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Abstract. Initial assessment of landslide prone area is important in designing landslide mitigation measures. This study, a part 5 

of our study on developing landslide spatial model, presents initial signal of landslide prone area. In here, we use soil depth to 

hardpan to assess landslide prone area in Western Central Java, a relatively small region where 23% of Indonesian landslide 

occurs. To this end, we interpolated soil depth to hardpan in a regular grid from irregularly distributed data. To do this, we 

employed three different methods: Inverse Distance Weighting (IDW), Ordinary Kriging (OK) and Co-Kriging (CK). For the 

latter, we experimented with several potential covariates. To determine the best fitting model, several tests on model 10 

performance and its corresponding errors were done. Error measures used in this study are Mean Square Error (MSE), Root 

Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE), while statistical 

measures employed are Standard Deviation, Variance, Interquartile Range (IQR), Mean Absolute Deviation and Median 

Absolute Deviation. The result shows that CK with covariate of slope and soil cohesion is the best fitting model and exhibits 

clear pattern related to recorded landslide disaster sites. We found that 64% of landslide disaster events occur in the area having 15 

soil depth to hardpan of 5 – 10 m. Moreover, 84% of landslide occurrences happen in regions where soil depth to hardpan 

ranges from 5 to 15 m. Hence, we suggest that landslide prone area is an area possessing soil depth to hardpan of 5-15 m. This 

finding is advantageous for policy makers in planning and designing efforts for landslide mitigation. 

1 Introduction 

Indonesia has a large number of landslide disaster occurrences. In last decade, 3,924 landslide disaster events were recorded 20 

with 1,404 events (~36%) of them occurred in the Central Java province (BNPB 2018). Out of those numbers, 908 landslide 

events occurred in western part of the area. In this region, landslide disaster events have caused 211 casualties, nearly 20,000 

people suffered and more than 7,000 house damaged. Moreover, the number of natural disaster in Indonesia shows increasing 

trend from 924 events in 2008 to 2,862 events in 2017 which accounts for more than threefold during the last decade (BNPB 

2018). Considering the impact of global climate change, the number could be larger and the impact could be worsening 25 

(Banholzer et al. 2014). Hence, appropriate mitigation measures in particular locations are critical. Accordingly, understanding 

landslide prone area is helpful in designing policy for appropriate mitigation efforts. 

Landslide occurs when safety factor (SF), defined as a ratio of shear strength and acting force (gravitational force, seepage 

pressure, etc) of soil layer disrupted (Das 1998). The higher the slope stability (SF > 1) the lower the possibility of landslide 
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to occur (Roslee et al. 2012). High slope stability exists when shear strength is high. However, soil shear strength unveils high 

spatial variability and is unsuitable to be directly measured due to difficulty of obtaining undisturbed sample (Apriyono et al. 

2018). Nevertheless, the value can be estimated from its correlation with soil depth to hardpan which obtainable from Cone 

Penetration Test (CPT), one of soil test required in civil works. In this study, we define soil depth to hardpan as a depth of soil 

layer capable of bearing a minimum load of 200 kg/cm2. 5 

Soil depth to hardpan is abundant as it is prerequisite for any civil structural planning and design. However, the data is usually 

scattered over a region. To estimate landslide prone area using soil depth to hardpan, understanding its spatial pattern is 

essential. To do this, applicable spatial interpolation is required, which is central contribution of this study. 

Various interpolation techniques commonly used in many literatures are: statistical method such as linear regression (Lesch 

and Corwin 2008; Tabari et al. 2011), geometric method such as Inverse Distance Weighting (IDW) and local polynomial 10 

(Apriyono et al. 2018; Santoso et al. 2018; Yanto et al. 2017b) and geostatistical method such as Ordinary Kriging (OK), 

Regression Kriging (RK) and Co-Kriging (CK) (Baskan et al. 2009; Fritsch et al. 2011; Govaerts et al. 2010; Yao et al. 2013). 

Comparison of interpolation methods has been done in many literatures (Siljeg et al. 2015; Wang et al. 2014; Wong et al. 

2004). Performance of each method varies and highly depends on the case, location and model parameters (Siljeg et al. 2015). 

