

1. Reply to the reviewer 1#

We are very grateful to this referee comments, and we have carefully read and considered the referee's comments, and these comments are important for improving the quality of this manuscript. Based on these comments, we have made carefully modification and proofreading on the original manuscript, the detail modifications are mainly for the chapter - Abstract and Introduction, which have been reconstructed and rewrote, and description of the Wobaoshi Landslide's geological structure and characteristics have been modified and reconstructed, and language, grammar and professional terms in English also have been improved.

Please see the detailed revision, and we carefully proof-read the manuscript to minimize typographical, grammatical, and bibliographical errors, and the modified parts are marked in red in the revised manuscript.

Thank you very much for your suggestion and consideration, and we look forward to hearing from you.

Best regards,
Yimin Liu, Chenghu Wang and Pu wang.

Detailed revision for comments of reviewer 1#

1. *Language, in general is not good and some sentences are unclear. Some professional terms are incorrect. (comment 1)*

Modification:

For the unclear parts and unprofessional terms in the manuscript, we have made serious changes in English expression to ensure clearly presented, and proofreading also has been done, and the revised changes are in red in the manuscript.

For instance, “overall occurrence of the rock formation” has changed to “overall attitude of rockbed” in line 131, “planar graph” has changed to “topographic map” in Fig. 3 in line 136, “gage” has changed to “gauge” in line 200, 202, 204 and 205, “long-period” has changed to “long-term”, “heavy rain” has changed to “periodic rain”, “rainy season” has changed to “monsoon”, “mechanical” has changed to “geomechanical”, “field exploration” has changed to “field investigation”, “starting” has changed to “initiation”, “theoretical” has changed to “theoretical” in the manuscript, and we have spelled all abbreviations and acronyms at their first mention in the main text, such as enhanced thematic mapper called ETM+, and digital elevation model called DEM in line 67 and 68. Thus, these descriptions will be more accurate and professional than before.

2. *Introduction, there is a little more information (what, where, why) and presentation of the main aim of the paper. Does the landslide threaten something? Why it is important to be studied? (comment 2)*

Modification:

This comment is very important for the paper, and the presentation of the main aim in original manuscript is lack of refinement and detailed narrative. Therefore, we modify and supplement the purpose and importance of this manuscript, firstly, the occurrence of plate-shaped translational landslides is often unexpected and covert; secondly, the field investigation and monitoring data for this kind of landslide is often absent, and the research on translational landslide lacks monitoring engineering and measured data on landslide physical parameters. Thus, demonstrating and validating the deformation and failure mode of the translational landslide in the theoretical analysis is difficult.

As shown observation point b and c in Fig. 2, the Wobaoshi landslide seriously threaten residential houses and highways, the houses had cracked and highways had uplifted, so this landslides seriously threatens the safety of people's property and transportation, thus it is necessary to research on it. This supplementary part is from line 181 to line 183. We added a photo of the house cracking in observation point b of Figure 2, and this photo was taken in a field investigation in the Wobaoshi landslide.

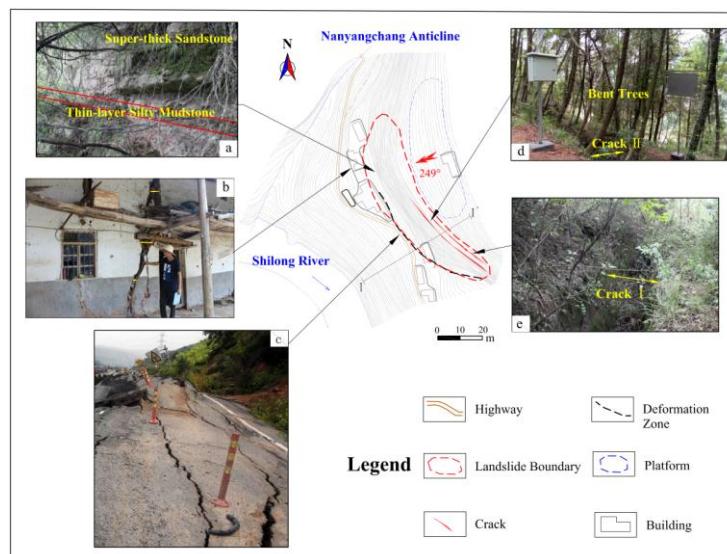


Fig. 2 Topographic map of the Wobaoshi landslide and photographs of observation points: (a) exposed bedrock at the front edge; (b) the houses had cracked at the front edge (c) the roadbed is pushed uplifted at the front edge; (d) crack II and bent trees; and (e) crack I.

Additionally, detail description and conclusion of characteristics and failure mode of the landslide in chapter – Introduction, have been transferred to the chapter – Results.

3. In the Landslide characteristics the geological structure is not clearly presented. Monitoring results and numerical modeling results are clearly presented (graphs, models). (comment 3)

Modification:

In origin manuscript, the Section 1 “Landslide characteristics” is not clearly presented like the comment said. Thus we reconstruct the Section 1 and especially make change on the forming conditions, especially the engineering geological conditions of this landslide. At the same time, some geological terms have been

corrected. Through the modification, we feel that geological structure and characteristics of the Wobaoshi landslide will be more clearly and accurate than the origin vision.

4. *Discussion is clearly written. The system of long-term gradual opening of the cracks and short-term opening and closing of cracks (blocks tilting) (very characteristic on the graphs) could be described more in detail. (comment 4)*

Modification:

The system of long-term cracks opening and short-term cracks closing is described in detail in Section 2.2 “Monitoring Data Analysis”, and the Section 4.1 “Deformation and Failure Mode Exploration” in discussion, is refined by the landslide monitoring data analysis in Section 2.2. And we have increased the relationship between the “Monitoring Data Analysis” and “Deformation and Failure Mode Exploration” in Section 4.1.

5. *Any possible mitigation measures or additional monitoring suggested? (comment 5)*

Explanation and modification:

As shown in Section 4.3, the manuscript proposes the following suitable monitoring methods referring to the plate-shaped translational landslide, such as long-period and multiple parameters monitoring, and additional monitoring suggestion is the inclination measuring device for plate girders, and this monitoring method in next working plan will be effective and suitable for this type of landslide.

In origin manuscript, the optimization monitoring methods may not be very clear, so we have highlighted the new method suggested in the next step of landslide monitoring, therefore, it is beneficial to in-depth exploration of the deformation and failure mode of the landslide and it will improve the success rate of early warning.

2. Reply to the reviewer 2# (professor Darve)

Dear professor Darve:

We are very grateful to receive your referee comments (RC) again. As you said in short comments (AC), this manuscript needs to be modified and improved in two main aspects, the first is to build the geomechanical model with more comments about the limits of the equilibrium method in Section 3.1, on the other hand is to add more details about my FEM modeling in Section 3.2. After careful discussion by author and co-authors, we found that these comments are very important for improving the quality of this manuscript.

With your help and comments, especially FEM computations with Mohr Coulomb criterion and FEM computations with the second order work criterion, we realized that the geomechanical model of landslide is relatively simple, which is a purely static method, and it ignores the influence of strain history. Moreover, in the numerical simulation calculation, the boundary conditions are set relatively simple, and the working conditions considered are also less than the actual situation. And we want to use the DEM to establish the landslide model in next research, and discuss the influence of pore water pressure on the sliding body sliding and soil damage, and compare it with the existing model. These shortcomings in this manuscript will be improved in future research.

Please see the detailed revision, and we carefully proof-read the manuscript to minimize typographical, grammatical, and bibliographical errors, and the modified parts are marked in red in the revised manuscript in supplement online.

Thank you very much for your suggestion and consideration, and we look forward to get your constructive advice.

Best regards,
Yimin Liu, Guiyun Gao and Chenghu Wang.

Detailed revision for comments of reviewer 2#

1. *To add in the paper some comments about the limits of the equilibrium method. (comment 1)*

Modification:

With the help of references about limit equilibrium method and instabilities in geomaterials, we add the following supplement in Section 3.1 from line 279 to 286.

According to characteristics of the Wobaoshi landslide in Section 1.2, when the geomechanical model is established, the cover layer is neglected, and the static geomechanical model of the plate-shaped rock sliding body is established based on the limit equilibrium method. The basic characteristic of the limit equilibrium method

is that the Mohr-Coulomb failure criterion of the soil in static equilibrium conditions is considered, that is, the problem's solution is solved by analyzing the destruction of the soil's balance. And soli elastic-perfectly plastic model was chosen, which obey the Mohr-Coulomb failure criterion and associated flow rules (Darve et al., 2004; Labuz et al., 2015).

2. *To give more details about your FEM modeling in the present state of your paper. (comment 2)*

Modification:

This comment is very important for the paper, and the FEM modeling is lack of detailed description, we add the following supplement in Section 3.2 from line 355 to 363.

The position of the right side of the landslide about 30m from the foot of the slope is selected as the right boundary of the model; the lower boundary is setted at the elevation of 0 m; the left boundary is located inside the mountain, about 30m away from the plate girder I. The element type adopts a plane strain quadrilateral-triangle mixing element, and the whole model is divided into 13775 elements and 14026 nodes. Here we constrain the vertical and horizontal displacement of its bottom boundary, and the left and right boundary conditions are set to constrain the horizontal displacement. The model uses steady-state seepage calculation, and the water levels at the left and right boundaries were set to 342 and 275 m, respectively. The typical pore-water-level data in the crack I and crack II presented in Table 3 were introduced into the finite element model, and were selected for a typical change period presented in Table 5.

Table 5 Loading steps of the water level in Crack I and II in FEM model

Loading Steps	Crack I	Crack II
0	314.50 m	311.00 m
1	316.00 m	313.00 m
2	317.50 m	315.00 m
3	316.00 m	313.00 m
4	314.50 m	311.00 m

3. *The paper chose a so low friction angle of 11.2 °for clay –what seems unrealistic. (comment 3)*

Modification:

It is very interesting for the value of friction angle, and it seems too low and unrealistic, so we add the explanation and discussion in Section 4.2 from line 445 to 453.

The internal friction angle, $\theta = 11.2^\circ$, is so low for clay, which seems unrealistic. However, the angle θ is obtained by triaxial compression tests of the core, which is taken from the sand-mudstone contact surface in sliding surface, and the internal friction angle $\theta = 11.2^\circ$ (Chen et al., 2015). One of the reasons may be that the clay layer is severely weathered, so its internal friction angle is small. In general, the

dilatancy effect obtained by the associated flow law is much larger than the actual observation, especially in the case of lateral infinite (Tschuchnigg et al., 2015a). However, for slope stability analysis, lateral infinite is not considered in most cases, and the dilatancy effect is not significant (Griffiths & Lane, 1999). Therefore, it is reasonable to set the dilatancy angle to be equal to the internal friction angle.

