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Abstract 10 

This study explored city residents’ collective geo-tagged behaviors in response 11 

to rainstorms using the number of location request (NLR) data generated by 12 

smartphone users. We examined the rainstorms, flooding, NLR anomalies, as well as 13 

the associations among them in eight selected cities across the mainland China. The 14 

time series NLR clearly reflects cities’ general diurnal rhythm and the total NLR is 15 

moderately correlated with the total city population. Anomalies of NLR were 16 

identified at both the city and grid scale using the S-H-ESD method. Analysis results 17 

manifested that the NLR anomalies at the city and grid levels are well associated with 18 

rainstorms, indicating city residents request more location-based services (e.g. map 19 

navigation, car hailing, food delivery, etc.) when there is a rainstorm. However, 20 

sensitivity of the city residents’ collective geo-tagged behaviors in response to 21 

rainstorms varies in different cities as shown by different peak rainfall intensity 22 

thresholds. Significant high peak rainfall intensity tends to trigger city flooding, which 23 

lead to increased location-based requests as shown by positive anomalies on the 24 

time series NLR.  25 
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1 Introduction 30 

Global climate change is making rainfall events heavier and more frequent in 31 

many areas. Powerful rainstorms may flood a city once the rainfall exceeds the 32 

discharge capacity of a city’s drainage system. Inundation of cities’ critical 33 

infrastructures and populated communities tends to disrupt urban residents’ social 34 

and economic activities and even cause dramatic life and property losses 35 

(Papagiannaki et al. 2013; Spitalar et al. 2014; Liao et al. 2019). Floods nowadays are 36 

the most common type of natural disaster, which poses a serious threat to the safety 37 

of life and property in most countries (Alexander et al. 2006; Min et al. 2011; Hu et al. 38 

2018). According to the released survey in the Bulletin of Flood and Drought 39 
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Disasters in China, more than 104 cities were struck by floods in 2017, affecting up to 1 

2.18 million population and causing over 2.46 billion US dollars direct economic 2 

losses (China National Climate Center 2017). 3 

The impacts of a rainstorm are usually evaluated with respect to the interactions 4 

among rainfall intensity, the population exposure, the urban vulnerability, and the 5 

society coping capacity (Spitalar et al. 2014; Papagiannaki et al. 2017). The rainfall 6 

intensity that may trigger flood disasters has been extensively investigated and 7 

many studies have examined the relationship between rainfall intensities and social 8 

responses (Ruin et al. 2014; Papagiannaki et al. 2015; Papagiannaki et al. 2017). 9 

Nowadays the peak rainfall intensity is widely used to determine the critical rainfall 10 

threshold for issuing flash flood warnings (Cannon et al. 2007; Diakakis 2012; Miao 11 

et al. 2016).  12 

The population exposure refers to the spatial domain of population and 13 

properties that would be affected by a rainfall hazard (Ruin et al. 2008). Gradual 14 

increase in the proportion of population living in urban areas due to urbanization 15 

makes more people exposed and vulnerable to urban flash floods, posing great 16 

challenge to flood risk reduction (Liao et al. 2019). Reduction of vulnerability 17 

therefore becomes critical in urban disaster mitigation. Vulnerability is usually 18 

assessed by comprehensively considering related physical, social, and 19 

environmental factors (Kubal et al. 2009; Adelekan 2011; Zhou et al. 2019), and 20 

their dynamic characteristics across space and time (Terti et al. 2015). 21 

Coping capacity reflects the ability of a society to handle adverse disaster 22 

conditions and it is one of the most important things to consider in disaster 23 

mitigation (UNISDR 2015). The coping capacity is usually evaluated by examining the 24 

human behaviors in response to disasters, which are mainly collected by 25 

post-disaster field investigation and questionnaires (Taylor et al. 2015). Such 26 

conventional approaches only provide limited samples that may not be able to fully 27 

and timely reflect disaster-induced human behaviors. Recently, researchers have 28 

learned the advantages of using unconventional data sets such as insurance claims 29 

(Barberia et al. 2014), newspapers (Llasat et al. 2009), and emergency operations 30 

and calls (Papagiannaki et al. 2015; Papagiannaki et al. 2017) to quantify the coping 31 

capacity.  32 

The growing use of smartphones and location-based services (LBS) in recent 33 

years has generated massive geospatial data, which could be used to infer the 34 

collective geo-tagged human activities. The geospatial data thus provides a new 35 

perspective to study normal urban rhythm in regular days (Ratti et al. 2006; Ma et al. 36 

