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Abstract. Parametric wind profiles are commonly applied in a number of engineering applications for the generation of 

tropical cyclone (TC) wind and pressure fields. Nevertheless, existing formulations for computing wind fields often lack the 

required accuracy when the TC geometry is not known. This may affect the accuracy of the computed impacts generated by 

these winds. In this paper, empirical stochastic relationships are derived to describe two important parameters affecting the 10 

TC geometry: radius of maximum winds (RMW) and the radius of gale force winds (∆AR35). These relationships are 

formulated using best track data (BTD) for all seven ocean basins (Atlantic, S/NW/NE Pacific, N/SW/SE Indian Oceans). 

This makes it possible to a) estimate RMW and ∆AR35 when these properties are not known and b) generate improved 

parametric wind fields for all oceanic basins. Validation results show how the proposed relationships allow the TC geometry 

to be represented with higher accuracy than when using relationships available from literature. Outer wind speeds can be 15 

well reproduced by the commonly used Holland wind profile when calibrated using information either from best-track-data 

or from the proposed relationships. The script to compute the TC geometry and the outer wind speed are freely available via 

the following URL: https://bit.ly/2k9py1J. 

1 Introduction 

Tropical cyclones (TCs) are among the most destructive natural hazards worldwide. TCs can cause hazardous 20 

weather conditions including extreme rainfall and wind speeds, leading to coastal hazards, such as extreme storm surge 

levels and wave conditions. The impact of TCs are different in developed and developing countries. Generally, the worst 

effects in the developed world are direct economic losses. In the United States (U.S.) alone, the mean annual damage due to 

TCs was estimated by Willoughby (2012) as 11.0 billion USD (year 2015). In the developing world, TCs conflict in 

immense social costs in terms of destruction and mortality. For example, between 1960-2004 more than half a million 25 

inhabitants of Bangladesh died as a consequence of TCs, primarily due to storm surge (Schultz et al., 2005). Peduzzi et al. 

(2012) showed that over the next 20 years the number of people exposed to TC risk will increase despite governmental 

efforts and implementation of adaptation measures. Additionally, TCs can also have devastating effects on nature, 
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geomorphology, agriculture and freshwater supply. Thus, due to the extensive costs in lives, property and other damages, the 

ability to effectively model these storms is essential. 

Numerical models can be applied to quantify the effects of TCs (e.g. Bloemendaal et al., 2019; Giardino et al., 

2018, Vousdoukas et al., 2018). In hindcasting studies, this is generally done by using surface winds derived by data 

assimilation techniques (e.g. HRD Real-time Hurricane Wind Analysis System or H*WIND; e.g. Powell et al. 1998,).  5 

However, in multi-hazard risk assessments, the spatial distribution of surface winds is generally not known. Therefore, wind 

fields based on best track data (BTD) or synthetic tracks, are generated using parametric wind profiles. Several (horizontal) 

parametric wind profiles (e.g. Fujita, 1952; Willoughby et al., 2006, Chavas et al., 2015) exist in literature, with the original 

Holland wind profile (Holland, 1980; hereafter H80) being the most widely used due to its relative simplicity. However, 

without calibration, parametric wind profiles are often unable to accurately reproduce the spatial distribution of winds in TCs 10 

(e.g. Willoughby and Rahn, 2004). This potentially leads to an under- or overestimation of wind speeds and associated 

coastal hazards. Calibration of TC formulations is possible by applying additional relationships, supported by the use of 

suitable data. In particular, information on the wind radii of cyclones can constrain the decay of wind speeds away from the 

eye wall and can be included in the most recent version of the Holland wind profile formulation (Holland et al., 2010; 

hereafter H10).   15 

The radius of maximum winds (RMW), which describes the distance from the center to the strongest axially 

symmetric wind in the core of the cyclone, is one of the most important parameters to define a parametric wind profile. 

Moreover, the RMW plays an important role in the assessment of hazards induced by TCs since the storm surge level 

increases as a function of the RMW (Loder et al., 2009). Several relationships exist in literature to estimate the RMW (e.g. 

Willoughby et al., 2006; Vickery & Wadhera, 2008; Knaff et al., 2015). However, these relationships are derived either for 20 

the Atlantic and/or Eastern Pacific Ocean (i.e. U.S. coast) and are therefore not necessarily valid for other ocean basins. Each 

ocean basin has its own climatological properties and, for example, there seems to be an observational relationship between 

(mean) storm size, in terms of precipitation area (Lin et al., 2015) or wind speeds (Chavas et al., 2016), and the relative sea 

surface temperature (SST). The reason that most relationships are derived for the U.S. coast is because of the high-quality 

data availability (i.e. aircraft reconnaissance data). Relationships that estimate wind radii at different wind speeds are scarcer. 25 

Knaff et al. (2007) describe explicitly the TC surface winds using a modified Rankine vortex, which makes it also possible to 

compute different wind radii corresponding to different wind speeds (i.e. 34, 50, 64, 100 kts). However, these results are 

derived from BTD of the Atlantic, Northeast Pacific and Northwest Pacific Oceans. 