References:

Chen L., Liu Y., Feng X.: The investigation report on remediation project of Wobaoshi landslide, Sanhui Town, Enyang District, Bazhong City, The Institute of Exploration Technology of CAGS, Chengdu, Open File Rep., pp.57, 2015.

Darve F., Vardoulakis I.: Degradations and Instabilities in Geomaterials, Springer Vienna, Austria, 2004.

Griffiths, D. V., Lane, P. A.: Slope stability analysis by finite elements, *Géotechnique*, 49(3), 387-403, 1999.

Labuz J. F., Zang A.: Mohr–Coulomb Failure Criterion, *Rock Mechanics and Rock Engineering*, (2012)45:975–979, 2012.

Tschuchnigg, F., Schweiger, H.F. & Sloan, et al: Slope stability analysis by means of finite element limit analysis and finite element strength reduction techniques. Part I: Numerical studies considering non-associated plasticity, *Computers and Geotechnics*, 70, 169-177, 2015.

Tschuchnigg, F., Schweiger, H.F., Sloan, S.W., et al: Comparison of finite-element limit analysis and strength reduction techniques, *Géotechnique*, 65(4), 249-257, 2015.

1 **Analysis of the instability conditions and failure mode of a**
2 **special type of translational landslide using long-term**
3 **monitoring data: A case study of the Wobaoshi landslide (in**
4 **Bazhong, China)**

5 Yimin Liu^{a,b}, Chenghu Wang^{a,*}, Guiyun Gao^a, Pu Wang^a, Zhengyang Hou^a, Qisong Jiao^a

6 ^a Institute of Crustal Dynamics, China Earthquake Administration, Beijing, 100085, China

7 ^b School of Manufacturing Science & Engineering, Sichuan University, Chengdu, 611730, *China*

8

9 **Abstract:** A translational landslide comprising nearly horizontal **sandstone** and **mudstone** interbed
10 was widely developed in the Ba river basin of the Qinba–Longnan mountain area. **Some**
11 progresses on the formation mechanism and failure mode for this type of rainfall-induced
12 landslide have been made in the previous research; however, owing to lack of landslide
13 monitoring data, it is very difficult to demonstrate and validate previously-established
14 **geomechanical model**. This study considered a translational landslide with an unusual morphology:
15 the Wobaoshi landslide, located in Bazhong city, China. Firstly, the **engineering geological**
16 conditions of this landslide were ascertained through field **investigation**, and the deformation and
17 failure **mechanism** of the plate-shaped sliding body were analyzed. Secondly, long-term
18 monitoring engineering was conducted to obtain multi-parameter monitoring data, such as crack
19 width, rainfall intensity, and pore-water pressure. Finally, based on the **geomechanical** model
20 analysis of the multi-stage sliding bodies, the equation for the **critical** water height of the
21 multi-stage plate girders, h_{cr} , was established, and the long-term monitoring data were used to
22 verify its **reliability**. **On the basis of** numerical simulation and calculations, the deformation and
23 failure modes of the plate-shaped sliding bodies were analyzed and **investigatied**. **In conclusion**,

24 the multi-parameter monitoring data proved that the stability of the sliding body is **controlled**
25 greatly by the rainfall intensity and pore-water pressure and the pore-water pressure in the crack is
26 positive for the **initiation** of the plate-shaped bodies sliding, and at the same time, one optimized
27 monitoring methodology for this type of landslide was proposed. Therefore, this **research findings**
28 **are of** theoretical and practical significance for the intensive study of translational landslides in
29 this area.

30 **Keywords:** Translational landslide; Long- term monitoring; Instability conditions; Failure
31 mode; Plate-shaped sliding body; Pore-water pressure.

32

33 **0. Introduction**

34 A special type of landslide occurs in the red beds of **the** Qinba–Longnan mountainous area.
35 This landslide is mainly developed in the rock mass of the nearly horizontal sand and mudstone
36 interbed in the Ba river basin, and it has the following characteristics: the cover layer is extremely
37 thin, generally not more than 5 m; the sliding surface is close to horizontal; and the rock layer
38 inclination angle is generally only 3° - 8° . The sliding body of this landslide is typically a thick
39 layer of sandstone with good integrity, and its bottom is a weak layer **comprising** mudstone.
40 During **monsoon**, particularly when rainstorms occur, the sliding body is pushed horizontally
41 along the sliding surface. Some scholars call this phenomenon a flat-push landslide, which is a
42 typical rainfall-induced landslide (Zhang et al., 1994; Fausto G. et al., 2004; Xu et al., 2010).

43 Research on the formation mechanism and deformation mode of a translational landslide is
44 mainly based on two perspectives. The first **category includes** the translational landslides is
45 primarily induced by the hydrostatic pressure or confined water pressure resulting from rainstorms

46 (Kong and Chen, 1989; Matjaž et al., 2004; Yin et al., 2005). The sliding body of the thick
47 sandstone can slide along the surface because of the **hybrid** action of the hydrostatic pressure in
48 cracks and the uplift force of the sliding surface (Wang et al., 1985; Zhang et al., 1994; Xu et al.,
49 2006; Fan, 2007). **Simultaneously**, the sliding soil, expanded by rain water, causes a slip between
50 nearly horizontal layers (Yin et al., 2005). **The second category includes landslides wherein** the
51 hard rock layer covered by the upper layer (such as granite and sandstone) has a crushing effect on
52 the lower weak rock layer, thereby causing the rock mass to laterally expand, resulting in a
53 landslide (Cruden et al., 1996; Emelyanova, 1986).

54 Regarding the theoretical study on rainfall-induced translational landslide, scholars
55 worldwide have used physical simulation experiments, gomechanical model analysis, and satellite
56 remote-sensing methods to investigate the genetic mechanism, initiation criteria, and sensitive
57 safety factors. Fan Xuanmei et al. (2008) reproduced the deformation and failure process of
58 landslides through physical simulation, and further verified the formation mechanism and
59 initiation criterion formula of the flat-push landslide previously studied by Zhang et al. (1994).
60 Sergio et al. (2006) focused on the influence of pore-water pressure on the stability of
61 rainfall-induced landslides, and studied the soil failure mode based on pore-water pressure **via**
62 simulation experiment. Mario et al. (2008) and Teixeira et al. (2015) selected rainfall data from
63 historical **periodic** rainfall conditions, and used physical experiments to establish an optimization
64 model for rainfall-induced landslide initiation criteria for landslides in the southern Apennines and
65 shallow landslides in northern Portugal; they also evaluated landslide susceptibility and safety
66 factors to evaluate the possibility of landslide resurrection induced by rainstorms. Barlow et al.
67 (2003) and Martin et al. (2005) used US land satellite called **enhanced thematic mapper** (ETM+)

68 and digital elevation model (DEM) data to detect the residues of translational bedrock landslides
69 in an alpine terrain. Bellanova et al. (2018) used resistivity imaging to investigate the Montaguto
70 translational landslide in the southern part of the Apennines; they also established a refined
71 geometric model to observe the lithologic boundaries, structural features, and lateral and
72 longitudinal discontinuities associated with sliding surfaces.

73 Through data collation and analysis of the current research status of translational landslides,
74 scholars worldwide have conducted further research on the formation characteristics and genetic
75 mechanism of translational landslides. Based on the results of previous studies, the main focus of
76 this study is on the following two aspects.

77 (1) The occurrence of plate-shaped translational landslides is often unexpected and covert.
78 Plate-shaped translational landslides are primarily induced by rainfall; such events often occur in
79 the red-bed zone of the Qinba–Longnan mountainous area. Due to the dense population and
80 infrastructures in this area, plate-shaped landslides, characterized by large volumes, and covert
81 and abrupt occurrence, often cause massive property loss and casualties. In the previous field
82 investigation, such destructive events are often classified as small-scale rock mass collapses;
83 hence, the dangers posed by such kind of landslides were easily ignored.

84 (2) The field investigation and monitoring data for this kind of landslide is often absent. In
85 the past research, specific geomechanical and physical models have been established using
86 historical rainfall records, and laboratory physical experiments have been conducted in the to
87 verify the failure model. However, long-term on-site monitoring data and related analysis and
88 findings for such landslides have not been reported in publications according to literature review.
89 Therefore, several key field monitoring parameters, such as width of rear crack, real-time rainfall,

90 pore-water pressure, and groundwater level, should be obtained to investigate and validate the
91 deformation and failure mode of translational landslides, and be utilized to establish a
92 geomechanical model.

93 Based on the formation mechanism of the translational landslide established by previous
94 studies, research chosen a typical and specific translational landslide (the Wobaoshi landslide) in
95 the Ba River Basin of the Qinba–Longnan mountainous area, and conducted field investigation,
96 long-term (February 2015 to July 2018) monitoring, geomechanical model analysis, and numerical
97 simulation to investigate the instability conditions and variation failure modes of this translational
98 landslide under the influence of periodic rainfalls.

99

100 **1. Engineering Geology Characteristics of the Wobaoshi 101 Landslide**

102 **1.1. Field Survey of the Landslide**

103 The Wobaoshi landslide is located in the Ba river basin in the Qinba–Longnan mountainous
104 area. Its specific location is in Baiyanwan village, Sanhui town, Enyang district in Bazhong, China.
105 Fig. 1 presents its geographical location and elevation information. The Wobaoshi landslide is
106 located on the left bank of the Shilong river. The front edge of this landslide is in the curved
107 section of the river, and its left boundary gully is located on the concave bank on the river's left
108 bank. The landslide area is classified as a red-bed layer in a low mountainous area, the vegetation
109 of its sliding body is dense, and its geomorphic unit is cuesta structural slope. The geological
110 structure of the landslide body lies on in the south side of the Nanyangchang anticline, and its
111 stratum is the mudstone and sandstone interbed of the Penglaizhen Formation of the upper Jurassic
112 series (Chen et al., 2015).

