimum at around 4:00 and to a peak right at 12 

12:00. It starts to drop slightly and then peaks again at around 20:00. This general 13 

pattern reflects the smartphone usage patterns of the city residents. Phone usage 14 

starts to drop after the midnight when most residents start to rest. It reaches its first 15 

peak during the lunch time as residents may request more LBS to find a place to eat. 16 

After lunch time, phone usage remains at a high plateau, probably due to more LBS 17 

requests for business purposes. Phone usage reaches the highest peak of the whole 18 

day right after the normal work hours, indicating a significant increased need for the 19 

LBS such as hailing nearby taxis to socialize with friends, go back home, or sending 20 

geo-tagged posts for socializing.  21 

The general diurnal pattern was superposed with subtle short-term NLR 22 

variations. The NLR in the southern cities peaks and hits the bottom later at night 23 

and before dawn, respectively, than that of the northern cities. This is very likely due 24 

to the different lifestyles between the northern and southern residents in response 25 

to the economic activities and day length. It is well-known that the southern China is 26 

more active in economic and social activities and the southerners enjoy the night 27 

activities more (Ma et al. 2019). By contrast, the northerners tend to end their 28 
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nightlife earlier and also become active earlier as the day breaks earlier in the north.  1 

The total NLR is moderately correlated with the population of these cities (Fig. 2 

3b). The 0.63 Pearson correlation coefficient (with a p value of 0.046) indicates a 3 

statistically significant positive relationship between the normalized NLR and the 4 

population. As a result, we believe the NLR data could reflect the collective 5 

geo-tagged behaviors of the city residents as a whole and consequently it could serve 6 

as a proxy of the human responses to different environmental and social events. 7 

 8 
Figure 3. The diurnal variation patterns of the NLR in the eight cities (a) and a positive 9 
correlation between the NLR and the total number of residents (b). 10 
 11 

4.3 Urban anomalies during rainstorms 12 

4.3.1 City-scale analysis 13 

There are more positive than negative anomalies in the August time series 14 

hourly NLR and most positive anomalies were found in pair with precipitation spikes 15 

(Fig. 4). For example, two significant precipitation spikes in Harbin in the afternoon of 16 

August 2nd and 3rd were closely associated with positive NLR anomalies. Few NLR 17 

negative anomalies were identified in the eight cities except Zhuhai. This city was 18 

significantly affected by Typhoon Hato, which brings huge amount of precipitation 19 

and leads to a negative anomaly since the Afternoon of August 23rd in Zhuhai. Such a 20 

significant negative anomaly could be attributed to serious communication 21 

interruption or damages caused by the typhoon.  22 

It is worthy to note that both positive and negative anomalies were also 23 

identified when there is no rain in the cities. For example, two positive anomalies 24 

were identified around August 28th in Harbin when there is no rain at all. The no-rain 25 

anomalies must be triggered by other major events in the cities. However, at this 26 

moment it is not easy to trace what local events may trigger such anomalies.  27 

 It is very interesting to notice that a couple of no-rain positive anomalies were 28 

identified in the last week of August for almost all eight selected cities except Zhuhai. 29 
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These positive anomalies were obviously not associated with any special rainstorm 1 

events. Instead, they are more likely to be associated with sort of national-wide 2 

events, such as the college students’ back to school and move-in events, which are 3 

mainly scheduled in the last week of August every year in China. Such positive 4 

anomalies were not found in Zhuhai, of which the 2017 back to school and move-in 5 

events was postponed to the first week of October due to the significant damages 6 

caused by Typhoon Hato. However, further studies, such as of the NLR of other cities 7 

in China, are needed to consolidate this argument. 8 

 9 
Figure 4. The time series NLR and rain events during August 2017. Positive and 10 
negative anomalies were shown in orange and green colors, respectively. The light 11 
gray columns show the periods when NLR data is missing. 12 

 13 

We further quantitatively examined the association between rainfall events and 14 

the NLR anomalies. Table 3 lists the Rpos and Rneg, which are the ratios of the positive 15 
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and negative anomalies corresponding to the four scenarios (no rains, moderate, 1 

heavy and violent rainstorm events) to the total number of anomalies identified over 2 

the whole time series, respectively. As shown in Table 3, in total we identified 27, 19, 3 

78, and 166 violent, heavy, moderate, and no rainstorm events in the eight cities, 4 

respectively. Under different scenarios, the Rpos is always higher than Rneg except the 5 

no rain scenario, in which there is no significant difference between these two ratios. 6 