In the last decades, a large amount of higher quality data has become available which can be used to improve and 

validate the relationships and parametric wind profiles found in literature. In addition to the RMW, the wind radii of 35 (or 30 

34), 50, 65 (or 64) and 100 knots (hereafter referred to as R35, R50, R65, R100) for the four geographical quadrants around 

the cyclone are currently recorded (see also left panel of Figure 1). There are numerous sources that can provide information 

on the spatial distribution of surface winds ranging from in-situ observations (e.g. surface reports and buoy observations) to 

scatterometry (e.g. QuikSCAT, see Chavas & Vigh, 2014). Some methods are more reliable than others, but a posteriori it is 
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not clear which sources were used for individual wind radii estimates in the best-track data (BTD). However, the currently 

operationally available satellite-based wind radii estimates are characterized by higher accuracy than in the past (Sampson et 

al., 2017). 

In this paper, new relationships are proposed to estimate the median RMW and radius of gale force winds (∆AR35) 

for each ocean basin. In addition, the standard deviation of the TC geometry is described explicitly, making it possible to 5 

treat the TC geometry stochastically with a certain probability distribution. This means that TC geometry is a random 

variable whose possible values are an ensemble of different outcomes.  This is useful when TC size is not known and the 

probability of a relatively large and/or small TC and consequent risks need to be assessed (e.g. in a Monte Carlo analysis 

with synthetic tracks).  Moreover, the paper demonstrates how the proposed relationships lead to improved error statistics 

compared to those found in literature. On top of that, validation with QSCAT-R shows that outer wind speeds can be well 10 

reproduced by a parametric wind profile while using the newly developed relationships or observed values for RMW and 

wind radii. 

This paper is outlined as follows: Section 2 describes the data used for the study. The new relationships describing 

the radius of maximum winds and radius of gale force winds are derived in Section 3 and then validated in Section 4. 

Finally, Section 5 and 6 discuss and summarize the main conclusions of the study. 15 

2. Data 

2.1 Best track data (BTD) 

Two data sources were used to describe the RMW and R35: data from the North Atlantic and Northeast and North-

Central Pacific dataset from the National Hurricane Center (NHC) and the dataset from the Joint Typhoon Warning Center 

(JTWC). The second dataset includes data from different ocean basins (Northwest Pacific Ocean, the South Pacific Ocean 20 

and Indian Ocean). Note that the estimation of wind radii is rather subjective and strongly dependent on data availability as 

well as different climatology and analysis methods (e.g. aircraft observations versus the Dvorak method). In this paper, all 

the available data were used and potential shortcomings in the data are disregarded in order to fit new empirical stochastic 

relationships with the largest possible dataset and for every ocean basin separately. This approach, with its advantages and 

disadvantages, is discussed in Section 5.1. Some of the historical records do not contain values for either the RMW or R35 25 

and therefore these records are discarded. Although these BTD are used as ground truth, the errors in the best-track wind 

radii are estimated to be as high as 10–40% (e.g. Knaff and Sampson 2015). The accuracy of a single record depends on the 

quality and quantity of the available observational data. For example, if in situ observations were available in proximity to 

the TC or if a complete scatterometer passed over the TC, the accuracy may increase. However, information on the accuracy 

is not available per single data entry. 30 

The archives from the NHC and JTWC contain six-hourly storm positions and maximum intensity estimates of 

tropical and subtropical systems.  For this analysis, all data points with a wind speed of 20 m/s or higher were included in the 
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study, since the focus is on tropical storms. Moreover, it is expected that parametric wind profiles cannot capture subtropical 

systems. Also, data points with an RMW larger than 100 kilometers (km) were excluded from the analysis because, 

generally, those points refer to tropical depressions, with large spatial coverage, which are outside the scope of this study. 

Moreover, the averaged value of R35 (𝑅35) over the four quadrants, similarly to Carrasco et al. (2014), was used. Only data 

entries with an estimate of R35 for all four quadrants were used. Therefore, all data entries have both an estimate for RMW 5 

and  𝑅35. On top of that, using all the six-hourly storm positions and maximum intensity estimates in the calibration and 

validation assumes statistical independence.  

In this paper, TC geometry variables RMW and R35 were treated as stochastic variables. This means that, although 

physically not realistic, RMW could assume larger values than R35. In order to overcome this, a new variable was defined: 

the average difference in radius of 35 knots (∆AR35; similar to Xu & Wang, 2015), or radius of gale force winds, describing 10 

the difference between the RMW and the average radius of 35 knots (AR35), see Equation 1. In practical applications, one 

would first retrieve the RMW based on data or estimate the RMW based on an empirical relationship. Secondly, the R35 

would be calculated by adding up the RMW with the ∆AR35 (see also right panel of Figure 1). An additional advantage of 

introducing this new variable is that ∆AR35 contains considerably less scatter. This might imply a correlation between R35 

and RMW, but is not further explored in this paper. 15 

∆AR35 = AR35 − RMW   (1) 

 

Figure 1   Sketch of the terminology used in this paper. In the left panel, the difference in wind radii for several wind 
values observed from different quadrants (NW, NE, SE, SW) and the average (AR) is shown. In the right panel, RMW, AR35 and 
∆AR35 are shown. 20 