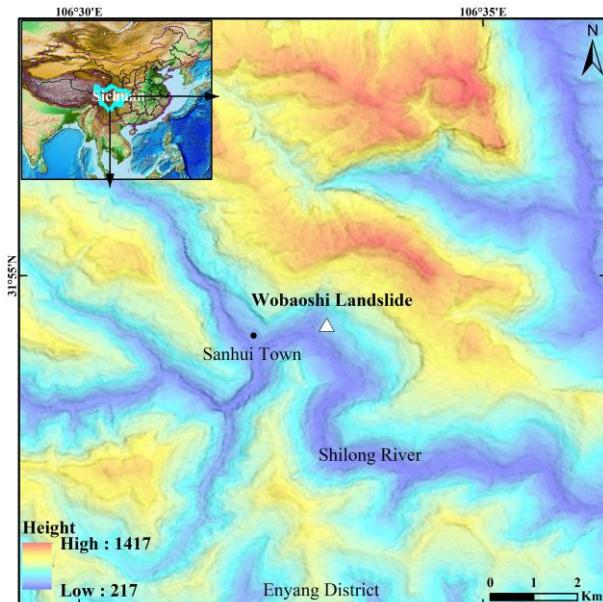
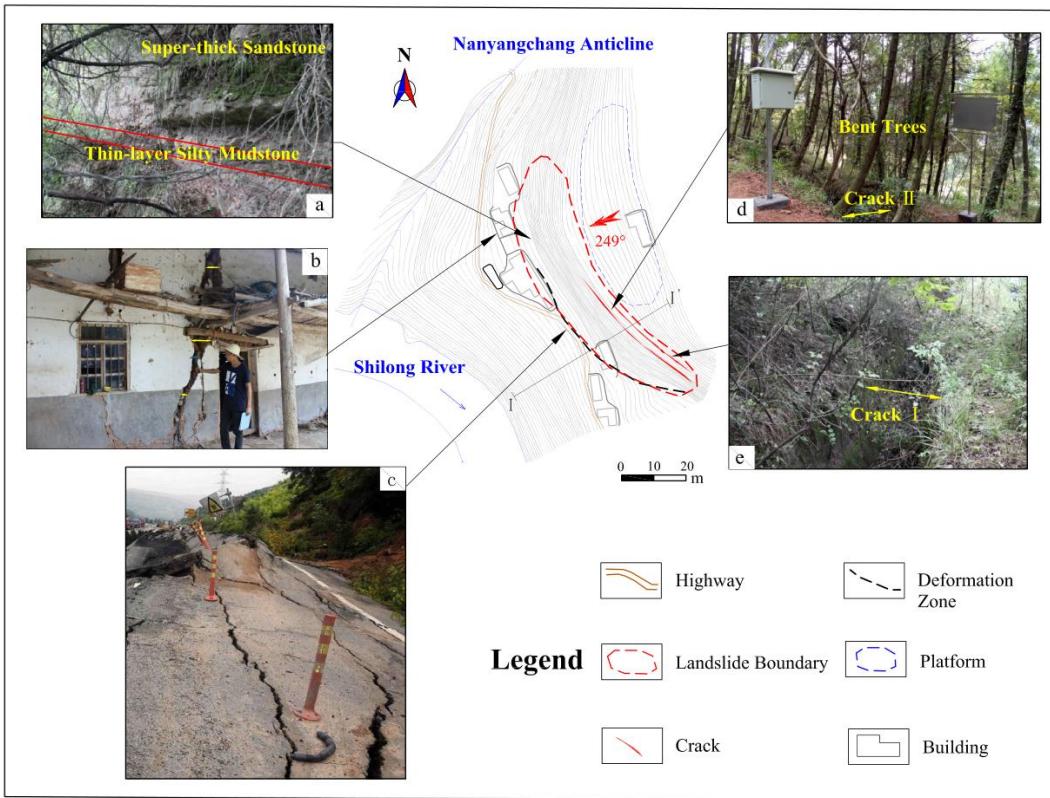
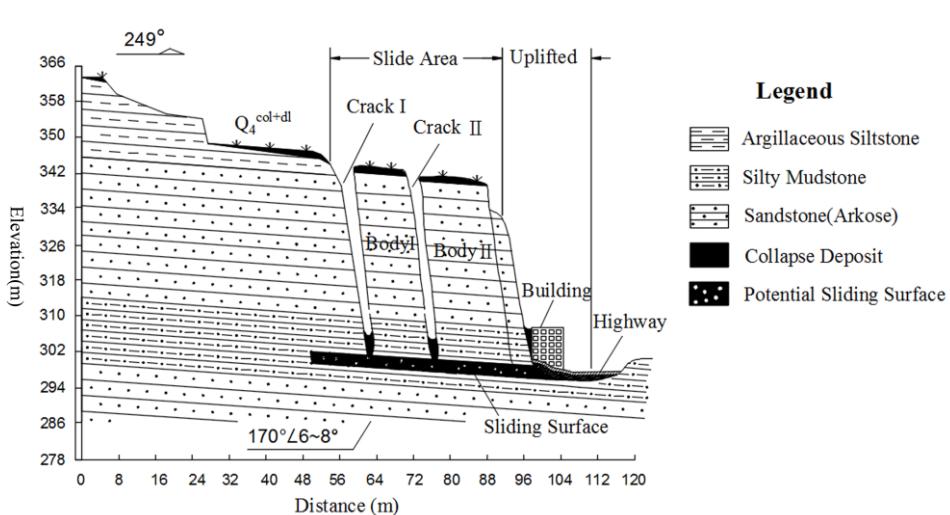


Fig. 1 Geographical location and elevation map of the Wobaoshi landslide.

113
114
115


116 This landslide is common in the eastern subtropical monsoon climate region, where rainfall is
117 abundant and mostly concentrated from May to October, accounting for 75% - 85% of the total
118 annual rainfall. The monthly average rainfall is above 100 mm, of which the highest occurs in July,
119 the monthly average rainfall in July is over 200 mm and often accompanied by rainstorms, and the
120 rainfall gradually decreases after August in this region (Chen et al., 2015). The types of
121 groundwater are mainly fissure water in weathered bedrock and pore-water in trailing edge cracks,
122 and the dynamic change of groundwater is considerably affected by climatic change.

123 **1.2. Landslide Characteristics and Forming Conditions**


124

125 **1.2.1 Engineering Geology Characteristics**

126 According to the satellite remote-sensing interpretation and landslide survey, the shape of the
127 sliding body is a flat long rectangle on the plane. Its longitudinal (sliding) direction is nearly 32 m,
128 the lateral width is 160 m, the average thickness of the sliding body is approximately 30 m, and its
129 volume is approximately $1.536 \times 105 \text{ m}^3$. This sliding body belongs to small- to medium-sized
130 landslides according to the typical scale. The sliding direction of the landslide is 249° , and the
131 overall attitude of the rockbed is $170^\circ - 180^\circ \angle 6^\circ - 8^\circ$. The strike in this landslide is nearly
132 parallel to the overall trend of the bank slope, which is a typical nearly horizontal consequent
133 bedding rock slope. Fig.2 shows a planar graph of the Wobaoshi landslide and photographs of five
134 observation points. Fig. 3 presents I-I' sectional graph of the landslide.

135
136 Fig. 2 **Topographic map** of the Wobaishi landslide and photographs of observation points: (a) exposed bedrock at
137 the front edge; (b) the houses had cracked at the front edge (c) the roadbed is pushed uplifted at the front edge;
138 (d) crack II and bent trees; and (e) crack I.
139

140 Fig. 3 I-I' sectional graph of the landslide
141
142

143 As shown in Fig. 2, the landslide shape is special, the longitudinal length is much less than
144 the lateral width and is even smaller than the thickness of the sliding body. Therefore, this body
145 can be easily mistaken for a multistage dangerous rock mass with dumping deformation during
146 disaster investigation. According to Fig. 3, the inclination of the landslide is almost erect, and a

147 group of long and straight structural planes parallel to the slope cut the slope into two thin plates
148 (sliding bodies I and II); furthermore, the surface structure of the slope has a certain degree of
149 aperture, both sides of the crack are closed, and the bottom of the crack is filled with clay in
150 addition to gravel and collapse deposits.

151 1.2.2 Forming Conditions

152 The sliding body of the Wobaoshi landslide formed two obvious cracks from the outside to
153 the inside, which cut and disintegrated the sliding body into plate-shaped blocks from front to
154 back, as shown in the photographs of observation points c and d in Fig. 2. Then, the plate-shaped
155 sliding bodies I and II were formed. The landslide is a two-stage translational landslide in which
156 the longitudinal length of sliding body I is 12 m, the identifiable lateral width is ~ 70 m and the
157 thickness is ~ 30 m, the longitudinal length of the sliding body II is 16 m, the identifiable lateral
158 width is ~ 65 m, and the thickness is ~ 28 m. Sliding body I forms crack I with the trailing edge of
159 the landslide, and sliding body II forms crack II with sliding body I. When large rainfall intensity
160 occurs during monsoon, the pore-water in the cracks can be observed, thus indicating that cracks I
161 and II have preferable water-storage conditions.

162 As the photograph of observation point d in Fig. 2 shows, bent trees grow on the trailing edge
163 of landslide bodies I and II. The trees on the landslide are skewed with the soil mass sliding, and
164 after the sliding stops, the upper part of the trunk turns to the upright state year by year. The
165 existence of bent trees represents the tendency of the slope body to become unstable or the
166 existing landslide accumulation body tends to slide again, this is also historical evidence of the
167 slow sliding of the landslide (Zhang Lizhan et al., 2015).

168 As the photo of observation point a in Fig. 2 shows, the shallow surface of the Wobaoshi
169 landslide is a 2–3 m thick layer of collapsed and plowed soil. The sliding body contains extremely
170 thick sandstone with good integrity, and the bottom sliding surface is a weak interlayer comprising
171 of silty mudstone. In summary, the Wobaoshi landslide is a typical and special translational
172 landslide, and based on the characteristics of its plate-shaped body, it can be considered a
173 plate-shaped landslide (Fan et al., 2008; Xu et al., 2009).

174 The engineering geological conditions of the Wobaoshi landslide are inferred on the basis of
175 its characteristics; i.e., the rapid immersion of groundwater softens the joint surface of soil and

176 rock formation, especially under a rainstorm. Then, the group of open cracks parallel to the slope
177 in the sliding body is concentrated and quickly filled with water, following which groundwater
178 level rises and the pore-water pressure increases sharply, such that the sliding bodies I and II slide
179 horizontally along the contact surface of the bottom sand-mud-rock weak layer. This condition
180 changes the stress mode and equilibrium state of the rock and soil mass, thereby easily inducing a
181 landslide. As shown observation point b and c in Fig. 2, the Wobaoshi landslide seriously threaten
182 residential houses and highways, the houses had cracked and highways had uplifted on its front
183 edge, so this landslides seriously threatens the safety of people's property and transportation.