Therefore, the main challenge lies on the determination of error characteristics and estimated values by testing and comparing 15 

various interpolation methods. This study is motivated by Santoso et al (2018) and aimed to improve interpolation skills of 

soil depth to hardpan in Western Central Java using geostatistical technique. Moreover, we employed OK and CK method with 

several experiments using diverse covariates to enhance IDW performance. 

The structure of this paper is as follows. First, study area and data are illustrated. The interpolation methods (IDW, OK and 

CK) are then presented along with potential covariates for CK method. Characteristic of errors and model performance are 20 

described both for cross-validation and prediction in the result section with analysis and discussion. The paper concludes with 

summary of result analysis. 

2 Study Area and Data 

This study was performed in western part of Central Java, Indonesia, bordered by Indian Ocean in the south and Java Sea in 

the north (Figure 1). The elevation ranges from 0 in the edge to 3,428 m in the middle part of region. There are several 25 

mountains in the middle dominated by lithology class of tectonic and extrusive. In the coastal zone, sedimentary lithology 

dominates the area. 

Study area chosen in this study was merely limited by data available in our laboratory which collected during the period of 

2005 – 2016 with some missing data in 2008 and 2009. Over this period, we acquired 335 soil measurement sites covering an 

area of 12.975 km2 over 11 regencies in Western Central Java (Figure 2a).  Soil properties data comprises soil depth to hardpan, 30 

soil cohesion and soil friction angle. In some locations, soil cohesion and soil friction angle are missing such that there are 227 

sites possesing the data (Figure 2b,c). To implement CK method, we used soil data from ground surface, i.e. elevation and 
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slope. We derived and resampled elevation and slope of land data from ASTER Digital Elevation Method (DEM). There are 

1,000 elevation data and 1,132 slope data resampled from 90 x 90 m ASTER DEM resolution (Figure 2d,e). 

Soil depth to hardpan was used as the main soil properties to estimate landslide prone area, while soil cohesion, soil friction 

angle, elevation and slope data were used as covariate for CK interpolation method. We then compared the results to find the 

most suitable covariate. 5 

To assess the correlation of soil depth to hardpan and landslide disaster location, we collected data of landslide occurrences 

from National Board of Disaster Countermeasure (BNPB) of Indonesia. There are 108 landslide events recorded containing 

spatial information during the period of 2011 -2017 (Figure 2f). 

3 Methodology 

In this section, methodology employed in the study is presented. First, we describe interpolation method covering IDW, OK 10 

and CK. These are methods to estimate depth to hardpan on a regular grid from irregularly distributed observations. We then 

present the approach for error estimate to assess which interpolation method producing the most fitting result. 

3.1 Inverse Distance Weighting (IDW) 

In IDW model, interpolation is performed by assigning weight to interpolating values – i.e. values of variable around targeted 

point. The weight in IDW is an inverse of interpolating variable distance obtained by dividing 1 with distance of each 15 

interpolating variable. Hence, the farther the distance, the smaller the weight (Shepard 1968). Moreover, influence of distance 

is governed by the value of power of distance. The higher the power, the smaller the influence of distant variable. Computation 

of IDW is presented below. 
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 ,            (1) 

where Z- is estimated value in targeted location, Z. is value in each interpolating location, r0 is distance of interpolating and 20 

targeted location and α is power of distance. 

3.2 Ordinary Kriging (OK) 

In anisotropic data, IDW is no longer relevant. On the other hand, OK model has an ability to take into account the effects of 

anisotropy on spatial data where point data falling into cluster is assigned a weight smaller than point data located outside of 

cluster (Boyle 2010). This occurs as the weight is given based on a function constructed from data characteristics (Isaaks and 25 

Srivastava 1989). The OK model is formulated as: 

Z∗(u) − m(u) = ∑ λ9[Z(u9) − m(u9)]
<(=)
9>?  ,         (2) 
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where u and	u9 are vector of target location and surrounding point data given index of α, n(u) is number of point data around 

target location used for interpolation whereby in this study we use five point data,  m(u) and	m(u9) are expected values (mean) 

of Z(u) and Z(u9), and λ9(u) is weight for each datum Z(u) of interpolation in target location u. 