 

The BTD is divided into a calibration period (2000-2014) and a validation period (2015-2017).  The combined BTD 

from the NHC and JTWC contains a total of 18,903 unique historical TC data entries, of which 14,800 were used for the 

calibration of the new empirical (stochastic) relationships, and 4,103 for the validation of the estimated wind radii. 
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2.2 QSCAT-R 

The QuikSCAT-based QSCAT-R database (Chavas & Vigh, 2014), with data for the period 1999–2008, was used 

to validate the computed outer (azimuthal) winds using H10 wind profile and the new proposed empirical relationship. The 

dataset, developed by researchers at the NASA Jet Propulsion Laboratory (JPL), is derived from the latest version of the 

QuikSCAT near-surface ocean wind vector database. It includes 690 unique TC profiles and it is optimized specifically for 5 

tropical cyclones with higher wind speeds. QuikSCAT measurements are accurate in all weather conditions for winds up to 

40 m/s (Stiles et al., 2013), while their precision decreases for the inner wind speeds in the TC core (Hoffman & Leidner, 

2005). Therefore, QSCAT-R data were only used to validate the outer wind speeds, and not the inner wind speeds or TC 

core. The tropical cyclone dataset carries a 1-2 m/s positive bias and a 3 m/s mean absolute error, which are not further 

discussed or taken into account in the analysis. 10 

2.3 Ocean basins 

According to the WMO (World Meteorological Organization), areas of TC formation were divided into seven 

basins (Figure 2A). These include the North Atlantic Ocean (NAO), the Northwest Pacific Ocean (NWPO), the Northeast 

Pacific Ocean (NEPO), the South Pacific Ocean (SPO), the Southwest Indian Ocean (SWIO), the Southeast Indian Ocean 

(SWEI) and the North Indian Ocean (NIO). Other ocean basins (e.g. the South Atlantic Ocean) were not included in this 15 

study since weather systems in these areas rarely form a TC.  

2.4 Data conversion 

Data were converted to the International System of Units (SI) units (wind speeds in m/s from knots with a 

conversion of 1 kt = 0.514 m/s and wind radii in kilometers (km) from nautical mile with a conversion of 1 nm = 1.852 km). 

Throughout this study, a maximum cyclone sustained wind vmax has been determined at a 10-m elevation over open sea and 20 

1-minute averaged. The reason for this averaging is to be consistent with the JTWC and NHC which also reports the 

maximum sustained surface winds in terms of 1-minute mean wind speed. Other nations, however, report maximum 

sustained surface winds averaged over different time intervals, which in some cases is 10 minutes. Also, numerical models 

often require 10-minute averaged winds. For the conversion of 1-minute to 10-minute averaged wind speed, a conversion 

factor equal to 0.93 can be used, based on WMO guidelines (Harper et al., 2010). However, in this study, conversions 25 

between 1-minute and 10-minute wind speeds were not needed. 
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Figure 2   Observed maximum sustained wind speeds and definition of the different ocean basins (panel A). The observed 
radius of maximum winds (panel B) and observed radius of gale force winds (panel C) for all the BTD.  
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3. New empirical relationships 

In this section, empirical relationships to estimate the radius of maximum winds (RMW; Section 3.1, see Figure 2B) 

and the radius of gale force winds (∆AR35; Section 3.2, see Figure 2C) were derived based on BTD from the calibration 

period (2000-2014). 

 5 

3.1 Radius of maximum winds (RMW) 

The Vickery and Wadhera (2008) relationship, derived for all major hurricanes (∆pc > 30 hPa or vmax >35 m/s) in 

the Gulf of Mexico and Atlantic Ocean (hereafter VW08), is one of the several relationships in literature providing an 

estimate of the RMW. VW08, derived based on H*WIND data, relates RMW to pressure drop in the eye and latitude. While 

we acknowledge the existence of several other relationships to estimate the RMW, VW08 was used due to its relative 10 

simplicity. Figure 3 compares RMW data from the BTD during the calibration period with results from VW08 in the form of 

a scatter plot with the maximum sustained wind speed (vmax) indicated by color intensity. The data shows a large amount of 

scatter, both for lower and higher RMW values. However, there is a clear pattern visible that larger maximum sustained wind 

speeds result in a smaller RMW. This is in line with other observations (e.g. Willoughby et al., 2016) or based upon 

idealized Sawyer Eliassen models (e.g. Schubert and Hack, 1982; Willoughby et al., 1982) that TC eyewalls generally 15 

contract during intensification. There is also a tendency in the dataset for TCs at higher latitudes to have larger eye diameters 

(e.g. Knaff et al., 2015; not shown here). The large negative bias of 17 km, computed as a difference between observed and 

computed RMW is noteworthy, indicating that VW08 often underestimates the RMW, especially for lower maximum 

sustained wind speeds. Furthermore, also the root-mean-square deviation (RMSD) of almost 29 km is large compared to the 

observed mean. In particular, the scatter index (RMSD divided by the mean) and relative bias (bias divided by the mean) 20 

results in a scatter index of 53% and a relative bias of -32%.  