184

185 **2. Landslide Monitoring Scheme and Monitoring Data Analysis**

186 **2.1. Long-term Monitoring Scheme**

187 According to the detailed investigation of the Wobaoshi landslide, two cracks extend through
188 the sliding surface at the trailing edge of the landslide, and the pore-water in the cracks exists
189 during periodic rainfalls. As the hydrostatic pressure in the cracks strongly influences the stability
190 of the plate-shaped landslide (Fan Xuanmei et al., 2008; Guo Xiaoguang et al., 2013), via
191 real-time monitoring of cracks, rainfall and pore-water pressure measurements were conducted
192 from February 2015 to July 2018 to determine the landslide state in different periods such as rainy
193 and non-rainy seasons, together with the interaction between multilevel plate girders and sliding
194 surface. Fig.4 shows the layout graph of the monitoring equipment.

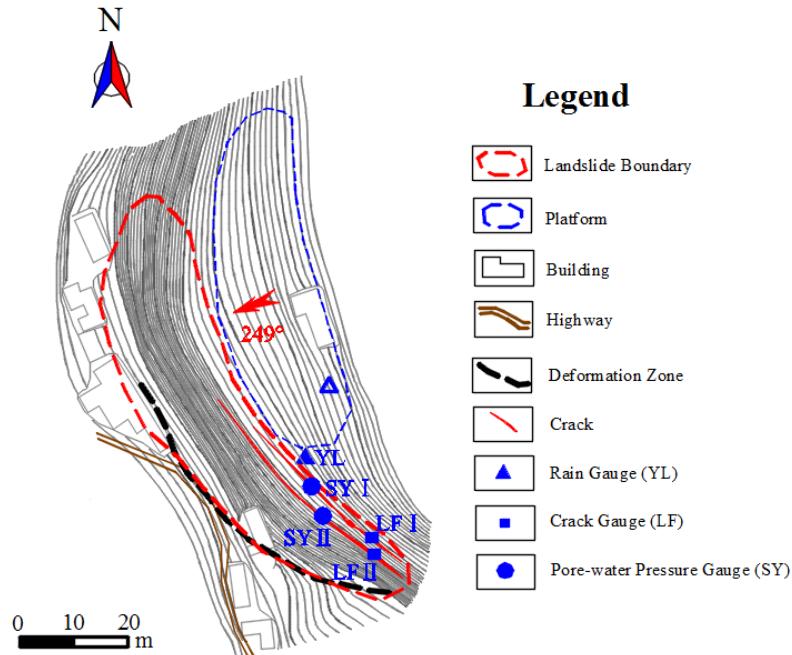
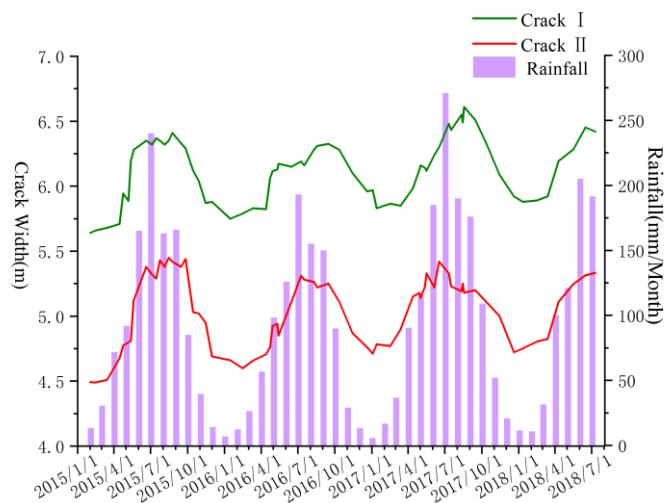
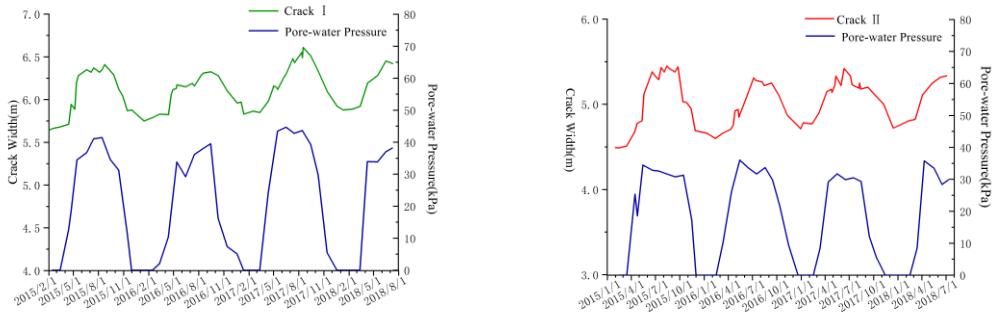


Fig. 4 Layout planar graph of the monitoring equipment

195
196
197

198 As shown in Fig. 4 shows, two non-contact crack automatic monitors, LF I and II, are
199 installed on both sides of cracks I and II, respectively, to record real-time variation of the width of
200 the two cracks (Yimin Liu et al., 2015). An automatic rain gauge is installed in flat space and no
201 tree occlusion is **observed** at the trailing edge of the landslide to record real-time and cumulative
202 values of the rainfall. Two pore-water pressure gauges are installed at the bottom of crack I and II
203 to measure the pore-water pressure. The value of pore-water level, h_c , can be calculated using the
204 relation $h_c = H - h_i + h_s$, where h_i is the installation depth of the pore-water pressure gauge; H is
205 the depth of the crack; and h_m is the measured value of the pore-water pressure gauge.


206 In this example, the initial width value of crack I is 5.640 m, and the initial width value of
207 crack II is 4.492 m (the first measurement **was conducted** in January 2015); the installation depth
208 $h_{i1} = 24.72$ m, and the depth of crack I is $H_1 = 38$ m, with $h_{c1} = 13.28m + h_{m1}$. Additionally, the
209 installation depth $h_{i2} = 24.85$ m, and the depth of crack I is $H_2 = 35$ m, and $h_{c2} = 10.15m + h_{m2}$.
210 The monitoring frequency of the crack width is thrice a day, the monitoring frequency of the
211 pore-water pressure is twice a day, and the rainfall intensity adopts the accumulative value of one
212 month. The multiparameter monitoring data are transmitted to the monitoring server through the
213 GPRS network.


214
215
216 Fig. 5 Photos of monitoring instrument installation: (a) crack I gauge;
217 (b) rain gauge and pore-water pressure
218 gauge; (c) crack II gauge.
219

220 2.2. Monitoring Data Analysis

221 By the monitoring work performed on the Wobaoshi landslide for three-and-a-half years
222 (February 2015 to July 2018), this study selected the typical data of the width of cracks I and II,
223 the pore-water pressure and the rainfall intensity, details of these monitoring data are in listed in
224 Tables 1 and 2. The corresponding time curves in Fig.6 show the monitoring data of the rainfall
225 intensity and the width of cracks I and II. Fig.7(a) and 7(b) present comparison curves of the
226 monitoring width data of cracks I and II against their pore-water pressures, respectively.

227
228 Fig. 6 Monitoring data curves (rainfall intensity and width of cracks I and II)
229

230

231

(a)

(b)

232

233

Fig. 7 Monitoring data curves: (a) width of crack I and its pore-water pressure; (b) width of crack II and its pore-water pressure.

234

235

Based on the comprehensive comparison and analysis of the data curves **presented** in Figs. 6

236

and 7, this study concludes that the Wobaoshi landslide is still in creep deformation state, and the

237

plate-shaped sliding body exhibits a regular trend with changes in rainfall intensity and pore-water

238

pressure. Cracks I and II show a preferable water-storage capacity during **monsoon**, and increasing

239

pore-water pressure affects the crack width variation. The specific analysis is as follows.

240

(1) A clear correspondence exists between the absolute amount of crack width change and

241

season change (**i.e. change in** rainfall intensity); the magnitude of the rainfall intensity determines

242

the change of the width of the two cracks. As shown in Fig. 6, the widths of cracks I and II widen

243

as the rainfall intensity increases during **monsoon** (May to September), and their crack widths

244

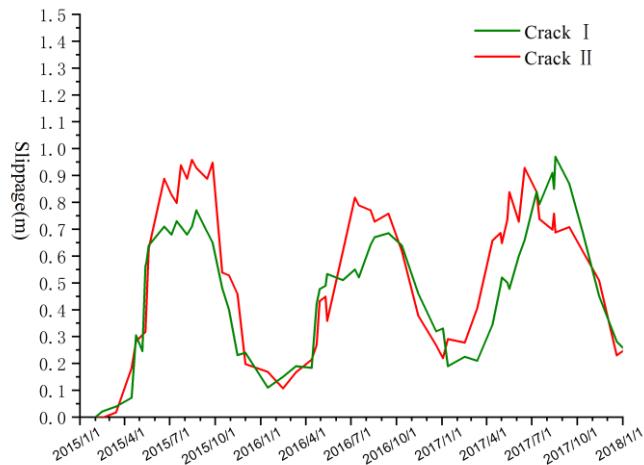
gradually decrease as the rainfall intensity lowers during the non-rainy seasons (October to April

245

in the next year). As indicated in Fig. 8, the maximum width of crack I reaches 6.615 m, and the

246

absolute stretching amount of this crack is close to 1 m in the July–August **period in** 2017


247

(monthly rainfall exceeding 250 mm). The maximum width of crack II is also in the range of

248

5.40–5.45 m, and its absolute stretching amount **exceeded** 1 m during July–August 2015 and

249 July–August 2017. During non-rainy seasons, when the rainfall intensity lowers, the crack width
250 begins shrinking, and it decreases to its minimum in January in each **monitored** year.

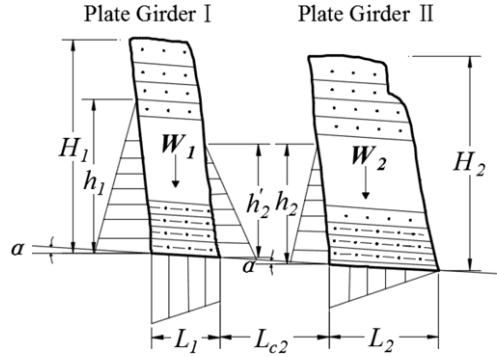
251
252 Fig. 8 Absolute slippage amount curves of crack I and II
253
254 (2) The width of cracks I and II tend to increase year by year, indicating that the two-stage
255 sliding body of the Wobaoshi landslide is still moving along the sliding surface because of the
256 influence of rainfall. In Fig. 6, the measured data in the monitoring period indicate that the
257 minimum widths of crack I and II are gradually increasing, and their maximum value is
258 considerably affected by the rainfall intensity of a particular month.

