1	Revised earthquake sources along Manila Trench for tsunami hazard
2	assessment in the South China Sea
3	
4	Qiang Qiu ^{1,2} , Linlin Li ^{3,4} , Ya-Ju Hsu ⁵ , Yu Wang ⁶ , Chung-Han Chan ¹ , Adam D. Switzer ^{1,2}
5	
6	¹ Asian School of the Environment, Nanyang Technological University, Singapore
7	² Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
8	³ School of Earth Sciences and Engineering, Sun Yat-Sen University, Guangzhou, China
9	⁴ Department of Civil and Environmental Engineering, National University of Singapore, Singapore
10	⁵ Institue of Earth Sciences, Academia Sinica, Taipei, Taiwan
11	⁶ Department of Geosciences, National Taiwan University, Taiwan
12	Correspondence: Linlin Li (llli@ntu.edu.sg)
13	Abstract
14	Seismogenic tsunami hazard assessments are highly dependent on the reliability of
15	earthquake source models. Here in a study of the Manila subduction zone (MSZ) system, we
16	combine the geological characteristics of the subducting plate, the geometry, and coupling
17	state of the subduction interface to propose a series of fault rupture scenarios. We divide
18	the subduction zone into three rupture segments: 14°N-16°N, 16°N-19°N and 19°N-21.7°N
19	inferred from geological structures associated with the down-going Sunda plate. Each of
20	these segments is capable of generating earthquakes of magnitude between Mw 8.5+ and
21	Mw 9+, assuming a-1000-year seismic return period as suggested by previous studies. The
22	most poorly constrained segment of the MSZ lies between 19°N-21.7°N, and here we use
23	both local geological structures and characteristics of other subduction zone earthquakes
24	around the world, to investigate the potential rupture characteristics of this segment. We
25	consider multiple rupture modes for tsunamigenic-earthquake type and megathrust-splay
26	fault earthquakes. These rupture models facilitate an improved understanding of the
27	potential tsunami hazard in the South China Sea (SCS). Hydrodynamic simulations
28	demonstrate that coastlines surrounded the SCS could be devastated by tsunami waves up
29	to 10-m if large megathrust earthquakes occur in these segments. The regions most prone
30	to these hazards include west Luzon of Philippines, southern Taiwan, the southeastern
31	China, central Vietnam and the Palawan Island.

33 **1.** Introduction

34 Large and damaging tsunamis are commonly triggered by megathrust ruptures that occur 35 along convergent plate boundaries (i.e. Subduction zones). Since 1900, many megathrust 36 ruptures have triggered numerous devastating near- and far-field tsunamis including the 37 1952 M_w 8.8-9.0 Kamchatka event (e.g., Johnson and Satake 1999; Kanamori, 1976), the 38 1960 M_w 9.5 event in the Chile subduction (e.g., Cifuentes, 1989; Moreno et al., 2009), the 39 1964 M_w 9.2 Alaska earthquake (e.g., Plafker, 1965), the 2004 M_w 9.2 Sumatra-Andaman 40 Earthquake along northern Sunda Trench (e.g., Vigny et al., 2005; Baneriee et al., 2007; 41 Chlieh et al., 2007), and the more recent 2010 M_w 8.8 Maule event in Chile (e.g., Vigny et al., 2011; Pollitz et al., 2011) and 2011 M_w 9.0 Tohoku-Oki earthquake along the northwest 42 43 border of the pacific ocean (e.g., Koketsu et al., 2011; Wei et al., 2012). These earthquakes 44 and their associated subduction zones have been intensively studied from different 45 perspectives, including their tectonic settings and long-term evolution, seismic activities, 46 geodetic and geophysical features. In contrast, the Manila subduction zone (MSZ), which 47 extends from the southern Taiwan to the southern tip of the Luzon Island in Philippines 48 along the eastern margin of the South China Sea (SCS) (Figure 1), receives less attention, 49 even though it shares many similarities with megathrust systems where large 50 tsunamigenic earthquakes have occurred (Hsu et al., 2012, 2016).