Given the large spread in the data, as also shown in Figure 3, it was decided to treat RMW as stochastic variable. 

Instead of directly deriving an empirical equation which relates RMW to vmax using a least-square fitting procedure as 

typically done in similar studies, the following approach was used. At first, parameters of a probability density function 

(PDF) that fits the variation of RMW for a range of vmax and latitude values were fitted. Then empirical equations were 25 

derived that relate these parameters to vmax and latitude. The benefit of this approach is that it can produce an estimate of the 

most probable value for RMW (i.e. mode) or median/mean as well as its variance (e.g. 90% prediction interval, PI).  

First, the RMW for each TC category were fitted to various parent distributions. In particular, the following fitting 

parent distributions were tested by visual comparison and by applying the Kolmogorov-Smirnov test: normal, lognormal, 

Gumbel, Rayleigh and gamma. The lognormal distribution was found to provide the best fit with the measured data, and 30 

therefore further used to describe the distribution of RMW. This is also consistent with the distribution used for describing 

∆AR35 and findings in literature (e.g. Dean et al., 2009). Secondly, the chosen parent distribution was used to fit the BTD in 
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order to derive shape (σ) and location parameter (μ) of the lognormal distribution, dependent on latitude and wind speed. In 

particular, the BTD from the calibration period were divided based on a moving window with a bin of 10 m/s in wind speed 

and of 10 degrees in latitude (0-10, 1-11, 2-12, etc.). Per each ocean basin fitting coefficients were determined for a constant 

shape parameter and a location parameter with exponential decay. This resulted in Equation 2 for the μ parameter which, for 

a log-normal distribution, corresponds to the median value: 5 

μ = A ∙ e ∙ (1 + 𝐶 |𝜃|) + 𝐷  (2) 

where μRMW represents the location parameter of the lognormal distribution for RMW, vmax is the maximum (1-minute 

averaged) wind speeds, θ is the latitude in degrees, and A2, B2, C2 and D2 are fitting coefficients.  

 

As observed in literature (e.g. Knaff et al. 2015), the median RMW (μRMW) in Equation 2 depends on vmax (i.e. 10 

higher wind speeds result in lower RMW) and latitude (i.e. higher latitude result in higher RMW). The addition of storm 

duration or the use of the axisymmetric component of the wind speed only as input parameters resulted in very limited skill 

improvement in the estimation of RMW; therefore these variables were discarded.  This procedure was applied to the 

combined JTWC and NHC BTD from the calibration period at all basins, and then for each individual ocean basin. Table 1 

contains the shape and location values for the fitting parameters to be used in Equation 2. 15 

A scatter plot describing the RMW derived from BTD as a function of the maximum wind speed and for (an 

arbitrarily chosen) latitude of 10 degrees and computed as according to Equation 2, is shown in Figure 4. The green line 

shows the median RMW based on the BTD, whereas the solid blue line represents the mean RMW obtained from Equation 

2. The black lines indicate the 5 and 95 percent exceedance values computed based on BTD. Finally, the 90% prediction 

interval, is shown using the filled red color. The figure shows how the variance in RMW decreases (both in the data as in the 20 

empirical relationship) as a function of vmax, indicating that faster-rotating cyclones are characterized by less noise. The new 

empirical equation for RMW is evaluated in Section 4. 
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Figure 3   Scatter plot describing BTD RMW (x-axis) versus computed RMW based on VW08 (y-axis). Data points are 
colored-coded based on the maximum sustained wind speeds in the BTD. The dashed line represents a perfect fit between BTD 
and computed data based on VW08. 

  5 
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Figure 4  Scatter plot describing RMW (BTD and computed; y-axis) as function of the maximum sustained wind speeds 
(x-axis; and the latitude; not shown). The blue line is the median of the proposed relationship derived for all basins at an 
arbitrarily chosen latitude of 10°. The green line is the median of the BTD. The red area shows the 90 percent prediction interval 
(PI) based on the proposed relationship for all basins. The 5 and 95 percent exceedance values from the BTD are presented as 5 
black dashed lines. The gray dots are observation points in which more frequent observations are shown as darker points and less 
frequent observations as lighter points. 
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Table 1  Fitting coefficients for the lognormal RMW as described in Equation 2. 

 shape 

(σ) 

location (μ)     

Basin  A2 B2 C2 D2 Count 

NIO 0.307 132.4 14.6 -0.003 20.4 480 

SWIO 0.338 229.2 9.5 0.004 28.4 1889 

SEIO 0.343 85.3 30.7 0.002 5.8 832 

SPO 0.364 127.8 11.8 0.016 25.5 1118 

NWPO 0.359 153.7 11.5 0.007 28.9 4836 

NEPO 0.311 261.5 7.0 0.026 29.2 2570 

AO 0.395 19.1 24.1 0.106 23.2 3075 

All 0.370 44.8 23.4 0.030 22.4 14800 

 

 5 
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3.2 Radius of gale force winds (∆AR35) 

By applying a parametric wind profile, it is possible to derive the ∆AR35. Here, the H10 wind profile was applied, 

in which the B parameter was computed based on H80 (Equation 3A), and in which information on the wind radii of 

cyclones was used to constrain the decay of wind speeds away from the eye wall (Equation 3B). When no additional 

information on the wind radii is provided, H10 reduces to the original H80 wind profile which is often unable to accurately 5 

reproduce the spatial distribution of winds in TCs (e.g. Willoughby and Rahn, 2004). 