The rainstorm-related Rpos increases from 0.22 to 0.70 as the rainstorms level up 7 

from moderate to violent as compared to a no-rain Rpos of 0.12. The rain-related or 8 

no-rain Rneg is no more than 0.22. The Rpos is much higher than Rneg when the cities 9 

are affected by stronger rainfall events. For example, when the cities are affected by 10 

violent storms, the Rpos and Rneg are 0.70 and 0.22 respectively. By contrast, the Rpos 11 

and Rneg are 0.22 and 0.06, respectively when the cities are affected by moderate 12 

rainstorms. It is very likely that, when there are severe rainstorms, people may send 13 

out more LBS requests in order to, for instance, search a route free of inundation 14 

spots and less congested roads, order delivery food, or post geo-tagged photos of the 15 

terrible moments.  16 

A lower Rpos of the heavy and moderate rainstorms may also be partly attributed 17 

to the effect of data aggregation at the city scale. It is very common that a rainstorm 18 

may influence only a part of the city and only lead to certain local positive anomalies. 19 

In such a case, increase of the NLR in a small number of grids may not result in 20 

significant changes of the NLR of the entire city and consequently no anomalies at 21 

the city level. Analysis at the grid level, as reported in the next section, would show 22 

how residents respond to the local rainstorm events. 23 

The difference between the Rpos and Rneg also varies for different cities. For 24 

example, the two violent rainstorms both trigger a positive anomaly in Xiangyang 25 

and Harbin. By contrast, the five violent rainstorms in Zhuhai lead to the same 26 

percent positive and negative anomalies. City Hefei is special. The same percent of 27 

positive and negative anomalies are triggered by the five violent storms. However, 28 

when Hefei is affected by the moderate and heavy rainstorms or even no rainfalls, 29 

there are slightly more negative than positive anomalies. 30 

 31 

Table 3. Numbers of different categories of rainstorms and the corresponding Rpos 32 
and Rneg. 33 
 34 

Cities No rainfall Rainstorms 
Moderate  Heavy  Violent  

N Rpos Rneg N Rpos Rneg N Rpos Rneg N Rpos Rneg 
Haikou 27 0.04 0.22 14 0.21 0.00 3 0.33 0.00 8 0.75 0.00 
Zhuhai 16 0.19 0.25 5 0.20 0.20 3 0.00 0.00 5 0.40 0.40 
Hefei 19 0.05 0.32 7 0.00 0.14 2 0.50 1.00 5 0.60 0.60 
Xiangyang 15 0.33 0.33 7 0.29 0.00 0 - - 2 1.00 0.00 



 15 

Lanzhou 29 0.07 0.10 17 0.24 0.06 5 0.20 0.20 0 - - 
Hengshui 19 0.00 0.21 11 0.18 0.09 2 0.00 0.00 2 0.50 0.00 
Harbin 21 0.24 0.10 7 0.14 0.14 3 1.00 0.00 2 1.00 0.00 
Jilin 20 0.15 0.15 10 0.40 0.00 1 1.00 0.00 3 1.00 0.33 
Overall 166 0.12 0.20 78 0.22 0.06 19 0.37 0.11 27 0.70 0.22 
 1 
4.3.2 Grid-scale analysis: anomaly indices 2 

The S-H-ESD method was also used to detect the NLR anomalies at the grid level. 3 

There are always more grids showing anomaly when the city was affected by a 4 

rainstorm. Figure 5 provides an example to illustrate the grids with anomaly detected 5 

during a rainstorm and the same time period in another day without rainfall in Jilin 6 

and Haikou, respectively. Anomalies were identified in 56 grids in Jilin when it was hit 7 

by a rainstorm at 7am on August 3, 2017. By contrast, anomalies are observed in only 8 

10 grids during the same time period on August 6, 2017 when there is no rain at all. 9 

In Haikou, anomalies are found in 52 grids during a rainstorm and only 19 grids when 10 

there is no rain. 11 

 12 

Figure 5. Grid with negative and positive anomalies within the footprint areas of 13 

Haikou and Jilin. The contour lines show the precipitation. 14 
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 1 