51

52 Over the past decade, attempts to study megathrust earthquakes and tsunamis from the 53 Manila subduction zone are starting to gain momentum. A number of rupture models have 54 been used to assess potential tsunami hazard in the SCS (e.g., Hong Nguyen et al., 2014; Liu 55 et al., 2009; Megawati et al., 2009; Okal et al., 2011; Wu and Huang, 2009) and yet, the 56 simulated tsunami wave heights and the subsequent hazard assessments differ greatly 57 among studies (Hong Nguyen et al., 2014; Liu et al., 2009; Megawati et al., 2009; Okal et al., 58 2011; Wu and Huang, 2009; Xie et al., 2019). The difference often lies in the proposed fault-59 slip magnitudes of these models, and also the fault geometries used. Large variability in the 60 results produced by these models underscores the fact that the seismogenic behaviors of 61 the MSZ are still poorly understood. Some of the challenges which stand out and need to be resolved include assessing whether the MSZ is capable of hosting M9+ earthquakes; and 62 63 investigating the amount of tectonic strain it has accumulated, its style of strain 64 accumulation and constraining how that strain is likely to be released in future.

66 Several lines of evidence suggest that the Manila trench has the potential to host a giant 67 rupture capable of generating a basin wide tsunami. Firstly, both historical earthquake records and modern seismicity databases (Hsu et al., 2012, 2016) indicate an absence of 68 69 earthquakes larger than M_w 7.6 since Spanish colonization of Luzon in 1560s (Bautista et al., 70 2012; Megawati et al., 2009; Ramos et al., 2017; Terry et al., 2017). The lack of significant 71 megathrust-related earthquakes in modern records implies that either a predominately 72 aseismic megathrust or a highly coupled interseismic megathrust with the potential for a 73 large (M_w 8.5+) rupture (e.g. Hsu et al., 2012). Several recent studies favor the high 74 interseismic coupling model, since both the analysis of earthquake focal mechanisms and 75 geodetic monitoring results demonstrate that the upper plate is under shortening, which 76 suggests that the megathrust, at least since the 1960s, shows minimal creeping (Bautista et 77 al., 2001; Hsu et al., 2012, 2016). Secondly, the rate of plate convergence across the Manila 78 trench is up to 90-100 mm/year- faster than the convergence rate of the Sumatra, Japan 79 and Nankai subduction zones, all of which have hosted giant earthquakes in the past few 80 decades (McCaffrey, 2008; Megawati et al., 2009; Hsu et al., 2016, 2012;). Since the MSZ 81 did not produce any significant events in the past four centuries, >30m of slip deficit is 82 estimated to have been accumulated on the subducting interface (Megawati et al., 2009; 83 Hsu et al., 2016). Thirdly, historical documents together with a few geological records 84 across the SCS basin have reported nearly 130 tsunami-events with different generation 85 mechanisms (i.e. Earthquakes, submarine landslides, volcanic eruptions). Although the 86 credibility levels of these records varies (Bautista et al., 2012; Lau et al., 2010; Paris et al., 87 2014) and the geological-based interpretation suffers from the challenges of distinguishing 88 tsunami waves from extreme storm surges, a series of records stand out with similar range 89 of event ages. Notably, four independent geological and geomorphological studies (Ramos 90 et al., 2017; Sun et al., 2013; Yang et al., 2018; Yu et al., 2009) (Figure 1) have purported 91 evidence from coastal deposits which they have inferred to be the result of large tsunami 92 event in SCS around 1000 to 1064 A.D., which is of near coincidence with a historical large 93 wave event recorded in Chaoan, Guangdong in November, 1076 A.D. (Lau et al., 2010). The 94 four independent sites of geological evidence are located at Dongdao island (Sun et al., 95 2013), Yongshu island (Yu et al., 2009), Badoc island near Luzon (Ramos et al., 2017) and 96 Nanao island in southern Chinese coastline (Yang et al., 2018) (Figure 1). Since these

97 studies identified only one event and if it were indeed generated by one tsunami, then we 98 can conclude that the event was likely to be basin-wide and triggered by a very large MSZ 99 event. Such an event will be a megathrust earthquake with sufficiently large rupture up to 100 1,000 km long. Such a long and persistent rupture is comparable to the rupture length of the 2004 Sumatra-Andaman earthquake (e.g. Megawati et al., 2009). With the afore-101 102 mentioned pieces of evidence, there is no reason to rule out the possibility that the Manila trench could rupture as an M_w 9 earthquake (i.e. Megawati et al., 2009; Hsu et al., 2016). 103 104 The current status of the Manila subduction zone could be an analog of the Sumatran 105 subduction zone before the 2004 M_w 9.2 Sumatra-Andaman event between Myanmar and 106 Aceh where a paucity of earthquake > M_w 8 precede the 2004 event (Chlieh et al., 2008; Hsu 107 et al., 2012), despite of the very different geological settings (i.e. age, buoyancy, fault 108 geometry) between these two subduction zones.