 

B =  
(∆ )

   (3A) 

x = 0.5 + (r − RMW)
.

 (3B) 

where B represents the Holland pressure profile parameter, 𝜌  is the air density (assumed constant at 1.15 kg/m3), e is the 10 

base of natural logarithms, ∆𝑝  is the pressure drop in the core of the TC in hPa, x is the exponent used to compute the wind 

profile in H80/H10 and xn represents the adjusted exponent to fit the peripheral observations at radius rn. 

 

Knaff et al. (2007) relationships (hereafter CLIPER; CLImatology and PERsistence models), derived for the NAO, 

NWPO, and NEPO are among the few in literature providing an estimate of the TC surface winds. Knaff et al. (2007) fitted a 15 

modified Rankine vortex on the BTD of NHC and JTWC, which makes it possible also to retrieve the ∆AR35. Figure 5 

compares ∆AR35 from the BTD, derived from the calibration period, with results from CLIPER, in which vmax is indicated 

by color intensity in the scatter plot. The data show a large amount of scatter and bias with a computed scatter index of 67% 

and a relative bias of -18%. However, there is a clear pattern showing that larger maximum sustained wind speeds result in a 

larger ∆AR35. There is also a tendency in the dataset for TCs at higher latitudes to have a larger ∆AR35 (not shown here).  20 

In order to improve the estimate of the ∆AR35, generic relations were derived as part of this study based on BTD 

from the calibration period from all ocean basins, as well as data from each individual basin separately. The method 

followed is similar to the one applied to estimate RMW. First, a representative parent distribution of the data was sought for, 

secondly, the parameters of the PDF were determined and thirdly, the parameters of the PDF were fitted for a range of vmax 

and latitude values. The same parent distributions were tested and the lognormal distribution was again chosen as most 25 

representative, which is in line with Chavas et al. (2016). 

Similarly to RMW, the BTD from the calibration period were divided based on a moving window with a bin width 

of 10 m/s in wind speed (0-10, 1-11, 2-12, etc.) and of 10 degrees in latitude. This led to Equation 4 in which exponential 

functions, dependent on the wind speed per oceanic basin, were used to describe the location parameter and the shape 

parameter. Additionally, the analysis of the data showed that ∆AR35 is dependent on the latitude, with TCs generally 30 

increasing in size at higher latitudes.  Adding additional parameters (e.g. storm duration or intensity change of the wind 

speed) resulted in very limited skill improvement for the estimate of ∆AR35. This procedure was applied to both the 
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combined JTWC and NHC BTD from the calibration period of all basins, and for each individual ocean basin. Table 2 

contains the values for the fitting parameters for the ∆AR35 of Equation 4. 

 

σ∆ = A + e ∙ ∙ (1 + 𝐶 |𝜃|)                         (4) 

μ∆ = A ∙ (v − 18) ∙ (1 + 𝐶 |𝜃|) 5 

 

where μ∆AR35 and σ∆  represent, respectively, the location and shape parameter of the lognormal distribution for ∆AR35 

and A3, A4, B3, B4, C3 and C4 are fitting coefficients. 

 

A scatter plot describing the AR35 derived from BTD as a function of the vmax and latitude and computed as 10 

according to Equation 4 is shown in Figure 6. The green line shows the median AR35 based on the BTD, whereas the solid 

blue line represents the mean AR35 obtained from Equation 4. The black lines indicate the 5 and 95 percent exceedance 

values computed based on BTD. Finally, the 90% prediction interval is shown using a filled red color. The figure shows how 

the median AR35 increases as a function of vmax while the variance stays fairly constant. The new empirical equation for 

AR35 is evaluated in the next chapter. 15 

 

Table 2  Fitting coefficients for the lognormal ∆AR35 as described in Equation 4. 

 shape (σ)   location (μ)    

Basin A3 B3 C3 A4 B4 C4 Count 

NIO 0.1215 -0.0522 0.0329 30.93 0.531 -0.012 480 

SWIO 0.1312 -0.0444 0.0023 30.21 0.415 0.022 1889 

SEIO 0.1223 -0.0454 0.0133 26.59 0.426 0.029 832 

SPO 0.1205 -0.0350 -0.0052 23.88 0.431 0.038 1118 

NWPO 0.1561 -0.0417 0.0050 33.27 0.429 0.017 4836 

NEPO -0.2513 -0.0091 -0.0051 18.11 0.486 0.030 2570 

AO 0.1319 -0.0421 0.0124 17.00 0.454 0.055 3075 

All 0.1900 -0.0446 0.0061 29.61 0.413 0.024 14800 
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Figure 5   Scatter plot describing BTD ∆AR35 (x-axis) versus computed ∆AR35 based on CLIPER (y-axis). Data points 
are colored-coded based on the maximum sustained wind speeds in the BTD. The dashed line represents a perfect fit between the 
BTD and the computed data based on CLIPER. 5 
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Figure 6  Scatter plot describing AR35 (BTD and computed, y-axis) as function of the maximum sustained wind speeds 
(x-axis; and the latitude; not shown). NB: AR35 is the summation of RMW and ∆AR35. The blue line is the median of the 
proposed relationship derived for all basins at an arbitrarily chosen latitude of 10°. The green line is the median of the BTD. The 
red area shows the 90 percent prediction interval based on the proposed relationship for the standard deviation. The 5 and 95 5 
percent exceedance values from the BTD are presented as black solid lines. The gray dots are observation points in which more 
frequent observations are shown as darker points and less frequent observations as lighter points. 
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4. Validation 