The objective of OK model is to find a weight of 𝜆C that minimizes variance (𝜎) of estimator: 5 

σFG(u) = var{Z∗(u) − Z(u)} ,                       (3) 

with constraint of E{Z∗(u) − Z(u)} = 0 

3.3 Ordinary Kriging (OK) 

When data scatters with low density, both IDW and OK usually produce less realistic spatial estimates. To handle this issue, 

CK technique uses spatial correlation of main variable (soil depth to hardpan) with other variables as covariate to improve the 10 

result (Myers 1984). In this study we used elevation, slope of land, soil cohesion and soil friction angle data as potential 

covariate. Mathematically, this approach is formulated below. 

𝑍?∗(𝑢) −𝑚?(𝑢) = ∑ 𝜆C?[𝑍?(𝑢C?) − 𝑚?(𝑢C?)]
P(Q)
C>? + ∑ 𝜆CG[𝑍G(𝑢CG) −𝑚G(𝑢CG)]

P(Q)
C>?  ,    (4) 

where index 1 and 2 refer to main variable and covariate respectively. 

3.4 Error Estimate 15 

Error estimate was used to evaluate how interpolation differs from observation. This is useful for selecting the most appropriate 

interpolation method and interpreting the results. In this stage, we filtered covariates in CK model to yield the most suitable 

covariate for soil depth to hardpan interpolation. 

We first conducted cross-validation approach – i.e. leave one point out and estimate the value at the leaving point. For each 

interpolation method, we computed a number of error measures and compared among the methods. Table 1 summaries 20 

characteristics of error measures we used in cross-validation. 

3.5 Interpolation Performance 

Interpolation performance was evaluated by comparing gridded values and nearest observations. As the number of estimation 

and observation is different, we opted to assess spatial distribution of both estimation and observation for evaluation purpose. 

The most suitable interpolation method is decided based on the similarity of its distribution with observation. To do this, a 25 

number of statistical measures were employed and summarized in Table 2. 
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4 Result and Discussion 

In this section, we present the result and analysis in the following order: cross-validation along with analysis of error estimate, 

model performance with statistical measures and relationship of soil depth to hardpan and landslide disaster occurrences. 

4.1 Cross Validation 

Figure 3 shows scatterplot of estimation generated by cross-validation procedure and observation. We show a 1:1 line (red 5 

dashed line) to detect how far estimated values spread from its expected values. The closer the scattered points to this line the 

better the model (Yanto et al. 2017a,b). In addition, we also present a regression line (continuous blue line) to show the best 

fitting straight line of scatterplot along with its Pearson’s coefficient of correlation (r). The slope of regression line 

approximating 1 indicates good representation of the model and vice versa. Moreover, the higher the r value (maximum of 1), 

the stronger the correlation of estimation and observation. 10 

The result shows that the data scatter over the 1:1 line and regression line where larger values undergo higher spread. It is 

difficult to visually inspect the best fitting model from the scatter plot. However, the value of r shows that the strongest 

relationship of estimation and observation occurs in CK model with slope and soil cohesion as covariate (Figure 2h). Moreover, 

we computed slope of regression line for each interpolation approach. The regression line slope is 0.2072, 0.3254, 0.3301, 

0.3247, 0.3264, 0.3255, 0.3247, 0.3266 and 0.3491 for IDW, OK, CK-elevation, CK-slope, CK-cohesion, CK-friction angle, 15 

CK-slope-friction angle, CK-slope-cohesion and CK-all covariates respectively. Consistent with the scatterplot, quantitative 

measures of relationship between estimation and observation show slight difference. However, it can be inferred that CK model 

with covariate of slope and soil cohesion exhibits the highest Pearson’s correlation coefficient, while the highest regression 

slope value is produced by CK-all variates. 

To provide deeper insight on the comparison among interpolation approaches, we calculated quantitative error measures of 20 

MSE, RMSE, MAE and MAPE as shown in Table 3. These are error measures commonly used in many literatures (Buchwalder 

et al. 2006; Chai and Draxler 2014; Willmott and Matsuura 2005; Yao et al. 2013). For all error measures, the lower the value 

the better the interpolation performance. In Table 3, the lowest value is denoted with bold marker. As shown in Table 3, CK 

model with covariate of slope and soil cohesion demonstrates the most fitting model based on the value of MSE, RMSE and 

MAE, while CK model with covariate of soil friction angle beats other approaches based on the MAPE value. Accordingly, 25 

we suggest that CK-slope- soil cohesion is the most relevant model for soil depth to hardpan interpolation.  