109

110 The SCS region is vulnerable to potential tsunami hazard. It covers an area ca.3.5 million km² (Terry et al., 2017), and is encircled by the coastlines of southeastern China, southern 111 112 Taiwan, western Philippines, eastern Vietnam, northern Borneo and eastern Malaysia, forming a semi-enclosed basin (Figure 1). The SCS coastline is one of the world's most 113 densely populated with more than 80 million people living in the surrounding coastal cities 114 115 (Terry et al., 2017). Many of these coastal cities serve as the economic centers and play pivotal roles in their respective countries' economic development. The coastline also hosts 116 a very high density of major infrastructure (i.e. nuclear power plants, ports, airports). Data 117 118 from the World Nuclear Association shows that more than 10 nuclear power plants are 119 currently in operation or about to start construction in the SCS coastline 120 (http://www.world-nuclear.org/information-library). Thus, if a large megathrust earthquake (e.g. Mw >9) were to occur within the SCS basin (Li et al., 2018), the impact 121 would be amplified and much more devastating as the SCS is only about 1/20 the size of the 122 123 Indian Ocean. It is therefore crucial to provide physical-based earthquake rupture models 124 for a more realistic tsunami hazard assessment in the SCS region.

125

This study differs from previous studies (e.g., Hong Nguyen et al., 2014; Liu et al., 2009;
Megawati et al., 2009; Okal et al., 2011; Wu and Huang, 2009), because we utilize a geodetic

128 coupling model constrained by 17 years of GPS velocity measurements (Hsu et al., 2016) to

129 propose a suite of better constrained physically based earthquake rupture scenarios. We 130 also consider rupture segmentations constrained by the geological characteristics and the 131 relief of the subducting Sunda plate. Scenario-based rupture models are different with the 132 probabilistic-based tsunami hazard assessments within which hundreds and thousands are 133 implemented for rupture uncertainty estimates. Therefore, the probabilistic approaches 134 (e.g., Li et al., 2016; Grezio et al., 2017) are often more complex to understand and 135 implement than the scenario-based approaches. Here the proposed rupture models afford 136 a physical-based understanding of the tsunami hazard in the SCS. As a demonstration, we 137 implement the rupture models to conduct hydrodynamic simulations to assess the tsunami 138 characteristics along the coastlines of the SCS.

139

140

40 2. Refined possible rupture scenarios

141 Forecasting the extent and the slip distribution of earthquake ruptures is a challenging task. 142 Before the 2004 M_w 9.2 Sumatra-Andaman earthquake (Chlieh et al., 2008), an M_w 9 143 earthquake had never been anticipated along the Sunda Trench, due to its oblique 144 convergence orientation and seismically inactive feature (Satake and Atwater, 2007). 145 Globally, the eventual ruptures of some unexpected fault locations keep surprising 146 scientists (Bilek and Lay, 2018). We've seen partial ruptures of fully locked megathrusts 147 (Konca et al., 2008; Qiu et al., 2016; Ruiz et al., 2014; Schurr et al., 2014), and piecemeal 148 breaks in the center of perceived seismic gaps (e.g. Salman et al., 2017). Even with 149 improved observations, it remains difficult to constrain the magnitude of potential 150 earthquake in the first order, and even more difficult to define the rupture pattern (e.g., Lay, 151 2018). A recent example comes from Japan where Loveless & Meade (2010) used a number 152 of inland GPS stations to estimate the coupling state of the Japan megathrust before the 153 2011 Tohoku-Oki earthquake. They indicated the spatial extent of a possible future rupture. 154 Notably, the rupture models constrained by multiple geodetic data sets after the 2011 155 earthquake (Koketsu et al., 2011; Loveless and Meade, 2011, Wei et al., 2012) are 156 significantly different to the coupling map of Loveless and Meade (2010). The discrepancy 157 between a coupling map and actual rupture estimates has also been observed at other 158 subduction zones (e.g. Ruiz et al., 2014; Schurr et al., 2014) and for the collision zone 159 between the Indian and Eurasian plates (Avouac et al., 2015; Qiu et al., 2016; Stevens and

Avouac, 2015). Clearly, our current knowledge of the seismogenic characteristics of giantearthquakes remains deficient.