In this section, empirical relationships to estimate the RMW and ∆AR35 were validated based on BTD from the 

validation period (2015-2017) (Section 4.1). Moreover, the outer wind profile based on the Holland wind profile, in 

combination with observed wind radii, were further validated using the QSCAT-R database (Section 4.2). 

4.1 Wind radii 5 

A subset of the BTD (from 2015-2017) was used to validate the wind radii. Errors statistics are summarized in 

Table 3. The values indicate that, for all basins combined, the RMSD between the BTD and the proposed relations for the 

RMW is 17 percent lower than compared to VW08 (RMSD of 18 km compared to 21 km). In the NEPO basin, VW08 

performs relatively better than at other basins. When comparing the performance of the proposed relations and VW08, it is 

important to note that the relation of VW08 was derived for storms with central pressures lower than 980 hPa, thereby 10 

explicitly focusing on the most severe TCs. When the data were filtered to include only data points with a pressure drop 

(∆pc) larger than 30 hPa, the RMSD decreases and differences become much smaller (0-10% decrease in RMSD). Moreover, 

the bias also decreases. 

Table 4 shows the error statistics related to the estimation of ∆AR35. In particular, the RMSD between the proposed 

relations and the BTD for all basins combined is 25% percent lower compared to CLIPER (RMSD of 74 km compared to 94 15 

km) and there is a negative bias ranging between 9 and 37 km. Remarkably, the deviations of the ∆AR35 based on BTD in 

the NIO and SEIO from CLIPER are significantly smaller compared to the differences for the AO for which CLIPER was 

derived. When the H10 wind profile is applied without additional information to compute the decay of wind speeds away 

from the eye wall (H80), the ∆AR35 is strongly overestimated (overall bias of 177 km). 

  20 
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Table 3  Root-mean-square differences (RMSD; first number) and bias (second number) for RMW in kilometers for the 
validation period for both the proposed relationships as for VW08. Statistics are presented for all data points, as well for data 
points with a pressure drop (∆pc ) larger than 30 hPa. 

Basin 
proposed 

all 

VW08 

all 

proposed, 

∆pc > 30 

VW08, 

∆pc > 30 

Count 

all 

Count 

∆pc > 30 

NIO 20.9 / -14.2 25.3 / -17.7 14.0 / -4.5 14.1 / -2.5 146 46 

SWIO 16.8 / -7.0 20.0 / -8.6 10.4 / -0.2 9.8 / 0.3 365 166 

SEIO 17.9 / -10.7 24.0 / -14.0 9.6 / -1.6 10.9 / 4.9 107 34 

SPO 18.1 / -9.1 22.1 / -10.1 12.9 / -3.0 12.7 / 1.5 424 184 

NWPO 17.2 / -6.4 22.4 / -5.5 12.1 / -0.3 14.7 / 4.6 1389 742 

NEPO 16.9 / -8.4 17.5 / -6.7 13.1 / -4.8 11.6 / -1.2 1031 311 

AO 21.0 / -8.7 21.5 / -0.8 17.2 / -4.1 18.2 / 8.1 641 291 

All 18.0 / -7.1 21.0 / -6.5 13.1 / -1.6 14.2 / 3.3 4103 1774 

 

Table 4  Root-mean-square differences (RMSD; first number) and bias (second number) for ∆AR35 in kilometers for 5 
the validation period for the proposed relationships, CLIPER (Knaff et al., 2015) and H80 wind profile. 

Basin Proposed CLIPER H80 count 

NIO 48.0 / -17.5 51.0 / 3.3 275.2 / 221.9 146 

SWIO 68.9 / -31.4 123.1 / -95.3 248.4 / 190.9 365 

SEIO 37.2 / -9.0 69.0 / -58.3 238.8 / 187.7 107 

SPO 59.6 / -16.3 104 / -74.7 267.2 / 214.1 424 

NWPO 83.8 / -37.3 95.0 / -25.6 294.2 / 198.8 1389 

NEPO 47.4 / -10.3 86.4 / 68.7 125.4 / 59.3 1031 

AO 90.0 / -26.0 116.8 / 7.1 552.7 / 252.4 641 

All 74.1 / -23.3 94.2 / -13.9 316.8 / 177.0 4103 
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4.2 Outer wind speeds 

The QSCAT-R database was used to validate the computed (outer) azimuthal wind speeds while using the H10 

wind profile in combination with several sources to constrain the decay of wind speeds. QuikSCAT includes 690 unique 

tropical cyclones and is known to provide reliable results for outer wind speeds of lower intensity. Figure 7 displays the error 

profile, representing the difference between modeled wind speed and measured data based on QuickSCAT, as a function of 5 

the normalized radius. This means that for all validated TCs the radius on the x-axis is divided by the RMW. A horizontal 

line equal to zero indicates no difference between modeled and measured wind speed data, while the solid colored lines 

represent the median difference. The filled area indicates the interquartile range (IQR). 