The total number, total residual, and mean density of these anomalies were 2 

then calculated (Fig. 6) for the cities when they were affected by flooding caused by a 3 

typical rainstorm event (Table 4). The three anomaly indices show similar diurnal 4 

variations as of the NLR diurnal rhythm and they all spiked to the level of an outlier 5 

or even to an extreme value when the city was significantly affected by flooding 6 

issues.  7 

After the spikes, the anomaly indices usually bounce back to the same level 8 

before for almost all the cities except Zhuhai, indicating most cities return to their 9 

normal rhythms after the rainstorm interruption. However, Zhuhai was hit by the 10 

category-3 Typhoon Hato at around 12:50 on August 23. The typhoon brought 11 

intense rain, strong winds, and caused significant flooding issues and damages to the 12 

city infrastructures, causing a sharp decline and persistent negative anomalies after 13 

the landfall of Hato. It took more than 72 hours for the anomaly indices to bounce 14 

back to the same level before Hato (not shown in Fig. 6). 15 

 16 

Table 4. An exemplary flooding event in each of the cities. 17 

 18 

City 
Urban 
flood 
event 

Rainfall 
duration (h) 

Accumulated 
precipitation (mm) 

Half-hour peak 
rainfall intensity 
(mm/h) 

Haikou 8-4 15:00 10 117 77 
Zhuhai 8-23 12:50 23 108 32 
Hefei 8-25 17:00 13 72 25 
Xiangyang 8-7 18:00 30.5 140 34 
Lanzhou 8-12 21:00 9.5 14 5 
Hengshui 8-18 08:00 15 67 18 
Harbin 8-2 17:00 12.5 61 26 
Jilin 8-3 07:00 38.5 185 31 

 19 



 17 

 1 

Figure 6. Intra-day variations in NLR, total residuals, mean density, and anomaly score 2 

within 24 hours of a typical flooding event in each of the cities. 3 

 4 

4.3.3 Grid-scale analysis: anomaly score and rainfall intensity 5 
 6 

Given the anomaly score is indicative of the unusual responses of residents to 7 

rainstorms, we further examined the relation between the anomaly score and the 8 

rainfalls in these cities during the August 2017.  9 
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The grid-level Rpos is much higher than the city-level counterpart with respect to 1 

all types of events (Fig. 7a). Such a difference is mainly due to the different analysis 2 

levels. We can easily identify the local anomalies per grid, which are more likely to be 3 

obliterated at the city level due to the data aggregation. At the grid level, the Rpos and 4 

Rneg also vary in response to the different levels of rainstorm events. All cities show a 5 

higher Rpos when they are affected by violent rainstorms (85%) than heavy rainstorms 6 

(68%), in comparison with the Rpos (56%) when the cities are not affected by any 7 

rainfall events. However, the Rpos of moderate rainstorms (45%) is less than the 8 

no-rain Rpos, likely suggesting that low-intensity rainfall events may not necessarily 9 

trigger NLR anomalies and other factors may contribute to the NLR anomalies at the 10 

grid level. 11 

How easily the rhythm of a city would be disrupted by a rainstorm is strongly 12 

related to the anomaly-triggering peak rainfall intensity threshold (Fig. 7b), which 13 

was calculated using the same the ideas in the methods developed by Cannon et al. 14 

(2008) and Diakakis (2012). We plotted the peak rainfall intensity with respect to 15 

whether there are anomalies or not for each city. The anomaly-triggering peak 16 

rainfall intensity is defined as the upper limit of the rainfall intensity that tends to 17 

lead to an NLR anomaly but actually not. 18 

Every rainstorm with its peak intensity higher than the threshold would 19 

definitely trigger an NLR anomaly. As a result, the cities with a lower threshold tend 20 

to be more easily disrupted by a moderate or heavy rainstorm. For example, 21 

Xiangyang has a very low threshold value of 1.4 mm/h. In August 2017, there are six 22 

rainstorm events with peak rainfall intensity exceeding this threshold and they all 23 

caused anomalies in this city.  24 

However, even a rainstorm with its peak rainfall intensity below the threshold 25 

may also trigger an NLR anomaly. For example, quite a few NLR anomalies were 26 

found in Lanzhou, of which most rainstorms have its peak rainfall intensity below the 27 

threshold (6.6 mm/h). This is because a heavy rainstorm at around 24:00 failed to 28 

trigger an NLR anomaly as most people were sheltered at home and hence were not 29 

affected. However, this rainstorm is included in the process to calculate the peak 30 
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rainfall intensity and increase the threshold. As a result, rainstorms with their peak 1 

rainfall intensity below the threshold may also trigger anomalies, particularly in the 2 

cities with more heavy and violent rainstorms after late night and before dawn.  3 

The anomaly score is correlated with rainfall intensity for some cities (Fig. 7c). 4 

Specifically, three cities, i.e. Harbin, Jilin, and Haikou, show a statistically significant  5 

(p<0.05) positive linear relationship between the anomaly score and rainfall intensity. 6 