2019) and abnormal human behaviors in response to emergencies (Goodchild & 37 

Glennon 2010; Wang & Taylor 2014; Kryvasheyeu et al. 2016). Bagrow et al. (2011) 38 
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found the number of phone calls spiked during earthquake, blackout, and storm 1 

emergencies. Dobra et al. (2015) explored the spatiotemporal variations in the 2 

anomaly patterns caused by different emergencies. Gundogdu et al. (2016) reported 3 

that it is possible to identify the anomalies inflicted by emergencies or 4 

non-emergency events from mobile phone data using a stochastic method. In 5 

addition to the afore-mentioned applications, more studies are needed to explore 6 

the full potential of the mobile phone data in terms of revealing human collective 7 

behaviors, particularly in response to hazards and emergencies. 8 

This study explored the urban anomalies and their variations in response to 9 

rainstorms using the NLR requests from smartphone users. We selected eight 10 

representative cities in the mainland China to examine how urban residents response 11 

to typical summer rainstorms in different regions. The anomalies of LBS requests 12 

caused by rainstorms were identified using a time series decomposition method and 13 

then described by multiple indices, which are used to study how rainstorms affect 14 

geo-tagged human behaviors collectively. The rest of the paper is organized as 15 

follows. Section 2 introduces the selected cities and the smartphone NLR dataset. 16 

Section 3 presents the anomaly detection and description methods. Section 4 17 

provides the analysis results including rainfall statistics, normal rhythms, and 18 

rainstorm-triggered anomalies in the selected cities. Section 5 concludes the study 19 

and discusses the future work. 20 

 21 

2 Materials 22 

2.1 Study area 23 

We selected eight representative cities across the mainland China for this study 24 

(Fig. 1). Two cities were selected from each region except the northwestern and 25 

southwestern China (Table 1). The eight cities vary significantly with respect to their 26 

total population, footprint areas, and urbanization rate. In this study, the footprint of 27 

a city is composed of the grids that have an hourly number of location requests (NLR) 28 

no less than the median of the daily NLR time series of that grid over the whole 29 

month, i.e., the grids with at least one NLR every hour in average.  30 

Haikou and Zhuhai are located in southern China which has mean annual 31 

precipitation between 1600 mm and 3000 mm. Among the eight cities, Zhuhai is the 32 

least populated city but with the highest urbanization rate. In central China, we 33 

selected Hefei and Xiangyang, which have mean annual precipitation between 800 34 

mm and 1600 mm. Two cities, Lanzhou and Hengshui, were selected from a 35 

semi-humid region in northern China with mean annual precipitation between 400 36 

mm and 800 mm. Hengshui has the largest footprint area but the least urbanization 37 



 4 

rate among the cities. Harbin and Jilin are located in the Northeastern China. The 1 

mean annual precipitation of Harbin and Jilin ranges from 400 mm to 800 mm and 2 

between 800 mm and 1600 mm, respectively. Harbin is the most populated among 3 

the eight cities. 4 

 5 
Figure 1 A map showing the geographic locations, annual precipitation, and 6 
footprints of the eight cities in this study. 7 
 8 
Table 1 Statistics of the cities 9 

Region City Population 
(104) 

Footprint area 
(km2) 

Urbanization 
rate (%) 

Southern China 
Haikou 227.21 625 78.21 
Zhuhai 176.54 567 89.37 

     

Central China 
Hefei 796.50 1927 73.75 
Xiangyang 565.40 1817 59.65 

     

Northern China 
Lanzhou 372.96 1219 81.02 
Hengshui 446.04 2997 50.60 

     

Northeastern 
China 

Harbin 1092.90 2083 64.50 
Jilin 415.35 704 52.80 

 10 
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2.2 Data collection 1 

The smartphone location data was obtained from the Tencent big data portal 2 

(https://heat.qq.com/). The portal provides location request records of the global 3 

smartphone users via the Tencent Map API. A location request record is generated 4 

when a smartphone user requests any LBS, which include but are not limited to 5 

navigation, car hailing, food and merchandise delivery, or social media check-ins. 6 

Table 2 lists part of the LBS applications that collect user’s location requests. The 7 

portal releases the number of location requests per 0.01×0.01 regular grid for every 8 

4-5 minutes. Comparing with other Chinese social media platforms, Tencent is the 9 

most popular one with the largest social community, which reported to have nearly 10 

1.1 billion monthly active users for 2018 11 

(https://www.tencent.com/en-us/company.html). Ma (2019) compared the NLR 12 

dataset with visitor numbers in a few places and confirmed that the NLR data is a 13 

good proxy for investigating dynamic population changes. We collected the NLR data 14 

of the grids within the administrative boundaries of the eight cities from August 1 to 15 

31, 2017.  16 

This study used the Version 05B GPM/IMERG 30-minute precipitation dataset 17 

(Huffman et al. 2018), which has a spatial resolution of 0.1×0.1 degrees. This dataset 18 

has been evaluated and widely used (Wang et al. 2017; Zhao et al. 2018; Su et al. 19 

2018). The news reports about the flooding events in the eight cities were mainly 20 

collected from the Chinese mainstream online media, including Xinhuanet, Ecns.cn, 21 