162

163 Great efforts have been made to investigate the physical parameters that characterize subduction zones with regard to the geometry, geology and dynamics (Schellart and 164 165 Rawlinson, 2013). Systematic analysis of collections of great earthquakes globally indeed 166 suggests that some of the physical parameters do play key roles in controlling the rupture 167 characteristics (Bilek and Lay, 2018; Bletery et al., 2016; Schellart and Rawlinson, 2013), 168 although limitations in the historical earthquake records inevitably make it difficult to have 169 high confidence on such relationships. Taking into account the geometrical effects, previous 170 studies have divided the entire Manila subduction zone into three segments (i.e. Zhu et al., 171 2013; Li et al., 2016; Gao et al., 2018). Here we follow the segments proposed by Li et al. 172 (2016), and we provide new constraints on earthquake and tsunami potentials by 173 combining geological information and the geodetic constrained coupling map to adjust 174 these segments accordingly. The modulated three segments are 14°N-16°N, 16°N-19°N, 175 19°N-22°N, respectively. Their significances are detailed in subsequent sections.

176 **2.1 Rupture segment 1 (zone 1, 14°N-16°N)**

177 The Manila trench primarily starts from ca.13°N west of Mindoro and ends at ca.22°N 178 southwest of Taiwan, and beyond these bounds the Manila trench gradually transform into 179 collision and accretionary belt in the north and south (Figure 1). At the southernmost area 180 of the Manila trench, the strike direction of the trench bends to southeast offshore the 181 Mindoro Island (ca.13°N) before it further collides with Panay (ca.11°N). Within this region 182 (ca.13°N to 11°N) the relocated seismicity suggest the subducting slab dips almost 183 vertically, with an absence of the deep seismicity (Bautista et al., 2001). Based on these 184 features, Bautista et al. (2001) suggest the subducting slab may have been heated up and 185 assimilated into the mantle. We, therefore, interpret that the great megathrust earthquake 186 is less likely south of 13°N. Li et al. (2016) placed the southern boundary of the first 187 segment at ca.12.5°N. In contrast, Bautista et al. (2001) proposed a slab tear at ca.14°N 188 which is the result of the collision of a micro-continental plate with Mindoro and Panay 189 islands and as evidenced by the narrow seismicity gap north of 14°N that trends 190 northeastward (Figure 2). Based on these geological characteristics and geodetic

191 measurements, together with the fact that the spatial coverage of GPS measurements in 192 this region only allows us to estimate the coupling status starting at 14°N to the north (Hsu 193 et al. 2016), we move the southern boundary of the first segment from ca.12.5°N proposed 194 by Li et al. (2016) to 14°N, but we do not rule out the possibility of ruptures that propagate 195 across 14°N to 13°N or even beyond.

196

197 Moving to the north, between 16°N to ca.17.5°N, a bathymetric high called Scarborough 198 seamount chain is subducting beneath the Philippine plate. The Scarborough seamount can 199 be traced between ca.12°N to 18°N from the subducting Sunda plate and between ca.16°N 200 (Figure 1) after subducting beneath the Philippine plate from the regional to 19°N 201 tomography model (Wu et al., 2016). This seamount chain has been interpreted as part of 202 an extinct Middle Ocean Ridge (MOR) that is either presently being accreted or subducted under the trench at 16°N (Ludwig, 1970; Pautot and Rangin, 1989). A slab tear was 203 204 proposed at 16°N based on seismic-related strain energy release of intermediate-depth and 205 shape changes in the dip angle of the slab (Bautista et al., 2001). Although great 206 earthquakes can rupture across the seamounts or morphological bounds occasionally (e.g. 207 Bell et al., 2014; Duan, 2012; Kumagai et al., 2012), global observations suggest that in many cases seamounts or barriers impede (Singh et al., 2011; Wang and Bilek, 2011) or 208 209 confine rupture propagations (Qiu et al., 2016). Further, we note that slab tears at 14°N and 210 16°N bound the southern and north tip of the highly coupled west Luzon trough (Hsu et al., 211 2012, 2016) coincidently, and these tears may act as morphological barriers to limit the rupture propagation similar to that noted from the 2015 M_w 7.8 Nepal event (Qiu et al., 212 213 2016). We, therefore, define the region between $14^{\circ}N$ to $16^{\circ}N$ as segment 1 (zone 1) (Figure 3a and d). 214