4.2 Interpolation Performance 

In cross-validation analysis, we showed that slope and soil cohesion is the best covariate for CK interpolation technique. 

Therefore, in this section we present analysis of model performance for IDW, OK and CK-slope-soil cohesion. For the rest of 

this document, the latter will be written as CK for simplicity. 30 
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We interpolated soil depth to hardpan on 20,000 points across the study area. The result is presented in Figure 4a,b,c for IDW, 

OK and CK respectively along with its standard error in Figure 4d,e,f. In here, we computed standard error as the difference 

of interpolated values and observation mean. As shown in Figure 4a,b,c, the middle part of the study area is dominated by low 

soil depth to hardpan ranging from 0 to 12 m, while high soil depth to hardpan distributed in the edge of study area. Low soil 

depth to hardpan also occurs in the southwestern and south-eastern part of the region. Topographically, the middle area, south-5 

eastern and southwestern area are mountainous ranges dominated by extrusive and tectonic lithology, while the south and north 

side are coastal zone covered by sedimented soil (Figure 1).  Hence, it can be inferred that the interpolation result is consistent 

with the topography and lithology of study area. Moreover, spatial spreading of standard error is quite similar to spatial 

distribution of soil depth to hardpan (Figure 4d,e,f). In the region where soil depth to hardpan is low, the standard error exhibits 

negative values, and vice versa. 10 

Spatial variability of soil depth to hardpan and standard error reveals that both OK and CK approaches produce quite similar 

pattern. On the other hand, IDW displays less spatial variability compared to OK and CK, particularly in the middle part of 

the region. This indicates the influence of data points situated farther from targeted point. 

To obtain better understanding on the performance of IDW, OK and CK in interpolating soil depth to hardpan, we show the 

distribution of observation and estimation from those three methods and shown in boxplots (Figure 5). The best model is 15 

evaluated visually from its similarity (box and whisker) with observation. As can be seen, IDW reveals the most dissimilar 

features to observation as it has the smallest box, the shortest whisker and the largest range of outliers. On the other hand, both 

OK and CK are relatively close to observation. However, it is challenging to resolve the most suitable model due to their 

graphical likeness. 

We performed analysis on the distribution of standard error shown in Figure 6 to complement interpretation on the model 20 

performance. It can be observed that all methods generate normally distributed standard error with different shape of histogram 

where IDW standard error concentrates around the mean and both OK and CK disperse over the range of standard error. This 

implies that both OK and CK standard error has higher variability than IDW standard error. Again, it is tough to choose the 

best model based on visual interpretation. To resolve this, we calculated the fraction of negative and positive standard error. It 

is found that 92% of IDW standard error falls below zero, indicating that IDW yields underestimate interpolation against to 25 

observational mean. On the other hand, the fraction of negative values is 63% and 64% for OK and CK respectively. In 

addition, the mean of standard error is -2.85, -1.07, -1.04 for IDW, OK and CK respectively suggesting that both OK and CK 

better represents the observation with CK overcomes OK to some extent. 

To strengthen our visual inspection on the distribution of estimated values, we computed quantitative statistical measures of 

soil depth to hardpan interpolated values. In here, we use common statistical measures in many literatures such as standard 30 

deviation, variance, interquartile range (IQR), mean absolute deviation (MAD) and median absolute deviation (MedAD) as 

shown in Table 4 (JCGM 2008; Rousseeuw and Croux 1993; Stadtler et al. 2014, Xiao-ming et al. 2016; Zwillinger and 

Kokoska 2000). We assess the performance of each interpolation method based on its proximity with each corresponding 
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statistical measure of observation. In Table 4, the most faithful values to observation are shown in bold marker. It can be seen 

that for all statistical measures, CK conquers IDW and OK except for MAD where IDW beats others. 