Sohu, etc. 22 

Table 2. Common smartphone applications using location-based services 23 

Application Type LBS use case 

WeChat Mobile messaging app Share location with friends 

Mobile QQ Mobile messaging app Share location with friends 

QQ Browser 
Mobile web browser 
app 

Push notifications of local news and 
weather 

Qzone 
Social network 
platform 

Post geo-tagged microblogs 

https://heat.qq.com/
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QQ Music Mobile music app Listen to music while running 

Tencent Video Mobile video app Upload geo-tagged videos 

Tencent News Mobile news app Push notifications of local news 

JingDong 
(JOYBUY) 

Mobile e-commerce 
platform 

Location-based product recommendation 

DiDi 
Mobile transportation 
platform 

Location-based car hailing 

Meituan 
Waimai 

Mobile on-demand 
delivery app 

Location-based restaurant 
recommendation 

Dianping 
Mobile review and 
rating app 

Location-based recommendation of 
restaurants, hotels, shops, etc. 

Wangzhe 
Rongyao 

Mobile game Interact with nearby players 

 1 
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3 Methods 3 

3.1 Time series anomaly detection 4 

The smartphone location request record can be represented by a series of 5 

spatial points: {(xi,yi,Tsi)}, i=1,2,…,n. Each point contains its geographic coordinates (x, 6 

y) and a time (T) when the LBS is requested. The NLR was then aggregated to time 7 

series per grid or per city as illustrated below. 8 

At the city level, a time series hourly NLR was established by adding up all 9 

location requests of the grids within the footprint area of that city. The magnitudes of 10 

the NLR in different cities vary significantly due to the different numbers of smart 11 

phone users. To make the NLR in different cities comparable, we normalized the NLR 12 

using the median-interquartile normalization method, which is more robust to 13 
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anomalies than other common approaches using sample mean and standard 1 

deviation (Geller et al. 2003). 2 

We employed the S-H-ESD method (Vallis et al. 2014) to detect anomalies from 3 

the time series NLR, which can be represented by the following additive model 4 

Ts=T+S+R                                 (1) 5 

where T, S, and R denote the trend, seasonality and residual components in the time 6 

series data, respectively. The S-H-ESD method assumes that the trend and the 7 

seasonality would not be significantly disrupted by rapid-evolving events that last for 8 

only a few hours. Two major steps are involved in the method. First, it uses the 9 

piecewise median method to fit and remove the long-term trend and then the STL to 10 

remove seasonality (Cleveland et al. 1990). Using the STL to remove the long-term 11 

trend would introduce artificial anomalies (Vallis et al. 2014). In this study, the 12 

underlying trend in the time series NLR is approached using a piecewise combination 13 

of the biweekly medians, which show little changes over the whole time series. 14 

In the second step, the S-H-ESD method employs the generalized Extreme 15 

Studentized Deviate (GESD) statistic (Rosner 1975) to identify the significant 16 

anomalies in the residuals. The GESD calculates the statistic (G) based on the mean ( ) 17 

and the standard deviation (s) of the observations: 18 

 (2) 19 

Given the upper bound of u suspected anomalies, the GESD performs u separate 20 

tests. In each test, the GESD re-computes the statistic G after removing the 21 

observation rj that maximizes  and then compares G with the critical value λ 22 

as defined below: 23 

 (3) 24 

where k denotes the number of the observations in the time series after eliminating 25 

a suspected anomaly in the last run, and  represents the pth percentile of a t 26 

distribution with a degree of freedom d. In this study, we set the significance level a 27 

as 0.05 and the number of anomalies no more than 25% of the total observations. 28 

Each test identifies one anomaly in the residuals when G > λ. The identified anomaly 29 

is either a positive or negative, depending upon whether the residual is greater or 30 

smaller than 0, respectively. 31 



 8 

 1 

3.2 Anomaly measures and scores 2 

In this study, an individual anomaly is represented with a vector,  3 

v=(x, y, t, obs, res)                             (4) 4 

where x and y denote the coordinates of the grid centroid, t denotes the observation 5 

time, obs and res denote the observation and the residual (R in equation 1) in the 6 

time series. This study uses an anomaly’s absolute residual to describe its unusual 7 

deviation from its expectation. 8 

A rainstorm disaster, once significantly impacts the cities, usually can trigger an 9 

outbreak of NLR anomalies in multiple places across the city. To collectively 10 

characterize the abnormal human responses, this study defines three indices: the 11 

total number (Nt), the total residual (Rt), and the mean density (Dt) of the positive or 12 

negative anomalies. The mean density is defined as follows: 13 

 (5) 14 

where Bi denotes the number of neighborhood anomalies within a Manhattan 15 
distance of a 5-grid (~5 km) radius of the ith anomaly. The radius is large enough to 16 
cover most urban facilities nearby the anomaly. 17 