As the rainfall intensity increases, the anomaly scores of the three cities increase 7 

linearly. Furthermore, the slope coefficients of the correlations indicate how 8 

sensitive the rainfall intensity may trigger anomalies. The city Harbin has the steepest 9 

slope thus slightly increase in rainfall intensity would trigger anomalies more easily. 10 

By contrast, the gentlest slope indicates Haikou is a city where the residents, in terms 11 

of their LBS request, are not very sensitive to the increase of the rainfall intensity. 12 

Such diverse sensitivity may be essentially due to the different climatic conditions, 13 

infrastructure levels or other potential factors in these cities. The city Haikou is 14 

situated in a humid climate zone with average precipitation over 1600 mm per year, 15 

which is higher than the other two cities. However, Haikou has a higher drainpipe 16 

density (11.74 km-1) so that a more efficient drainage system than the other two 17 

(5.73 km-1 for Jilin and 7.44 km-1 for Haikou)1. As a result, impacts of rainstorms on 18 

the local residents in Haikou are less than those in the other two cities. 19 

 Around 31%, 23%, and 46% of the maximum anomaly scores were detected 20 

before, at the same time, and after the rainfall intensity reaches its peak (Fig. 7d). 21 

Specifically, 23%, 24%, and 20% of the anomaly score peaks simultaneously, within 1 22 

hour, and within 2 hours of the rainfall intensity peaks, respectively. About 46% of 23 

the anomaly score peaks after the rainfall intensity peaks, which is 50% more than 24 

the number of the cases that anomaly score peaks ahead of the rainfall intensity 25 

peak. As a result, we usually see the maximum positive anomalies (i.e. significant 26 

disturbance in city rhythm) after the rainfall intensity reached a maximum value. It is 27 

also possible for the anomaly to reach its peak before the peak of the rainfall 28 

 
1 The data are from the 2017 year book of the cities available at 
http://tongji.cnki.net/kns55/Navi/NaviDefault.aspx. 
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intensity if, for example, the cumulative rainfall is high enough to significantly impact 1 

the city. 2 

 3 

Figure 7. Correlation between peak rainfall intensity and anomaly score. 4 

 5 

5. Conclusions 6 

This study shows the potentials of the NLR data in reflecting city residents’ 7 

collective geo-tagged behaviors. First of all, the NLR was moderately correlated with 8 

the population of the cities. Secondly, the time series NLR data well corresponds to 9 

the regular diurnal rhythm in all eight cities, which is characterized by limited 10 

activities from the midnight to early morning and very active LBS requests from noon 11 

to the evening. Thirdly, the time series NLR also reflects the different lifestyles in the 12 

northern and southern China, showing southerners enjoy late night life more 13 

whereas the northerners start their days earlier in the morning.   14 

 The anomalies of the NLR data are well with that the rainstorms, especially the 15 

violent ones, were very likely to trigger positive NLR anomalies at city level. At the 16 

grid level, the anomalies in response to rainstorms show a significant increase in the 17 
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anomaly indices in terms of the total number, total residual, and mean density. The 1 

time series composite score derived from these three anomaly indices clearly shows 2 

how city residents respond to rainstorms in terms of their LBS requests. 3 

Rainstorms of the same magnitude may not trigger NLR anomalies in the same 4 

way in every city. Essentially, the peak rainfall intensity of the rainstorms seems to be 5 

the key and such a threshold is significantly different among different cities. As a 6 

result, high peak rainfall intensity tends to trigger flooding and subsequently 7 

anomalies in the NLR data. Furthermore, the peak rainfall intensity is well associated 8 

with the peak anomaly score, further indicating it is the key factor that can trigger 9 

rainstorm-induced NLR anomalies.   10 

 It is worthy to note that other events may also contribute to NLR anomalies. 11 

There are a couple of positive anomalies in the last week of August for almost all 12 

cities except Zhuhai. The last week of August is the school registration time for 13 

college students in China. It is reasonable to expect such a nation-wide event may 14 

trigger NLR anomalies as shown in this study. However, some college cities may 15 

postpone the registration time and Zhuhai is one of them due to the significant 16 

damages caused by Typhoon Hato right before the registration week.  17 

 We are also aware of the limitation of the Tencent location request dataset. The 18 

dataset is generated by more than one billion monthly active users rather than all 19 

dwellers in a city. The collective geo-tagged human activities inferred from the 20 

Tencent dataset may underestimate the rainstorms’ impacts upon infrequent users, 21 

particular the older and children. Our future studies would strive to integrate 22 

multi-source geospatial datasets to address the limitation and further explore how 23 

human responses to various weather events. 24 
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