Based on visual inspection and quantitative appraisal both for interpolated values and standard errors, it is suggested that CK 

(with soil cohesion as covariate) performs better than IDW and OK in estimating spatial distribution of soil depth to hardpan 

in Western Central Java. This is consistent with the aim of Cokriging model development (Myers 1984) and its implementation 5 

(Minnitt and Deutsch 2014; Adhikary et al. 2017; Xie et al. 2018). 

4.3 Spatial Correlation of Soil Depth to Hardpan and Landslide Occurrences 

In the previous section, it was clearly shown that CK approach using soil cohesion as covariate produces the most fitting 

model. Hence, it is used in this section to assess spatial correlation of soil depth to hardpan and landslide occurrences. First, 

we show pictorial representation of the relationship as shown in Figure 7. It can be seen that landslide disaster occurs mostly 10 

in the middle part stretching from the west to the east and in the south-eastern part of the region. Moreover, the figure displays 

clear spatial pattern of landslide sites related to spatial variability of soil depth to hardpan. Visually, soil depth to hardpan 

where landslide occurs ranges from 4 to 16 m as can be seen from the figure that in the area where soil depth to hardpan less 

than 4 m, there is no landslide record detected. The same feature can be examined for soil depth to hardpan being greater than 

16 m. 15 

To verify aforementioned visual assessment, we extracted the values of soil depth to hardpan in the landslide sites (or nearest 

location). We then grouped the value in four ranges: 0-5 m, 5-10 m, 10-15 m and 15-20 m as presented in Figure 8. In the 

figure, green solid square, blue solid dots, red solid triangle and black solid dots represent the number of landslide disaster 

events for the range of soil depth to hardpan of 0-5 m, 5-10 m, 10-15 m and 15-20 m respectively. From this number, it can be 

computed that 64% of landslide occurs in the region with soil depth to hardpan ranges 5-10 m. Moreover, 84% of landslide 20 

disaster events take place in the area where soil depth to hardpan ranges 5-15 m. Hence, we advise that landslide prone area is 

an area holding soil depth to hardpan from 5 to 15 m. 

This finding is consistent with landslide mechanism commonly occurs in Indonesia: translational and rotational landslide 

(Cepeda et al. 2010). In this type of landslide, it requires acting force and surface of rupture to make landslide happens. Acting 

force presents in the form of gravitational force from soil mass and soil water content. Surface to rupture needs more stable 25 

underlying material (Jesus et al. 2017; Muller and Martel 2000). This can be either hard rock or soil hardpan. Hence, the depth 

to soil hardpan can be viewed as potential location of surface to rupture. When surface to rupture is too shallow, acting 

gravitational force is smaller due to low volume of soil mass and soil water content. This condition lessens the probability of 

landslide to occur. On the other hand, deep surface to rupture is associated with sedimentary lithology class and low slope of 

land. As a result, landslide is unlikely to happen in the area with very deep surface to rupture. 30 
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5 Conclusion 

We employed three interpolation methods: IDW, OK and CK to simulate spatial distribution of soil depth to hardpan useful 

for initially assessing landslide prone area in Western Central Java, Indonesia. To select the best fitting model, we performed 

a number of tests on the interpolated values and its corresponding error. The tests conducted include visual inspection and 

quantitative measurement. In all cases, we found that visual assessment shows comparable features between OK and CK 5 

whereby they always overcome IDW. However, quantitative measures reveal that CK is better than OK in some extent. Based 

on this, we then compared soil depth to hardpan resulted from CK interpolation procedure and landslide disaster sites. It is 

clearly shown that landslide is likely to occur in the area where soil depth to hardpan ranges from 5 to 15 m. Hence, it can be 

said that landslide prone area is a region having soil depth to hardpan of 5-15 m. This finding is useful for policy makers in 

designing mitigation efforts to landslide prone areas and subsequently to save more lives. 10 
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Table 1. Measurements to inspect model errors in cross-validation 

Error Measures Formula Reference 

Mean Square Error (MSE) 
𝑀𝑆𝐸 =

1
𝑛
X(𝑝0 − 𝑜0)G
P

0>?

 
Buchwalder et al (2006) 
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Root Mean Square Error 

(RMSE) 𝑅𝑀𝑆𝐸 = \
1
𝑛
X(𝑝0 − 𝑜0)G
P

0>?