An anomaly score is then defined based on the afore-mentioned indices to 18 

evaluate the city residents’ responses to a rainstorm event. First, we surveyed the 19 

hourly changes of the indices and calculated the quartiles (Q1, Q2, Q3) and 20 

interquartile range (IQR) of each index for every hour every day. The score of an 21 

index is defined by: 22 

 (6) 23 

where Vt represents one of the three indices at time t. According to Tukey’s fences 24 
(Tukey 1977), the score is considered an outlier if its absolute value is greater than 25 
1.5 or an extreme if it is greater than 3. The final anomaly score is the mean of the 26 
three index scores. 27 
 28 

3.3 Characterization of a rainfall event 29 

In this study, we examined the city residents’ responses to the rainfall events in 30 

August 2017. The national average precipitation of this month is 124.6 mm, which is 31 

the highest in 2017 and 21.3% more than the August average precipitation in 32 

previous years.  33 

We defined a rainfall event as a precipitation process that lasts for at least two 34 
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hours and with no rain preceding it for at least one hour. The severity of a rainfall 1 

event is described by its duration, accumulated precipitation, and peak rainfall 2 

intensity. The duration refers to how long a rainfall event lasts, and the accumulated 3 

precipitation is the total precipitation received during a rainfall event. The peak 4 

rainfall intensity (Id) is widely used to estimate the possible rainfall intensity 5 

threshold that triggers city (Cannon et al. 2007; Diakakis 2012) and is defined as 6 

below:  7 

 (7) 8 

where Pi denotes the precipitation during the ith time interval, N denotes the total 9 

number of the time intervals in a rainfall time series, and d denotes the width of the 10 

moving time window that was used to search for the maximum accumulated 11 

precipitation in a rainfall event. Based on the peak rainfall intensity, the August 12 

rainfall events in the eight cities can be categorized into moderate rainstorm (0.5 13 

mm/h < I1 ≤ 4 mm/h), heavy rainstorm (4 mm/h < I1 ≤ 8 mm/h), and violent 14 

rainstorm (I1 ≥ 8 mm/h). 15 

For calculation purpose, we downscaled the precipitation data to the same 16 

spatial resolution as that of the NLR using the nearest-neighbor interpolation method. 17 

At the city level, the rainfall of a city is defined as the total of the half-hour TRMM 18 

precipitation within the human footprint. At the grid level, the rainfall of each grid 19 

refers to the total precipitation received by that grid within a certain time period. 20 

 21 

4 Results 22 

4.1 Rainfall characteristics and peak rainfall intensity thresholds 23 

The eight cities could be categorized into two groups in terms of the total 24 

precipitation amount in August 2017 (Fig. 2a). The first group includes Haikou, Zhuhai, 25 

and Hefei, with total precipitation more than 400 mm. The summer monsoon brings 26 

plenty of water to the two coastal cities (i.e. Haikou and Zhuhai). The Typhoon Hato, 27 

when it made landfall on August 23, further dumped 68- and 108-mm water to 28 

Hiakou and Zhuhai, respectively. By contrast, the inland city Hefei, received 47.6% 29 

more precipitation in 2017 than the average mainly due to a few unusual rainstorms 30 

in August 2017 (Hydrology and Water Resource Bureau of Hefei 2018) 31 

The second group includes all the other cities, which have less than 400 mm 32 

precipitation in August 2017. The city Lanzhou is located in the dry northwestern 33 

China and has the least precipitation of 250 mm. The two inland cities, Xiangyang and 34 

Hengshui both have slightly higher precipitation of 300 mm. The precipitation of the 35 

two northeastern cities, Harbin and Jilin, ranges between 320 and 350 mm and is 36 
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mainly brought in by the northwestern vortexes. 1 

There are at least 15 rainstorms and two flooding events in each city. The city 2 

Haikou, Lanzhou, and Harbin witnessed more than 20 rainstorms and about 1/4 out 3 

of them caused serious flooding problems. The number of rainstorms in the other 4 

cities ranges from 15 to 20 and about two to four out of them caused flooding 5 

problems in the cities. 6 

We identified the peak rainfall intensity threshold value that likely triggers city 7 

flooding using the method developed by Cannon et al. (2008) and Diakakis (2012). 8 

The method plots peak rainfall intensity of different time windows against the 9 

corresponding rainfall duration. The flood-triggering threshold is defined as the 10 

upper limit of the peak rainfall intensity that tends to lead to urban flooding but 11 

actually not. As shown in Fig. 2b, for the rainfall thresholds calculated based on 0.5-, 12 

1-, 2-, and 3-hour time window, the city ranking shows no change with an order of 13 