259 (3) Fig.7 shows that the stretching of cracks I and II, or both follows the same trend as the
260 pore-water pressure, i.e., the magnitude of pore-water pressure determines the width variation of
261 the cracks. Fig.7 also shows that the water-storage capacity of crack I is good during **monsoon**,
262 and after the sliding body slides, it can maintain a certain pore-water level because of rainfall
263 replenishment. Additionally, the increase in rainfall intensity increases the water level in the
264 cracks, and the increase in pore-water pressure **positively affects** the initiation of the plate girder.

265 The curve in Fig. 8 shows that the increase in pore-water pressure has a significant causal
266 relationship with the stretching of the cracks.

267

268 **3. Model Calculation and Numerical Simulation**


269 To construct a generic model of the evolution process of the Wobaoshi landslide, a
270 geomechanical model of plate-shaped sliding bodies was established, its stability was calculated,
271 and it was combined with monitoring data for a comparative analysis. According to previous
272 findings(Fan, 2007; Fan et al., 2008; Xu et al., 2010), when many penetrating cracks are parallel to
273 the slope in the rock mass, and these cracks are filled with water, the water pressure on both sides
274 of each plate-shaped body attains in a balanced state except for the outermost body. However,
275 once the outer body slides, owing to the sudden decrease of the pore-water level in the trailing
276 edge crack, the water pressure around immediately following plate-shaped body becomes
277 unbalanced, and new sliding damage is induced (Fan, 2007; Xu, 2008).

278

279 **3.1. Model Establishment and Stability Calculation**

280 According to characteristics of the Wobaoshi landslide in Section 1.2, when the
281 geomechanical model is established, the cover layer is neglected, and the static geomechanical
282 model of the plate-shaped rock sliding body is established based on the limit equilibrium method.
283 The basic characteristic of the limit equilibrium method is that the Mohr-Coulomb failure criterion
284 of the soil in static equilibrium conditions is considered, that is, the problem's solution is solved
285 by analyzing the destruction of the soil's balance. And soli elastic-perfectly plastic model was
286 chosen, which obey the Mohr-Coulomb failure criterion and associated flow rules (Darve et al.,
287 2004; Labuz et al., 2015).

288 For the failure mode of the two-stage plate girders of the Wobaoshi landslide, this study
289 selected a typical section of plate-shaped sliding bodies and established the geomechanical model,
290 shown in Fig. 9. In this section, first, a stability analysis of the outer layer plate girder II, is
291 conducted and then the inner plate girder I is analyzed.

292

293 Fig. 9 Geomechanical model of two-stage plate-shaped sliding bodies

294

295 In Fig. 9, α is the angle of the sliding surface, h_1 and h_2 are the heights of the pore-water
 296 levels in cracks I and II, respectively; L_1 and L_2 are the widths of plate girders I and II, respectively;
 297 L_{c2} is the distance between plate girder I and II; H_1 and H_2 are the heights of plate girders I and II;
 298 respectively, and W_1 and W_2 are the self-weights of plate girders I and II per unit width,
 299 respectively. According to the relationship between the stability coefficient of plate girder, K , and
 300 the height of the pore-water level, h , shown in Fig. 8 (Zhang et al., 1994; Xu et al., 2010), while
 301 considering the internal cohesive force of the sliding surface, the equation to calculate the stability
 302 coefficient, K_2 , of the outer layer plate girder II is expressed as follows:

$$303 K_2 = \frac{\left(W_2 \cos \alpha - \frac{1}{2} \gamma_w h_2 L_2 - \frac{1}{2} \gamma_w h_2^2 \sin \alpha \right) \tan \theta + c L_2}{\frac{1}{2} \gamma_w h_2^2 \cos \alpha + W_2 \sin \alpha}. \quad (1)$$

304 In Eq. (1), c is the internal cohesion of the sliding surface; γ_r is the saturated gravity of the
 305 sandstone; γ_w is the gravity of water; and $W = H \cdot L \cdot \gamma_r$. K_2 is set to 1, i.e., the plate girder II is set in a
 306 critical sliding state (GB/T 32864-2016, 2017). Then Eq. (2) of the maximum pore-water level of
 307 plate girder II, h_{cr2} , is derived from Eq. (1).

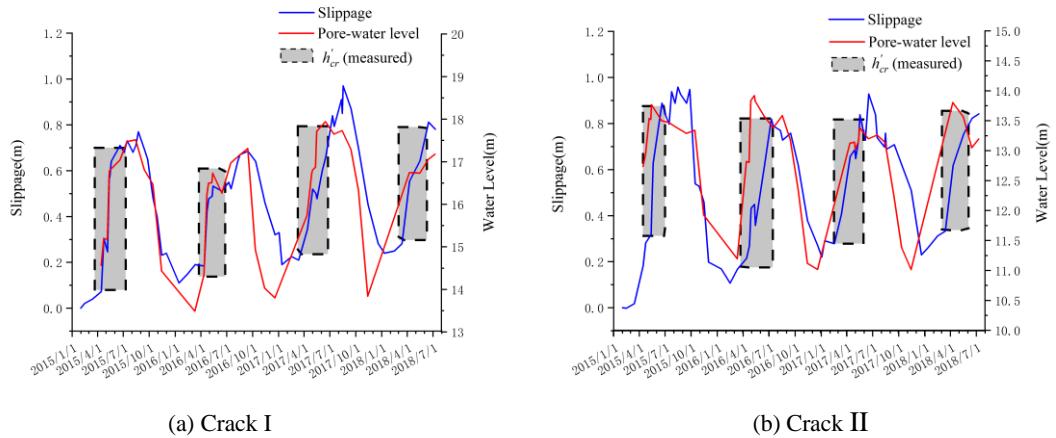
308

$$h_{cr2} \approx \frac{1}{2 \cos \alpha} \left[L_2^2 \tan^2 \theta + \frac{8}{\gamma_w} (W_2 \cos \alpha \tan \theta - W_2 \sin \alpha + cL_2) \cos \alpha \right]^{\frac{1}{2}} - \frac{L_2}{2 \cos \alpha} \tan \theta \quad (2)$$

309 According to the **experimental data** of the triaxial confining pressure of the Wobaoshi
 310 landslide's rock core (Chen et al., 2015), the internal friction angle of the sliding surface is $\theta =$
 311 11.2° , the saturated gravity of the sandstone is $\gamma_r = 19.2 \text{ kN/m}^3$, the gravity of clear water is $\gamma_w =$
 312 9.8 kN/m^3 , and the internal cohesion of the sliding surface is $c = 10.2 \text{ kPa}$. According to the
 313 sectional graph of the Wobaoshi landslide (see Fig. 2), $H = 35 \text{ m}$, $L = 16 \text{ m}$, and $\alpha = 6^\circ$. Therefore,
 314 according to Eq. (2), $h_{cr2} = 13.896 \text{ m}$.

315 **Based on** the stability analysis of plate girder II, combined with Eq. (1), Eq. (2), and Fig. 7,
 316 the equation to calculate the stability coefficient K_I of the inner layer plate girder I can be
 317 expressed as Eq. (3). In addition, $h_2' = h_2 - L_{c2} \sin \alpha$ and $L_{c2} = 3.8 \text{ m}$; therefore, $h_2' = 13.499 \text{ m}$.

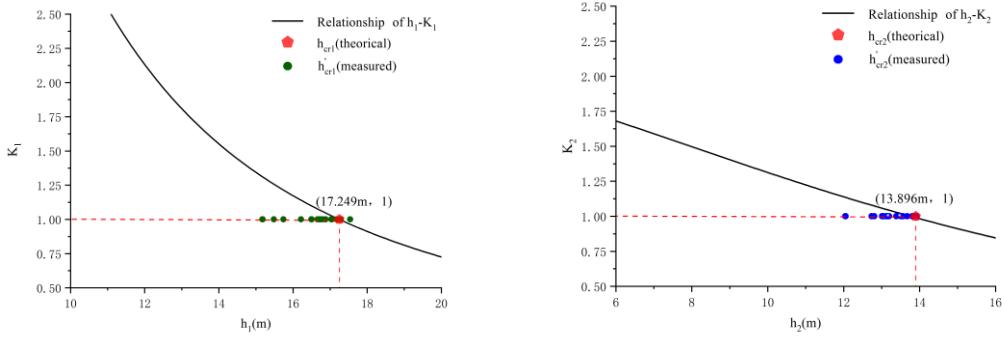
318


$$K_I = \frac{\left[W_1 \cos \alpha - \frac{1}{2} \gamma_w (h_1 + h_2') L_1 - \frac{1}{2} \gamma_w (h_1^2 - h_2'^2) \sin \alpha \right] \tan \theta + cL_1}{\frac{1}{2} \gamma_w (h_1^2 - h_2'^2) \cos \alpha + W_1 \sin \alpha} \quad (3)$$

319 Similarly, K_I is set to 1 and, in plate girder I, $H_I = 38 \text{ m}$, $L_I = 12 \text{ m}$, $\alpha = 6^\circ$, $h_2' = 13.499 \text{ m}$,
 320 therefore, the maximum pore-water level h_{crI} of plate girder I can be calculated using the Eq. (3)
 321 and $h_{crI} = 17.249 \text{ m}$.

322 The preceding calculation results show that, when the pore-water level at the trailing edge of
 323 the plate girder reaches the maximum height at which the landslide begins, i.e., when $h_{crI} =$
 324 17.249 m and $h_{cr2} = 13.896 \text{ m}$, the pore-water pressure triggers the plate-shaped sliding bodies. In
 325 next section, the pore-water monitoring data, which were acquired via the landslide monitoring are

326 used to verify the equation.


327 The pore-water monitoring data in Section 2.2, which were acquired *via* the landslide
328 monitoring engineering, were used to test the equation for calculating the maximum height of
329 multistage plate girders, h_{cr} . According to the monitoring data of the pore-water pressure and the
330 installation depth of the sensors, the actual *calculated* maximum height values h_{c1} and h_{c2} of the
331 pore-water level *are presented* in attached Table 3. Combined with the change in the absolute
332 stretching amount in Fig. 8, typical data of the measured pore-water level are selected,
333 corresponding to the sudden change in the absolute slippage (see Table 3 for details), as shown in
334 Fig.10.