The figure shows that in combination with the H10 wind profile the proposed relationships result in the smallest 

difference with respect to the measured wind speeds (green line). However, applying H10 wind profile with observed values 10 

for the wind radii (i.e. based on BTD values) results in an underestimation of the modeled outer winds (blue line). On the 

other hand, applying the H10 wind profile, without additional information on the gale force winds (H80), results in a strong 

overestimation of the outer winds (red line). Similarly, a combination of other existing relationships for RMW (VW08) and 

∆AR35 (CLIPER) results in an overestimation of the outer winds but to a lesser degree (orange line). 

The same information is also shown in Table 5, where the root-mean-square differences and bias between modeled 15 

wind speeds and measurements are summarized. Using the proposed relationship with the H10 wind profile results in the 

lowest RMSD and smallest bias.  

 

Table 5  Root-mean-square difference (RMSD) and bias (in m/s) between modeled and measured azimuthally averaged 
wind speeds based on QSCAT-R data. The data analyzed in the table refer all TCs with wind speeds between 40 m/s and 5 m/s and 20 
a normalized radius between 3 and 16. Statistics are shown for median values (50%) and the IQR range (25%-75%).  With ‘H10: 
observed’ the authors refer to the Holland et al. (2010) wind profile in combination with the RMW and AR35 from the BTD. 

 Wind profiles 
RMSD 

median (50%) 

RMSD: 

low (25%) 

RMSD:  

high (75%) 

bias:  

median (50%) 

bias: 

low (25%) 

bias: 

high (75%) 

H80 11.24 8.32 14.57 10.98 7.89 14.34 

H10: observed (BTD) 5.46 3.85 7.04 -4.67 -6.32 -2.6 

H10: VW08 + CLIPER 3.60 2.06 5.76 1.64 -1.27 4.16 

H10: proposed 2.86 1.71 4.51 -1.04 -3.3 1.39 
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Figure 7  Wind speed error (observed QSCAT-R minus modeled) profiles for different models as function of relative TC 
radius (r / RMW). A value equal to zero on the y-axis indicates a perfect match between model and observations. Interquartile 
ranges are shown with shaded colors and the solid line represents the median. Note: for the proposed relationships the most 
probable value for RMW and AR35 was used (i.e. mode).  5 
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5. Discussion 

For clarity, discussion points have been grouped under three main topics: 

5.1 Data 

In this study, all available BTD from NHC and JTWC were used and combined into one dataset. This approach was 

followed to create the largest sample size possible, in order to derive empirical (stochastic) relationships valid for each ocean 5 

basin, various latitudes, different TC geometries and strengths. This approach is limited by the debatable assumption that 

each six-hourly data point is statistical independent. Moreover, errors in the BTD can be quite significant so previous studies 

(e.g. Holland, 2008) selected a specific subset of the BTD in order to ensure the quality of the data and remove potential 

inconsistencies. However, the advantage of including all data entries is that the derived relationships are more widely 

applicable (i.e. larger parameter space). Moreover, as they are based on larger datasets, it is possible to threat TC geometry 10 

variables in a stochastic rather than a deterministic approach. 

5.2 Methodology  

In order to derive the new empirical relationship for RMW and ∆AR35, the maximum sustained wind speed and 

latitude were used. Although other authors used additional parameters to describe the TC geometry (e.g. pressure drop, storm 

duration, rapid intensification, etc.), limited predictive skill improvement was found by incorporating those additional 15 

parameters. This makes the derived relationships relatively simple for practical applications. Moreover, lognormal statistical 

distributions in combination with exponential functions were used to fit all available data and derive those relationships. For 

our application, exponential-shaped functions resulted in the best fit compared to the available data. The choice of lognormal 

statistical distributions was based on the comparison of the different CDFs derived using different distributions, the 

Kolmogorov-Smirnov test and supported by findings from literature (e.g. Dean et al., 2009; Chavas et al., 2016). However, 20 

different statistical distributions and functions are available in literature to fit and describe TC geometry data. The strength of 

using statistical distributions to derive these relationships is that TC geometry is treated stochastically, therefore providing 

not only mean/median values but also prediction intervals. This is especially of importance when the TC geometry is not 

known (e.g. for older BTD and/or Monte Carlo analysis with synthetic tracks) with numerical models. Another possibility 

would be the derivation of wind speed probability estimates. A possibility to further improve these relationships would be, 25 

when enough data is available (either via additional observations or surrogate data derived by numerical models), to use 

machine learning techniques such as Bayesian Neural Networks to estimate TC geometry parameters. 