Haikou, Jilin, Hengshui, Zhuhai, Hefei, Lanzhou, Harbin, and Xiangyang. The ranking 14 

shows some fluctuations when the flooding-triggering rainfall threshold values were 15 

calculated with a more than 3-hour time window. However, Haikou and Harbin are 16 

always the top two cities whereas Xiangyang is the last one on the ranking list. It is 17 

worthy to note that a rainstorm with a peak rainfall intensity over the threshold 5 18 

mm/h would definitely trigger floods in Xiangyang. However, in Haikou, such a 19 

threshold value is 30 mm/h. In other words, city flooding would occur in Haikou 20 

when it is hit by a rainstorm with peak rainfall intensity over 30mm/h. In general, the 21 

difference between the threshold values among these cities reduces with a longer 22 

time window, indicating that the rainfall in a shorter time window is more critical to 23 

evaluate whether a city is prone to flooding. 24 

 25 

Figure 2. Total August precipitation and frequency of rainfall and city flooding events 26 
(a). Variations in peak rainfall intensity (circles) and the flooding-triggering 27 
precipitation threshold values (lines) that are derived from time windows ranging 28 
from 0.5 to 24 hours (b).  29 
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 1 

4.2 Normal rhythm of city 2 

The NLR records can serve as a proxy of the city residents’ normal daily routine. 3 

The normalized NLR show the eight cities have a similar diurnal rhythm (Fig. 3a). The 4 

normalized NLR median climbs from a minimum at around 4:00 and to a peak right at 5 

12:00. It starts to drop slightly and then peaks again at around 20:00. This general 6 

pattern reflects the smartphone usage patterns of the city residents. Phone usage 7 

starts to drop after the midnight when most residents start to rest. It reaches its first 8 

peak during the lunch time as residents may request more LBS to find a place to eat. 9 

After lunch time, phone usage remains at a high plateau, probably due to more LBS 10 

requests for business purposes. Phone usage reaches the highest peak of the whole 11 

day right after the normal work hours, indicating a significant increased need for the 12 

LBS such as hailing nearby taxis to socialize with friends, go back home, or sending 13 

geo-tagged posts for socializing.  14 

The general diurnal pattern was superposed with subtle short-term NLR 15 

variations. The NLR in the southern cities peaks and hits the bottom later at night and 16 

before dawn, respectively, than that of the northern cities. This is very likely due to 17 

the different lifestyles between the northern and southern residents in response to 18 

the economic activities and day length. It is well-known that the southern China is 19 

more active in economic and social activities and the southerners enjoy the night 20 

activities more (Ma et al. 2019). By contrast, the northerners tend to end their 21 

nightlife earlier and also become active earlier as the day breaks earlier in the north.  22 

The total NLR is moderately correlated with the population of these cities (Fig. 23 

3b). The 0.63 Pearson correlation coefficient (with a p value of 0.046) indicates a 24 

statistically significant positive relationship between the normalized NLR and the 25 

population. As a result, we believe the NLR data could reflect the collective 26 

geo-tagged behaviors of the city residents as a whole and consequently it could serve 27 

as a proxy of the human responses to different environmental and social events. 28 

 29 
Figure 3. The diurnal variation patterns of the NLR in the eight cities (a) and a positive 30 
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correlation between the NLR and the total number of residents (b). 1 
 2 

4.3 Urban anomalies during rainstorms 3 

4.3.1 City-scale analysis 4 

There are more positive than negative anomalies in the August time series 5 

hourly NLR and most positive anomalies were found in pair with precipitation spikes 6 

(Fig. 4). For example, two significant precipitation spikes in Harbin in the afternoon of 7 

August 2nd and 3rd were closely associated with positive NLR anomalies. Few NLR 8 

negative anomalies were identified in the eight cities except Zhuhai. This city was 9 

significantly affected by Typhoon Hato, which brings huge amount of precipitation 10 

and leads to a negative anomaly since the Afternoon of August 23rd in Zhuhai. Such a 11 

significant negative anomaly could be attributed to serious communication 12 

interruption or damages caused by the typhoon.  13 

It is worthy to note that both positive and negative anomalies were also 14 

identified when there is no rain in the cities. For example, two positive anomalies 15 

were identified around August 28th in Harbin when there is no rain at all. The no-rain 16 

anomalies must be triggered by other major events in the cities. However, at this 17 

moment it is not easy to trace what local events may trigger such anomalies.  18 

 It is very interesting to notice that a couple of no-rain positive anomalies were 19 

identified in the last week of August for almost all eight selected cities except Zhuhai. 20 

These positive anomalies were obviously not associated with any special rainstorm 21 

events. Instead, they are more likely to be associated with sort of national-wide 22 

events, such as the college students’ back to school and move-in events, which are 23 

mainly scheduled in the last week of August every year in China. Such positive 24 

anomalies were not found in Zhuhai, of which the 2017 back to school and move-in 25 

events was postponed to the first week of October due to the significant damages 26 

caused by Typhoon Hato. However, further studies, such as of the NLR of other cities 27 

in China, are needed to consolidate this argument. 28 
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 1 
Figure 4. The time series NLR and rain events during August 2017. Positive and 2 
negative anomalies were shown in orange and green colors, respectively. The light 3 
gray columns show the periods when NLR data is missing. 4 