335
336 (a) Crack I (b) Crack II
337 Fig. 10 Determination of the maximum measured pore-water level h_{cr}

338

339 The dotted boxes in Fig. 10 represent the value of the pore-water level when the bodies are
340 sliding, i.e., the maximum pore-water level, h_{cr} , which causes the sliding body to be unstable. The
341 measured h_{cr} in Fig. 10 can be compared to the relationship between the pore-water level, h , and
342 the stability coefficient of the plate girder, K , in equation (1) and (3), which are also shown in Fig.
343 10.

344

345

(a) Crack I

(b) Crack II

346

Fig. 11 Comparison of $h_{cr}(\text{measured})$ and $h_{cr}(\text{theoretical})$

347

348 In Fig. 11, the curves of the h - K relationship represent equations (1) and (3). The frequency of
 349 $h_{cr}(\text{measured})$ in Fig. 11 shows that most of the monitoring pore-water levels are not higher than
 350 those **theoretically calculated**. The Wobaoshi landslide monitoring example shows that in most
 351 cases, when $h_{cr}(\text{measured}) \leq h_{cr}(\text{theoretical})$, the pore-water pressure causes the instability of the
 352 sliding body.

353 **3.2. Numerical Simulation of the Plate-shaped Sliding Bodies**

354 The numerical simulations and calculations of the plate girder were performed using MIDAS
 355 GTS NX geotechnical finite element software. First, the 1:1 sliding body model in Fig. 9 was
 356 introduced into the finite element software, and the mechanical parameters of the sliding body
 357 model, i.e., elastic modulus, Poisson's ratio, gravity internal cohesion and friction angle, were
 358 defined as shown in Table 4. The position of the right side of the landslide about 30m from the
 359 foot of the slope is selected as the right boundary of the model; the lower boundary is set at the
 360 elevation of 0 m; the left boundary is located inside the mountain, about 30m away from the plate
 361 girder I. The element type adopts a plane strain quadrilateral-triangle mixing element, and the
 362 whole model is divided into 13775 elements and 14026 nodes. Here we constrain the vertical and
 363 horizontal displacement of its bottom boundary, and the left and right boundary conditions are set

364 to constrain the horizontal displacement. The model uses steady-state seepage calculation, and the
 365 water levels at the left and right boundaries were set to 342 and 275 m, respectively. The boundary
 366 conditions are set as follows.

367 (1) For the displacement boundary, the left and right boundaries constrained the displacement
 368 in the X-direction; i.e., $TX = 0$. For the bottom boundary, the displacement in the X and Y
 369 directions was constrained; i.e., $TX = TY = 0$.

370 (2) For the seepage conditions, the water levels at the left and right boundaries were set to
 371 342 and 275 m, respectively.

372 The typical pore-water-level data in the crack I and crack II presented in Table 3 were
 373 introduced into the finite element model, and were selected for a typical change period presented
 374 in Table 5, followed by numerical calculations to obtain the typical deformation and displacement
 375 states of plate-shaped sliding bodies in the rainy and non-rainy seasons, as shown in Fig. 12.

376

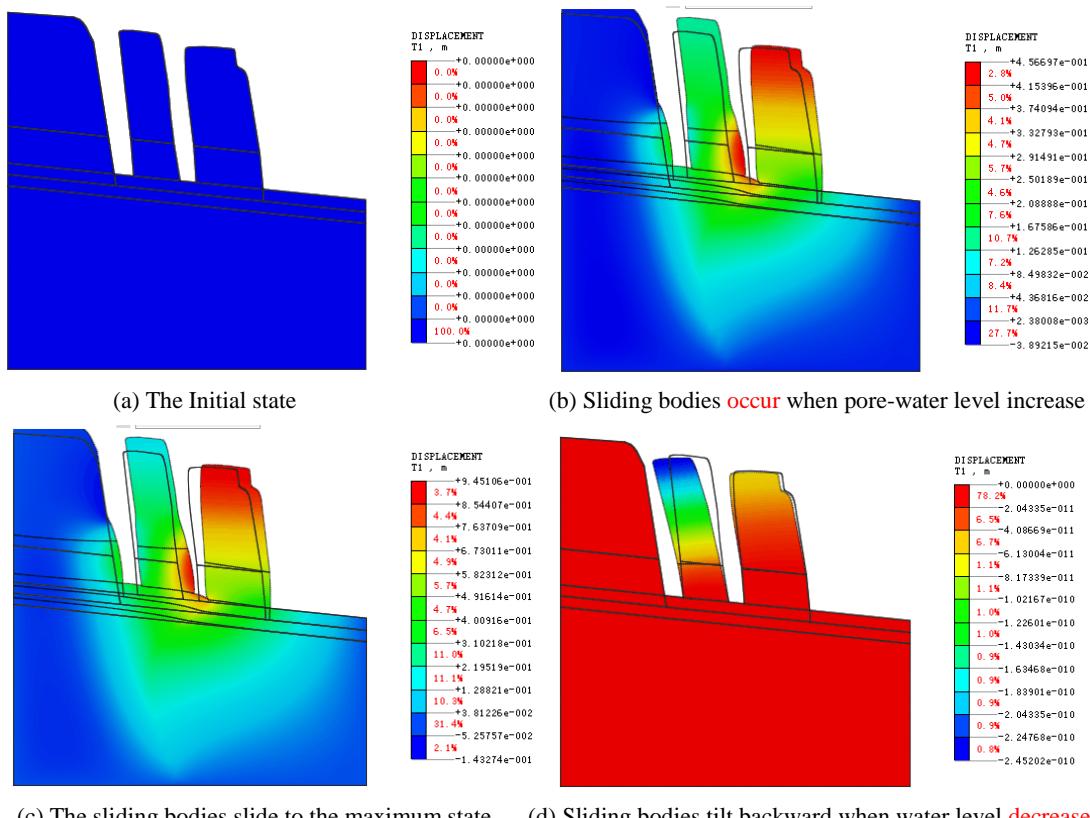
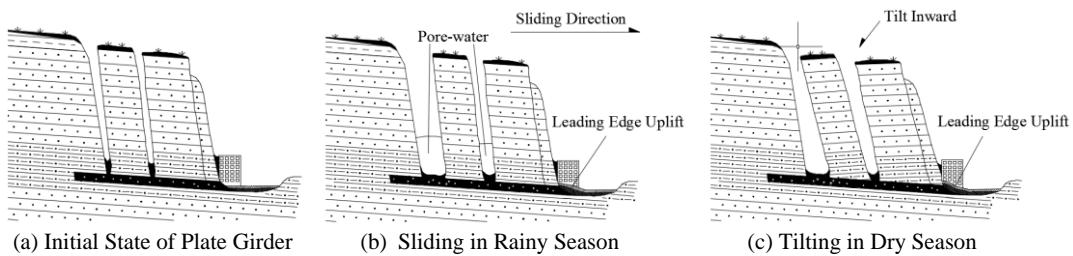


Fig. 12 Example of finite element simulation and numerical calculation

383 The initial displacement state in Fig. 12(a) is set to zero for the following analysis. Figure

384 12(b) shows that, under the combined effect of the pore-water pressure and seepage, the
385 multistage plate girders slide horizontally along the sliding surface. In Fig. 12(c), the multistage
386 plate girders have slid to the maximum distance, where the maximum distance of slider II is 0.945
387 m, which is close to the value obtained in the monitoring data. In Fig. 12(d), owing to the decrease
388 in pore-water level in the non-rainy season, sliding bodies I and II have the same tendency to tilt
389 backward. Therefore, the calculation results of the numerical simulation can corroborate the
390 sliding-body mechanics model and the landslide monitoring data.

391


392 **4. Discussion**

393 As mentioned in the previous sections, this special type of translational landslide, which has a
394 plate-shaped sliding body and is generally formed in an extremely thick sandstone slope with a
395 thin cover layer, is nearly horizontal and has good integrity. According to the traditional theory of
396 granular equilibrium limit, deformation or sliding movement of this nearly horizontal bedrock
397 slope is **nearly** impossible, and the likelihood of forming a landslide is minimal. However, this
398 special structure of translational landslide widely occurs in the Qinba–Longnan mountainous area
399 during the investigation of geological hazard hidden dangers. Therefore, in the investigation and
400 risk assessment of geological hazards, the characteristics of the plate-shaped landslide and the
401 deformation and failure mode should be combined to detect the hidden dangers with the
402 geological conditions of the landslide. **Combining** the results of previous studies with those of the
403 monitoring, the discussion herein is divided in the following three parts.

404 **4.1. Deformation and Failure Mode Exploration of the Wobaoshi Landslide**

405 The monitoring results of the Wobaoshi landslide in this case validate the rainfall-triggered
406 failure mode of the translational landslide (Zhang **Zhuoyuan** et al., 1994). According to the
407 landslide monitoring data, **particularly the change trend of the cracks opening and closing in**
408 **Section 2.2**, and the numerical simulations of the plate-shaped sliding bodies **in Section 3.2**, the

409 deformation and failure mode of the landslide were obtained, as shown in Fig. 13. Fig. 13 shows
 410 the deformation of the plate-shaped sliding bodies in the Wobaoshi landslide during the
 411 monitoring period (non-rainy season–rainy season–non-rainy season). As shown in Fig. 13(b), the
 412 large amount of rainfall **in monsoon** causes the cracks to be filled with water; when the pore-water
 413 level reaches the maximum height at which the landslide begins, the increased pore-water pressure
 414 positively affects the initiation of the plate-shaped sliding body (Fan Xuanmei et al., 2007). When
 415 the pore-water pressure rises to the threshold value, the plate-shaped landslide can be triggered. In
 416 this monitoring case, the pore-water pressure can push the plate-shaped sliding body by nearly 1 m,
 417 resulting in the uplift of residential houses and highways on its leading edge. Therefore, we can
 418 infer that one or more penetrating cracks are likely parallel to the slope in the landslide body. With
 419 the approach of the rainy season, the plate-shaped sliding body II begins to slide first and the
 420 water pressure balance in the cracks is destabilized. This condition causes the gliding of the
 421 plate-shaped sliding body I, thus forming a multistage translational landslide with characteristic
 422 step-by-step backward movement.