5.3 Differences in measured and modeled outer wind profiles 

QuikSCAT data were used to validate the (outer) azimuthal wind speeds derived using the new empirical 

relationships in combination with the H10 wind profile. The analysis has shown how the proposed relationships in 30 
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combination with the H10 wind profile result in the lowest RMSD and smallest bias for the outer winds, compared to other 

existing relationships (see Figure 7). This gives confidence that parametric wind models can be used to compute the outer 

wind speeds. This is of particular importance for the estimation of coastal hazards (i.e. storm surge and wave heights). 

However, differences were also found for individual TCs, where the Holland wind profile in combination with the 

empirical relationships derived in this paper did not result in a good reproduction of the outer wind speeds. As an example, 5 

Figure 8A shows computed and measured wind speeds for TC Vaianu (2006), which was characterized by an extremely 

large radius of gale force wind (R35 equal to 292 km  10% probability of exceedance). Measured values are shown in the 

figure by the black circles. When applying the proposed relationships to compute the most probable values of the wind radii 

(red line), a R35 value equal to 162 km is obtained, resulting in an overall underestimation of the measured outer wind 

speeds.  Also, when using the observed wind radii information (blue line), TC outer winds are not well reproduced, which 10 

shows that even with the correct wind radii value, parametric wind models can have the wrong shape. This approach is also 

limited when measured wind speeds cannot be represented by an exponential decay, as it is assumed by the Holland wind 

profile. For example, TCs characterized by two wind maxima cannot be reproduced by an exponential decay of wind speed 

(Figure 8B).  However, the Holland wind profile is widely used due to its relative simplicity and does, most of the times 

(80% of the TCs are reproduced with a RMSE of less than 5 m/s), reproduce the decay of wind speed fairly well as shown in 15 

the evaluation of 690 unique TCs in Figure 7.  
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Figure 8  Radial wind profiles for measured (black circles), computed based on relationships for wind radii (red lines) 
and computed based on observed wind radii for tropical cyclone Vaianu (14 February 2006) (panel A) and Karl (23 September 
2004) (panel B). Measured data are based on QSCAT-R data, while computed values are based on H10 wind profile calibrated 
with the relationships proposed in this paper (red line) or observed data (blue line). Panel A and B are examples indicating when 5 
difference between measured wind speeds and TC size can be encountered.  
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6. Conclusions 

In this paper, new empirical relationships are derived which estimate tropical cyclone (TC) geometry with simple 

and generic equations and with higher accuracy with respect to other well-known empirical relationships available from 

literature. Those new relationships are valid for any ocean basin (Atlantic, S/NW/NE Pacific, N/SE/SW Indian Ocean). 

Moreover, the new relationships include a stochastic description for both the radius of maximum winds (RMW) and the 5 

radius of gale force winds (∆AR35). This allows the quantification of the prediction interval around the median estimates, 

making the estimation more useful. 

According to the derived relationships, the RMW is described as a function of the maximum sustained wind speeds 

and latitude. The radius of gale force winds is estimated using a newly introduced ∆AR35 parameter (average difference 

between radius of 35 knots and radius of maximum wind), and is also dependent on the maximum sustained winds and 10 

latitude. Both parameters are fit through simple exponential functions. Compared to best track data, the proposed 

relationships improve the estimation of RMW and ∆AR35 by reducing the root mean square difference (RMSD) up to 25%. 

Larger improvements were found in particular for non-US TCs, since most of the existing relationships are based on data 

from the Atlantic Ocean, Northeastern Pacific Ocean and/or Northwestern Pacific Ocean. 

The new relationships, in combination with the Holland wind profile, were validated using a subset of the BTD and 15 

(outer) azimuthal wind speeds from the QSCAT-R database. The results showed that (outer) azimuthal wind speeds of the 

TC can be reproduced with the H10 wind profile when using either the BTD (‘observed’) for RMW and ∆AR35 or the 

relationships derived in this paper. When no additional information on wind radii was used to calibrate the H10 wind profile, 

which is generally done when the radius of gale force wind is not known, surface wind speeds were overestimated.  

The derived empirical relationships can be used in a variety of applications. For example, a better estimate of TC 20 

pressure and surface wind speeds for Monte Carlo analysis with synthetic tracks for risk assessments with numerical models 

can result in a more accurate description of wave and surge conditions resulting from the TC. As a result, this can lead to a 

better quantification of coastal hazards, and consequent risks and damages. Similarly, an improved assessment of those 

hazards can help the design of appropriate adaptation measures. Other fields of applications may vary from improved design 

parameters for offshore structures to navigation. The application of the new empirical relationships will be presented as part 25 

of a separate paper currently under preparation. 

 

Code and data availability.  

The best-track data (BTD) are freely available and collected from the National Hurricane Center (NHC) and the Joint 

Typhoon Warning Center (JTWC). Upon request this combined dataset can be shared with other researcher. Moreover, 30 

QSCAT-R (open) database (Chavas & Vigh, 2014), with data for the period 1999–2008, was used to validate the computed 

outer winds. The Matlab script to compute the tropical cyclone geometry is freely available via the following URL: 

https://bit.ly/2k9py1J. 
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