 5 

We further quantitatively examined the association between rainfall events and 6 

the NLR anomalies. Table 3 lists the Rpos and Rneg, which are the ratios of the positive 7 

and negative anomalies corresponding to the four scenarios (no rains, moderate, 8 

heavy and violent rainstorm events) to the total number of anomalies identified over 9 

the whole time series, respectively. As shown in Table 3, in total we identified 27, 19, 10 

78, and 166 violent, heavy, moderate, and no rainstorm events in the eight cities, 11 

respectively. Under different scenarios, the Rpos is always higher than Rneg except the 12 

no rain scenario, in which there is no significant difference between these two ratios. 13 

The rainstorm-related Rpos increases from 0.22 to 0.70 as the rainstorms level up 14 

from moderate to violent as compared to a no-rain Rpos of 0.12. The rain-related or 15 
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no-rain Rneg is no more than 0.22. The Rpos is much higher than Rneg when the cities 1 

are affected by stronger rainfall events. For example, when the cities are affected by 2 

violent storms, the Rpos and Rneg are 0.70 and 0.22 respectively. By contrast, the Rpos 3 

and Rneg are 0.22 and 0.06, respectively when the cities are affected by moderate 4 

rainstorms. It is very likely that, when there are severe rainstorms, people may send 5 

out more LBS requests in order to, for instance, search a route free of inundation 6 

spots and less congested roads, order delivery food, or post geo-tagged photos of the 7 

terrible moments.  8 

A lower Rpos of the heavy and moderate rainstorms may also be partly 9 

attributed to the effect of data aggregation at the city scale. It is very common that a 10 

rainstorm may influence only a part of the city and only lead to certain local positive 11 

anomalies. In such a case, increase of the NLR in a small number of grids may not 12 

result in significant changes of the NLR of the entire city and consequently no 13 

anomalies at the city level. Analysis at the grid level, as reported in the next section, 14 

would show how residents respond to the local rainstorm events. 15 

The difference between the Rpos and Rneg also varies for different cities. For 16 

example, the two violent rainstorms both trigger a positive anomaly in Xiangyang 17 

and Harbin. By contrast, the five violent rainstorms in Zhuhai lead to the same 18 

percent positive and negative anomalies. City Hefei is special. The same percent of 19 

positive and negative anomalies are triggered by the five violent storms. However, 20 

when Hefei is affected by the moderate and heavy rainstorms or even no rainfalls, 21 

there are slightly more negative than positive anomalies. 22 

 23 
Table 3. Numbers of different categories of rainstorms and the corresponding Rpos 24 
and Rneg. 25 
 26 

Cities No rainfall Rainstorms 
Moderate  Heavy  Violent  

N Rpos Rneg N Rpos Rneg N Rpos Rneg N Rpos Rneg 
Haikou 27 0.04 0.22 14 0.21 0.00 3 0.33 0.00 8 0.75 0.00 
Zhuhai 16 0.19 0.25 5 0.20 0.20 3 0.00 0.00 5 0.40 0.40 
Hefei 19 0.05 0.32 7 0.00 0.14 2 0.50 1.00 5 0.60 0.60 
Xiangyang 15 0.33 0.33 7 0.29 0.00 0 - - 2 1.00 0.00 
Lanzhou 29 0.07 0.10 17 0.24 0.06 5 0.20 0.20 0 - - 
Hengshui 19 0.00 0.21 11 0.18 0.09 2 0.00 0.00 2 0.50 0.00 
Harbin 21 0.24 0.10 7 0.14 0.14 3 1.00 0.00 2 1.00 0.00 
Jilin 20 0.15 0.15 10 0.40 0.00 1 1.00 0.00 3 1.00 0.33 
Overall 166 0.12 0.20 78 0.22 0.06 19 0.37 0.11 27 0.70 0.22 
 27 
4.3.2 Grid-scale analysis: anomaly indices 28 

The S-H-ESD method was also used to detect the NLR anomalies at the grid level. 29 

There are always more grids showing anomaly when the city was affected by a 30 
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rainstorm. Figure 5 provides an example to illustrate the grids with anomaly detected 1 

during a rainstorm and the same time period in another day without rainfall in Jilin 2 

and Haikou, respectively. Anomalies were identified in 56 grids in Jilin when it was hit 3 

by a rainstorm at 7am on August 3, 2017. By contrast, anomalies are observed in only 4 

10 grids during the same time period on August 6, 2017 when there is no rain at all. 5 

In Haikou, anomalies are found in 52 grids during a rainstorm and only 19 grids when 6 

there is no rain. 7 

 8 

Figure 5. Grid with negative and positive anomalies within the footprint areas of 9 