423 Fig. 13 Schematic of deformation and failure mode of the Wobaoshi landslide

424
 425
 426 As shown in Fig. 13(c), the plate girder is tilted to the trailing edge by the lower pore-water
 427 level and its own weight with less rain during the non-rainy season, thereby causing the plate
 428 girder to fall backward (inside the slope) until the top of the plate girder is in contact with the
 429 slope surface, the crack width begins shrinking, and a narrow A-shaped crack is formed.
 430 Monitoring data of the Wobaoshi landslide and numerical simulation of plate-shaped sliding body
 431 also verify the deformation and failure mode of the plate-shaped landslide post landslide
 432 occurrence (Xu et al., 2010). Year after year, the cracks at the bottom of the slab-shaped sliding
 433 body grow larger, and the degree of inclination of the plate girder continues to increase. The

434 degree of arching of the front edge also increases, which causes the stability of the landslide to
435 decrease continuously, thereby posing a high risk for the houses and roads on the front edge of the
436 landslide.

437 **4.2. Determination of Maximum Pore-water Level h_{cr}**

438 The theoretical analysis and stability calculation of the **geomechanical** model of the plate
439 girder is described in Section 4.1, **together** with the **initiation** criterion for multistage sliding
440 bodies of translational landslide, i.e., determination of the maximum water height in the crack, h_{cr} ,
441 (Zhang et al., 1994) and calculation of the sliding body's stability coefficient, K , (Xu et al., 2010),
442 which is determined by the theoretical calculation of strata inclination, shape, weight, and physical
443 properties (such as saturated gravity, γ_r , internal cohesion of the sliding surface, c , and internal
444 friction angle of the sliding surface, θ) based on the limit equilibrium theory (Lin et al., 2010).
445 Therefore, the stability coefficient of the landslide exponentially decreases with the increase in the
446 water-filling height of the trailing edge crack (Fan, 2008; Xu et al., 2010).

447 The internal friction angle, $\theta = 11.2^\circ$, is so low for clay, which seems unrealistic. However,
448 the angle θ is obtained by triaxial compression tests of the core, which is taken from the
449 sand-mudstone contact surface in sliding surface, and the internal friction angle $\theta = 11.2^\circ$ (Chen et
450 al., 2015). One of the reasons may be that the clay layer is severely weathered, so its internal
451 friction angle is small. In general, the dilatancy effect obtained by the associated flow law is much
452 larger than the actual observation, especially in the case of lateral infinite (Tschuchnigg et al.,
453 2015a). However, for slope stability analysis, lateral infinite is not considered in most cases, and
454 the dilatancy effect is not significant (Griffiths & Lane, 1999). Therefore, it is reasonable to set the
455 dilatancy angle to be equal to the internal friction angle.

456 In this case, in the equation for calculating the maximum pore-water level, h_{cr} , deduced in
457 Section 3.1, comparing the measured data of the Wobaoshi landslide in Section 2.2, we can
458 observe that the measured maximum pore-water level, h_{cr} , is close to the theoretical maximum
459 pore-water level, h_{cr} , thus **validating** the calculation equation of h_{cr} , and the instability conditions
460 of the sliding bodies. Additionally, the most measured data in Tab. 3 are slightly smaller than the

461 theoretical calculation value, i.e., $h_{cr}^* \leq h_{cr}$. Thus, compared with the calculation equation of the
462 maximum water height proposed by Zhang et al. (1994) and the physical simulation experiment
463 conducted by Fan et al. (2008), the monitoring case of the Wobaoshi landslide shows that the
464 measured data h_{cr}^* is mostly lower than the theoretical calculated value, h_{cr} , which can cause
465 instability of the sliding body. The reason for this instability may be that the actual cohesion value
466 c' of the sand-shale contact surface is smaller than the cohesive force value c of the sliding surface
467 in equation (2) during the creep state of the landslide for a long duration or that the frictional angle
468 of the sliding surface, θ , changes slightly. According to the calculation of the stability coefficient,
469 K , in equation (2), when $c' \leq c$, $h_{cr}^* \leq h_{cr}$ is obtained, the plate girder slides in the case **wherein** h_{cr}^*
470 (measured) is not larger than h_{cr} (theoretical).

471 **4.3. Optimization Methods of Landslide Monitoring**

472 Focusing on the plate-shaped translational landslide through the existing field monitoring
473 result experience and deformation and failure mode exploration, **this study proposes the long- term**
474 **monitoring method with more parameters referring to the characteristics of suchlandslides.**

475 First, long- **term** monitoring should be conducted to obtain sufficient monitoring data, which
476 mainly includes obtaining groundwater level, pore-water pressure, rainfall intensity, and
477 displacement data on the front edge of the landslide during **monsoon**, as well as focusing on **the**
478 **change of overall inclination of the plate girder** during the non-rainy season. This is because the
479 inclination angle α relative to the sliding surface also changes after the sliding of the plate girder.

480 Thus, the inclination measuring device **which consists of three-axis accelerometer and electronic**
481 **compass** should be installed in the sliding body, to verify the theoretical exploration of
482 deformation mode of the plate-shaped sliding body in the non-rainy season in Fig. 13(c).
483 Furthermore, a sensitivity analysis of various parameters affecting the stability coefficient K of the
484 sliding body (such as the pore-water level, internal cohesive force in saturated water, internal

485 friction angle of the sliding surface, and inclination angle of the plate girder) should be conducted
486 on the basis of the monitoring data. Therefore, an in-depth analysis and exploration of the
487 deformation and failure mode of the plate-shaped landslide would be beneficial and would
488 improve the success rate of landslide warning.

489

490 5. Conclusions

491 Considering the case of the Wobaoshi landslide as an example, this study uses research
492 methods such as field exploration, a long- term monitoring engineering, geomechanical model
493 analysis and numerical simulation to deeply analyze the instability conditions and failure
494 characteristics of a special type of translational landslide. The research results are beneficial to the
495 stability analysis and evaluation of this type of landslide. Targeted monitoring methods are
496 proposed to enrich theoretical research on the translational landslide. The following conclusions
497 are drawn:

498 (1) The characteristics, formation conditions, and occurrence mechanism of rainfall-triggered
499 translational plate-shaped landslides are summarized herein. Such landslides generally exists in a
500 consequent slope with the inclination angle of the sliding surface being less than 10°, and a group
501 of long and straight structural planes parallel to the slope cuts the slope into several thin plates.
502 The plate-shaped sliding body generally contains extremely thick sandstone, which is nearly
503 horizontal and has good integrity. The bottom sliding zone is a weak mudstone interlayer affected
504 by periodic rainfalls. In addition, single-stage or multistage plate-shaped sliding bodies slide
505 horizontally along the bottom mudstone sliding zone.

506 (2) Based the **mechanical** model of the plate-shaped sliding bodies, the relationship between
507 the stability coefficient of the multistage sliding body, K , and the pore-water level, h , was obtained,
508 and the maximum pore-water level, h_{cr} , which causes the instability of multi-stage plate girders
509 was calculated. The instability conditions of the plate-shaped sliding bodies were also determined.

510 (3) Theoretical conclusions of the plate-shaped landslide research were verified **using** the
511 long-term monitoring data. The multiparameter monitoring data show that the stability of the
512 sliding body is **considerably** affected by the rainfall intensity and pore-water pressure. The
513 pore-water pressure in the crack is positive for the beginning of the plate-shaped sliding body,
514 which demonstrates the rainfall-triggered failure mode of the translational landslide. This study
515 compares and analyzes the measured maximum pore-water level h_{cr} and theoretical calculated
516 value h_{cr} , and discusses the influence **in** the change of internal cohesive force and internal friction
517 angle on the stability coefficient of the sliding body.

518 (4) Combined with landslide numerical simulation, this study analyzes and explores the
519 deformation and failure modes of the plate-shaped landslide, i.e., combined with the pore-water
520 pressure in the crack and seepage effect in **monsoon**, the sliding bodies will slide horizontally
521 along the contact surface of the bottom sand-mud rock weak layer. During the non-rainy season,
522 the pore-water pressure decreases and disappears; the sliding body, **owing** to its dead weight, will
523 be inclined to the trailing edge. On this basis, this study proposes an optimized monitoring
524 methodology to closely monitor the pore-water pressure, rainfall, and landslide frontal
525 displacement during **monsoon**, **proposed** method focuses on the overall inclination angle change
526 of the plate girder during the non-rainy season.

527

528 **Acknowledgments**

529 We thank Dr. Long Chen at the Institute of Exploration Technology of CAGS for providing
530 landslide monitoring data. This work was supported by the National Natural Science Foundation
531 of China (41804089), Project of Observation Instrument Development for Integrated Geophysical
532 Field of China Mainland (Y201802), and CGS of China Geological Survey Project
533 (1212011220169 and 12120113011100).

534

535 **References**

536 Barlow, J., Martin, Y., Franklin, S. E.: Detecting translational landslide scars using segmentation of
537 Landsat ETM+ and DEM data in the northern Cascade Mountains, British Columbia,
538 Canadian Journal of Remote Sensing, 29(4):510-517, 2003.

539 Bellanova, J., Calamita, G., Giocoli, A., Luongo, R., Piscitelli, S.: Electrical resistivity imaging for the
540 characterization of the Montaguto landslide(southern Italy), Engineering Geology,
541 243(1):272-281, 2018.

542 Brown, E., Hoek, E.: Trends in relationships between measured in-situ stresses and depth. International
543 Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 15(4):78-85,
544 1978.

545 Chen L., Liu Y., Feng X.: The investigation report on remediation project of Wobaoshi landslide,
546 Sanhui Town, Enyang District, Bazhong City, The Institute of Exploration Technology of

547 CAGS, Chengdu, Open File Rep., pp.57, 2015.

548 Cruden, D.M., Varnes, D.J.: Landslides investigation and mitigation, Special Report 247,

549 Transportation Research Board, National Research Council [R]. [S. l.]:[s. n.], 1996.

550 Darve F., Vardoulakis I.: Degradations and Instabilities in Geomaterials, Springer Vienna, Austria,

551 2004.

552 Emelyanova E.II.: The basic rule of landslide movement, Chongqing Publishing House, Chongqing,

553 China, 1986.

554 Fan, X., Xu, Q., Zhang, Z., et al: The genetic mechanism of a translational landslide, Bulletin of

555 Engineering Geology and the Environment, 68(2):231-244, 2009.

556 Fan, X.: Mechanism and remediation measures for translational landslide [M. S. Thesis], Chengdu:

557 Chengdu University of Technology, 2007.

558 Fan X., Xu Q., Zhang Z., et al: Study of genetic mechanism of translational landslide, Chinese Journal

559 of Rock Mechanics and Engineering, 27(Supp.2):3753-3759, 2008.

560 Griffiths, D. V., Lane, P. A.: Slope stability analysis by finite elements, Géotechnique, 49(3), 387-403,

561 1999.