 

Willmott and Matsuura (2005); 

Chai and Draxler (2014) 

Mean Absolute Error (MAE) 
𝑀𝐴𝐸 =

1
𝑛
X|𝑝0 − 𝑜0|
P

0>?

 
Willmott and Matsuura (2005); 

Chai and Draxler (2014) 

Mean Absolute Percentage 

Error (MAPE) 𝑀𝐴𝑃𝐸 =
1
𝑛
X`

(𝑝0 − 𝑜0)
𝑜0

`
P

0>?

 
Yao et al. (2013) 

 

 

Table 2. Statistical measures to evaluate model performance 

Statistical Measures Formula Reference 

Standard Deviation 

𝜎 = \
1

𝑛 − 1
X(𝑥0 − �̅�)G
P

0>?

 

JCGM (2008) 

Variance 
𝜎G =

1
𝑛
X(𝑥0 − �̅�)G
P

0>?

 
Xiao-ming et al. (2016) 

Inter Quartile Range (IQR) 
𝐼𝑄𝑅 = e

3	(𝑛 + 1)	
4 h

ij

− e
(𝑛 + 1)	

4 h
ij

 
Zwillinger and Kokoska 

(2000) 

Mean Absolute Deviation 
𝑀𝐴𝐷 =

1
𝑛
X|𝑥0 − �̅�|
P

0>?

 
Stadtler et al. (2014) 

Median Absolute Deviation 𝑀𝑒𝑑𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑥0 − �̅�) Rousseeuw and Croux (1993) 

 

 5 

Table 3. Error measures of cross-validation using different interpolation methods 

Error 

Measures 
IDW OK 

CK 

Elevation Slope Cohesion 
Friction 

Angle 

Slope-

Friction 

Angle 

Slope-

Cohesion 

All 

Covariates 

MSE 27.2298 24.6058 31.9023 24.8209 24.5699 24.6738 24.8292 24.5579 29.1962 

RMSE 5.2182 4.9604 5.6482 4.9821 4.9568 4.9673 4.9829 4.9556 5.4033 

MAE 3.9436 3.7307 4.3306 3.7548 3.7284 3.7397 3.7559 3.7267 4.1821 

MAPE 0.8167 0.8017 0.9119 0.8045 0.8023 0.8013 0.8053 0.8016 0.8906 
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Table 4. Quantitative statistical measures of interpolation using IDW, OK and CK 5 

Statistical Measures Observation IDW OK CK 

Standard Deviation 5.48 2.17 3.80 3.81 

Variance 30.01 4.69 14.44 14.49 

IQR 7.60 2.36 4.68 4.76 

Mean Absolute Deviation (MAD) 3.01 x 10-16 1.01 x 10-16 7.17 x 10-16 7.05 x 10-16 

Median Absolute Deviation (MedAD) 5.04 1.77 3.50 3.53 

 

 

 

 

 10 

 

 
Figure 1: Study area: Western part of Central Java along with its soil lithology. 
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 5 
Figure 2: Spatial variability of data: (a) soil depth to hardpan in meter, (b) soil cohesion in kN/m2, (c) soil friction angle 
in degree, (d) ground elevation in meter above sea level, (e) slope of the land in degree, (f) location of landslide disaster 
events. 
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Figure 3: Scatter plot of observation and prediction from cross-validation for: (a) IDW, (b) OK, (c) CK-elevation, (d) 
CK-slope, (e) CK-cohesion, (f) CK-soil friction angle, (g) CK-slope-soil friction angle, (h) CK-slope-cohesion, (i) CK-all 
covariates. 
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Figure 4: Spatial distribution of estimation of soil depth to hardpan (m) for: (a) IDW, (b) OK, (c) CK and standard 
error (m) for: (d) IDW, (e) OK, (f) CK. 

 

 5 
Figure 5: Boxplot of interpolated and observed soil depth to hardpan. 
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Figure 6: Histogram of standard error (interpolated values substracted by observational mean) of IDW, OK and CK. 

 

 
Figure 7: Map of soil depth to hardpan and landslide occurrence sites. 5 
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Figure 8: Map of soil depth to hardpan and landslide occurrence sites. 
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