Haikou and Jilin. The contour lines show the precipitation. 10 

 11 

The total number, total residual, and mean density of these anomalies were 12 

then calculated (Fig. 6) for the cities when they were affected by flooding caused by a 13 

typical rainstorm event (Table 4). The three anomaly indices show similar diurnal 14 

variations as of the NLR diurnal rhythm and they all spiked to the level of an outlier 15 

or even to an extreme value when the city was significantly affected by flooding 16 
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issues.  1 

After the spikes, the anomaly indices usually bounce back to the same level 2 

before for almost all the cities except Zhuhai, indicating most cities return to their 3 

normal rhythms after the rainstorm interruption. However, Zhuhai was hit by the 4 

category-3 Typhoon Hato at around 12:50 on August 23. The typhoon brought 5 

intense rain, strong winds, and caused significant flooding issues and damages to the 6 

city infrastructures, causing a sharp decline and persistent negative anomalies after 7 

the landfall of Hato. It took more than 72 hours for the anomaly indices to bounce 8 

back to the same level before Hato (not shown in Fig. 6). 9 

 10 

Table 4. An exemplary flooding event in each of the cities. 11 

 12 

City 
Urban 
flood 
event 

Rainfall 
duration (h) 

Accumulated 
precipitation (mm) 

Half-hour peak 
rainfall intensity 
(mm/h) 

Haikou 8-4 15:00 10 117 77 
Zhuhai 8-23 12:50 23 108 32 
Hefei 8-25 17:00 13 72 25 
Xiangyang 8-7 18:00 30.5 140 34 
Lanzhou 8-12 21:00 9.5 14 5 
Hengshui 8-18 08:00 15 67 18 
Harbin 8-2 17:00 12.5 61 26 
Jilin 8-3 07:00 38.5 185 31 

 13 
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 1 

Figure 6. Intra-day variations in NLR, total residuals, mean density, and anomaly score 2 

within 24 hours of a typical flooding event in each of the cities. 3 

 4 

4.3.3 Grid-scale analysis: anomaly score and rainfall intensity 5 
 6 

Given the anomaly score is indicative of the unusual responses of residents to 7 

rainstorms, we further examined the relation between the anomaly score and the 8 

rainfalls in these cities during the August 2017.  9 
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The grid-level Rpos is much higher than the city-level counterpart with respect to 1 

all types of events (Fig. 7a). Such a difference is mainly due to the different analysis 2 

levels. We can easily identify the local anomalies per grid, which are more likely to be 3 

obliterated at the city level due to the data aggregation. At the grid level, the Rpos 4 

and Rneg also vary in response to the different levels of rainstorm events. All cities 5 

show a higher Rpos when they are affected by violent rainstorms (85%) than heavy 6 

rainstorms (68%), in comparison with the Rpos (56%) when the cities are not affected 7 

by any rainfall events. However, the Rpos of moderate rainstorms (45%) is less than 8 

the no-rain Rpos, likely suggesting that low-intensity rainfall events may not 9 

necessarily trigger NLR anomalies and other factors may contribute to the NLR 10 

anomalies at the grid level. 11 

How easily the rhythm of a city would be disrupted by a rainstorm is strongly 12 

related to the anomaly-triggering peak rainfall intensity threshold (Fig. 7b), which 13 

was calculated using the same the ideas in the methods developed by Cannon et al. 14 

(2008) and Diakakis (2012). We plotted the peak rainfall intensity with respect to 15 

whether there are anomalies or not for each city. The anomaly-triggering peak 16 

rainfall intensity is defined as the upper limit of the rainfall intensity that tends to 17 

lead to an NLR anomaly but actually not. 18 

Every rainstorm with its peak intensity higher than the threshold would 19 

definitely trigger an NLR anomaly. As a result, the cities with a lower threshold tend 20 

to be more easily disrupted by a moderate or heavy rainstorm. For example, 21 

Xiangyang has a very low threshold value of 1.4 mm/h. In August 2017, there are six 22 

rainstorm events with peak rainfall intensity exceeding this threshold and they all 23 

caused anomalies in this city.  24 

However, even a rainstorm with its peak rainfall intensity below the threshold 25 

may also trigger an NLR anomaly. For example, quite a few NLR anomalies were 26 

found in Lanzhou, of which most rainstorms have its peak rainfall intensity below the 27 

threshold (6.6 mm/h). This is because a heavy rainstorm at around 24:00 failed to 28 

trigger an NLR anomaly as most people were sheltered at home and hence were not 29 

affected. However, this rainstorm is included in the process to calculate the peak 30 
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rainfall intensity and increase the threshold. As a result, rainstorms with their peak 1 

rainfall intensity below the threshold may also trigger anomalies, particularly in the 2 

cities with more heavy and violent rainstorms after late night and before dawn.  3 

The anomaly score is correlated with rainfall intensity for some cities (Fig. 7c). 4 