562 Guzzetti, F., Cardinali, M., Reichenbach P., et al.: Landslides triggered by the 23 November 2000

563 rainfall event in the Imperia Province, Western Liguria, Italy, Engineering Geology,

564 73(3-4):229-245, 2004.

565 Guo X., Huang R., Deng H., Xu Q., ZHAI G: Formation and mechanism analysis of multi-level rift

566 trough in translational sliding landslide, Journal of Engineering Geology, 21(5):770-778, 2013.

567 Labuz J. F., Zang A.: Mohr–Coulomb Failure Criterion, *Rock Mechanics and Rock Engineering*,
568 (2012)45:975–979, 2012.

569 Lin J. Yang W., Bao C.: Progressive collapse mechanism of hybrid structures with different vertical
570 stiffness, *China Earthquake Engineering Journal*, 40(4):713-720, 2018.

571 Liu Y., Wang J.: The research and application of landslide surface crack monitoring method based on
572 laser ranging mode, *Environmental and Earth Sciences Research Journal*, 2(2):19-24, 2015.

573 Martin, Y. E., Franklin, S. E.: Classification of soil- and bedrock-dominated landslides in British
574 Columbia using segmentation of satellite imagery and DEM data, *International Journal of
575 Remote Sensing*, 26(7):1505-1509, 2005.

576 Matjaž, M., Matja, C., Mitja, B.: Hydrologic conditions responsible for triggering the Stože landslide,
577 Slovenia, *Engineering Geology*, 73(3-4):193-213, 2004.

578 Mario, F., Francesca, B.: Evaluation of landslide reactivation: a modified rainfall threshold model
579 based on historical records of rainfall and landslides, *Geomorphology*, 94(1-2): 40-57, 2008.

580 Sergio, D. N., Lourenco, K. S., Hiroshi, F.: Failure process and hydrologic response of a two layer
581 physical model: Implications for rainfall-induced landslides, *Geomorphology*, 73(1-2):115-130,
582 2006.

583 Teixeira, M., Bateira, C., Marques, F., et al: Physically based shallow translational landslide
584 susceptibility analysis in Tibo catchment, NW of Portugal, *Landslides*, 12(3):455-468, 2015.

585 Tschuchnigg, F., Schweiger, H.F. & Sloan, et al: Slope stability analysis by means of finite element
586 limit analysis and finite element strength reduction techniques. Part I: Numerical studies

587 considering non-associated plasticity, Computers and Geotechnics, 70, 169-177, 2015.

588 Tschuchnigg, F., Schweiger, H.F., Sloan, S.W., et al: Comparison of finite-element limit analysis and

589 strength reduction techniques, Géotechnique, 65(4), 249-257, 2015.

590 Wang L., Zhang Z.: The mechanical patterns of the deformation in rock slope, Geological Publishing

591 House, Beijing, China, 1985.

592 Xu Q., Zeng Y.: Research on acceleration variation characteristics of creep landslide and early-warning

593 prediction indicator of critical sliding, Chinese Journal of Rock Mechanics and Engineering,

594 28(6):1099-1106, 2009.

595 Xu Q., Huang R., Liu T., et al.: Study of the formation mechanism and design of control engineering

596 for the super-huge Tiantai landslide, IAEG2006 Engineering Geology for Tomorrow Cities,

597 Sichuan province, China, 2006, 602.

598 Xu Q., Fan X., Li Y., Zhang S.: Formation condition, genetic mechanism and treatment measures of

599 plate-shaped landslide, Chinese Journal of Rock Mechanics and Engineering, 29(2):242-250,

600 2010.

601 Yin K., Jian W., Zhou C., et al: Study on the mechanism of the translational landslide in Wanzhou

602 district and prevention project, Wuhan: China University of Geosciences, Open File,

603 pp.153-154, 2005.

604 Zhang L., Pei X., Lin H., Li S.: Evolution of Landslide Based on Growth Characteristics of Trees on

605 the Landslide, Mountain Research, 33(4):503-510, 2015.

606 Zhang Z., Wang S., Wang L.: The analytical principle on engineering geology, Geological Publishing

607 House, Beijing, China, 1994.

608 **Figure Captions**

609 Fig. 1. Geographical location and elevation map of the Wobaoshi landslide.

610 Fig. 2. Topographic map of the Wobaoshi landslide and photographs of observation
611 points: (a) exposed bedrock at the front edge; (b) the houses had cracked at the front
612 edge (c) the roadbed is pushed uplifted at the front edge; (d) crack II and bent trees;
613 and (e) crack I.

614 Fig. 3. I- I' sectional graph of the landslide.

615 Fig. 4. Layout planar graph of the monitoring equipment.

616 Fig. 5. Photos of installation the monitoring instruments: (a) crack I gauge; (b) rain
617 gauge and pore-water pressure gauge; and (c) crack II gauge.

618 Fig. 6. Monitoring data curves (rainfall intensity and width of cracks I and II).

619 Fig. 7. Monitoring data curves: (a) width of crack I and its pore-water pressure; (b)
620 width of crack II and its pore-water pressure.

621 Fig. 8. Absolute slippage amount curves of cracks I and II.

622 Fig. 9. Geomechanical model of two-stage plate-shaped sliding bodies.

623 Fig. 10 Determination of the maximum measured pore-water level $h_{cr}^{'}$.

624 Fig. 11. Comparison figure of $h_{cr}^{'}$ (measured) and h_{cr} (theoretical).

625 Fig. 12 Example of finite element simulation and numerical calculation.

626 Fig. 13 Schematic of the deformation and failure mode of the Wobaoshi landslide.

627

628 **Table**

629

Table 1 Typical monitoring data of the Wobaoshi landslide

Measurement duration	Crack I width (m)	Crack II width (m)	Crack I Pore-water pressure (kPa)	Crack II Pore-water pressure (kPa)
2015/2/1	5.640	4.492	0	0
2015/4/24	5.945	4.774	18.561	27.303
2015/5/7	5.886	4.798	18.649	33.212
2015/5/13	6.203	4.810	33.134	33.036
2015/5/15	6.215	4.899	34.476	35.456
2015/8/15	6.350	5.451	41.474	31.625
2015/9/14	6.330	5.380	34.594	30.772
2015/11/15	5.871	4.952	11.280	17.395
2016/2/15	5.790	4.599	0	0
2016/4/13	5.824	4.706	10.378	26.156
2016/5/14	6.173	4.850	33.810	36.035
2016/7/17	6.161	5.281	36.162	31.664
2016/8/18	6.310	5.220	38.024	33.683
2016/9/15	6.325	5.251	39.298	29.723
2016/12/20	5.960	4.763	5.106	0
2017/2/16	5.865	4.770	0	0
2017/4/13	5.984	5.152	24.108	29.155
2017/5/17	6.118	5.332	43.463	31.703
2017/7/17	6.433	5.239	42.787	30.478
2017/8/15	6.490	5.255	43.639	29.273
2017/11/14	6.091	5.004	5.488	8.428
2017/12/20	5.922	4.723	0	0
2018/1/11	5.881	4.751	0	0
2018/4/10	6.194	5.110	33.957	35.819
2018/5/17	6.283	5.246	33.830	33.438
2018/6/16	6.452	5.315	36.995	28.391
2018/7/10	6.421	5.310	38.171	29.841

630

631

Table 2 Rainfall intensity value of the Wobaoshi landslide (mm/month)

Year \ Month	1	2	3	4	5	6	7	8	9	10	11	12	Total
2015	13.5	30.5	71.8	121.9	165.0	240.1	163.0	166.1	85.0	39.6	14.1	1110.6	
2016	6.9	12.5	26.5	56.8	98.4	126.1	193.2	155.1	150.0	90.3	29.1	13.5	958.4
2017	5.7	16.8	36.8	90.5	115.6	185.1	271.3	190.0	176.2	109	52.1	20.8	1269.9
2018	11.5	10.9	31.5	99.9	121.0	205.1	191.6	\	\	\	\	\	671.5

632

Table 3 Measured pore-water level data of the sliding bodies

Measured time	Crack I slippage (m)	Measured pore-water level (m)	Crack II slippage (m)	Measured pore-water level (m)
2015/4/15	0.072	14.566	0.183	12.736
2015/4/24	0.305	15.174	0.282	12.936
2015/5/7	0.246	15.183	0.306	13.539
2015/5/13	0.561	16.661	0.318	13.521
2015/5/15	0.573	16.798	0.407	13.768
2015/6/20	0.711	17.032	0.888	13.502
2015/7/17	0.519	17.474	0.798	13.471
2015/10/16	0.481	16.470	0.538	13.340
2015/11/15	0.229	14.431	0.458	11.925
2016/1/15	0.108	\	0.169	\
2016/4/13	0.184	13.490	0.214	12.819
2016/4/23	0.421	14.339	0.269	12.804
2016/4/29	0.475	16.214	0.432	13.835
2016/5/11	0.469	16.494	0.449	13.920
2016/5/14	0.531	16.505	0.358	13.827
2016/6/15	0.508	16.731	0.618	13.574
2016/9/15	0.683	17.312	0.758	13.183
2016/10/12	0.637	14.930	0.618	12.360
2017/2/16	0.223	\	0.278	\
2017/4/13	0.344	15.741	0.658	13.125
2017/4/29	0.489	16.712	0.686	13.141
2017/5/2	0.518	16.799	0.648	13.024
2017/5/13	0.501	16.877	0.734	13.161
2017/5/17	0.476	17.715	0.838	13.385
2017/8/15	0.848	17.733	0.758	13.137
2017/9/16	0.869	16.324	0.333	12.235
2018/3/14	0.281	\	0.618	11.013
2018/4/10	0.552	16.745	0.754	13.805
2018/5/17	0.643	16.732	0.333	13.562

Table 4 Mechanical parameters of the sliding body model

Lithology	Elastic Modulus (N/m ²)	Poisson Ratio	Gravity (N)	Internal Cohesion (N/m ²)	Internal Friction Angle	Permeability Coefficient (cm/s)
Arkose	600000	0.25	19200	30000	36°	1.20E-07
Silty Mudstone	360000	0.28	19000	20000	30°	6.00E-07
Clay	300000	0.3	18000	10200	11.2°	1.20E-06

Table 5 Loading steps of the water level in Crack I and II in FEM model

Loading Steps	Crack I	Crack II
0	314.50 m	311.00 m
1	316.00 m	313.00 m
2	317.50 m	315.00 m
3	316.00 m	313.00 m
4	314.50 m	311.00 m