Specifically, there are three cities, i.e. Harbin, Jilin, and Haikou, showing a positive 5 

linear relationship between the anomaly score and rainfall intensity. The p-values in 6 

the linear regression analysis are less than 0.05, suggesting the correlations are 7 

statistically significant. As the rainfall intensity increases, the anomaly scores of the 8 

three cities increase linearly. Furthermore, the slope coefficients of the correlations 9 

indicate how sensitive the rainfall intensity may trigger anomalies. The city Harbin 10 

has the steepest slope thus slightly increase in rainfall intensity would trigger 11 

anomalies more easily. By contrast, the gentlest slope indicates Haikou is a city where 12 

the residents, in terms of their LBS request, are not very sensitive to the increase of 13 

the rainfall intensity. Such diverse sensitivity may be essentially due to different 14 

climatic conditions, infrastructure levels or other potential factors in these cities. The 15 

city Haikou is situated in humid climate zone with average rainfall exceeding 1600 16 

mm per year, greater than the other two cities. Meanwhile, considering the 17 

drainpipe density, which is defined as the ratio of the total length of drainpipes to the 18 

built-up area of a city, we found Haikou also has higher drainpipe density (11.74 km-1) 19 

than the rest two cities (5.73 km-1 for Jilin and 7.44 km-1 for Haikou). So, although 20 

rainstorms frequently hit Haikou, their impacts on local residents could be much 21 

lessened by efficient drainage system. 22 

 Around 31%, 23%, and 46% of the maximum anomaly scores were detected 23 

before, at the same time, and after the rainfall intensity reaches its peak (Fig. 7d). 24 

Specifically, 23%, 24%, and 20% of the anomaly score peaks simultaneously, within 1 25 

hour, and within 2 hours of the rainfall intensity peaks, respectively. About 46% of 26 

the anomaly score peaks after the rainfall intensity peaks, which is 50% more than 27 

the number of the cases that anomaly score peaks ahead of the rainfall intensity 28 

peak. As a result, we usually see the maximum positive anomalies (i.e. significant 29 

disturbance in city rhythm) after the rainfall intensity reached a maximum value. It is 30 
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also possible for the anomaly to reach its peak before the peak of the rainfall 1 

intensity if, for example, the cumulative rainfall is high enough to significantly impact 2 

the city. 3 

 4 

Figure 7. Correlation between peak rainfall intensity and anomaly score. 5 

 6 

5. Conclusions 7 

This study shows the potentials of the NLR data in reflecting city residents’ 8 

collective geo-tagged behaviors. First of all, the NLR was moderately correlated with 9 

the population of the cities. Secondly, the time series NLR data well corresponds to 10 

the regular diurnal rhythm in all eight cities, which is characterized by limited 11 

activities from the midnight to early morning and very active LBS requests from noon 12 

to the evening. Thirdly, the time series NLR also reflects the different lifestyles in the 13 

northern and southern China, showing southerners enjoy late night life more 14 

whereas the northerners start their days earlier in the morning.   15 

 The anomalies of the NLR data are well with that the rainstorms, especially the 16 

violent ones, were very likely to trigger positive NLR anomalies at city level. At the 17 
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grid level, the anomalies in response to rainstorms show a significant increase in the 1 

anomaly indices in terms of the total number, total residual, and mean density. The 2 

time series composite score derived from these three anomaly indices clearly shows 3 

how city residents respond to rainstorms in terms of their LBS requests. 4 

Rainstorms of the same magnitude may not trigger NLR anomalies in the same 5 

way in every city. Essentially, the peak rainfall intensity of the rainstorms seems to be 6 

the key and such a threshold is significantly different among different cities. As a 7 

result, high peak rainfall intensity tends to trigger flooding and subsequently 8 

anomalies in the NLR data. Furthermore, the peak rainfall intensity is well associated 9 

with the peak anomaly score, further indicating it is the key factor that can trigger 10 

rainstorm-induced NLR anomalies.   11 

 It is worthy to note that other events may also contribute to NLR anomalies. 12 

There are a couple of positive anomalies in the last week of August for almost all 13 

cities except Zhuhai. The last week of August is the school registration time for 14 

college students in China. It is reasonable to expect such a nation-wide event may 15 

trigger NLR anomalies as shown in this study. However, some college cities may 16 

postpone the registration time and Zhuhai is one of them due to the significant 17 

damages caused by Typhoon Hato right before the registration week.  18 

 We are also aware of limitation of the Tencent location request dataset. 19 

Although the dataset is generated by more than one billion monthly active users, it 20 

still cannot fully represent the entire population of a city. The collective response 21 

analysis based on the location requests consequently may underestimate rainstorm 22 

impacts upon infrequent users, particular the older and children. Future studies will 23 

combine multi-source geospatial datasets to address the limitation and further 24 

explore human responses to various weather events. 25 
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