215

216 2.2 Rupture segment 2 (zone 2, 16°N-19°N)

As noted in section 2.1, the Scarborough seamount chain is located between ca.16°N to 17.5°N where the subducting Sunda plate meets with the Philippine plate (Figure 1). A regional tomography model also suggests that the subducted seamount chain can be traced between ca.16°N to 19°N (Wu et al., 2016). In this subducted seamount region, the absence of seismicity and seismic-related strain energy release at intermediate depths suggest the

222 possible trajectory of the MOR that is interpreted to be still hot and deforming plastically 223 (Bautista et al., 2001). Globally studies of subducting seamount systems suggest that large 224 fracture zones are formed surrounding the seamount, and the highly fractured region can 225 act as barriers to hinder the rupture propagation (e.g., Wang and Bilek, 2011). Because the 226 stress concentration in and around the fracture zones is high and may easily reach failure 227 criteria, the seamount can trigger (e.g., Kumagai et al., 2012; Koyama et al., 2013) the 228 failure of highly stressed asperities in the neighborhood, nucleating as a great earthquake 229 (e.g., Kumagai et al., 2012; Koyama et al., 2013). Previous studies also suggest that seamounts cause persistent fault creep (e.g., Singh et al., 2011) or rupture as small 230 231 earthquakes due to localized areas of high fracture and associated regional stress 232 anomalies (e.g., Wang and Bilek, 2011). Thus, fault creep and the rupture of single or 233 multiple asperities are all possible in this region.

234

235 The Geodetic coupling map constrained by long-term GPS velocity measurements indicates that the seamount chain region (i.e. ca.16°N to 19°N) is less coupled (Figure 3, coupling 236 237 models A and B), partially due to the fault creep caused by the seamounts or poor 238 constraints by paucity of the offshore observations (Hsu et al., 2012, 2016). The weak coupling extends further north to 19°N, in the area of the southern tip of the North Luzon 239 240 Trough and west of the northern tip of Luzon Island. This area is likely creeping or weakly coupled (Figure 3, coupling mode A and B). Additionally a trench-parallel gravity anomaly 241 (TPGA) has been interpreted with great subduction earthquakes occurring predominately 242 243 in areas characterized by strongly negative TPGA, while regions with strongly positive 244 TPGA are relatively aseismic (Song and Simons, 2003). We note that positive TPGA covers 245 from ca.16°N to 19°N (Hsu et al., 2012), coinciding with the geodetically determined weakly coupled and creep regions. Considering all these factors mentioned above, we 246 247 redefine segment 2 (zone 2) as the region between 16°N to 19°N as (Figure 3b and e) 248 slightly extends further north when compared with the same segment of Li et al. (2016).

249

250 **2.3 Rupture segment 3 (zone 3, 19°N-22°N)**

The area of the megathrust bounded between the southern tip of Taiwan and northern Luzon (between 19°N to 22°N) (Figure 1) is poorly understood, as the current available 253 geodetic measurements are sparse and primarily deployed in the volcanic islands to the 254 east which are far away from the Manila trench (Hsu et al., 2012, 2016). In this region, the 255 Manila trench bends sharply at 20°N (Figure 1). Geologically the bending has been 256 interpreted as the result of the subduction of a high-relief bathymetrical plateau that is 257 sufficient buoyant to impede subduction (Bautista et al., 2001; Suppe, 1988) or may due to 258 thick sediments (Lin et al., 2009). Additionally, here regional block faulting stretches the 259 continental crust, resulting in numerous micro-continental fragments. Further, the 1980s 260 geophysical studies (Taylor and Hayes, 2013) have recovered a magnetic quiet zone 261 characterized to the continental-to-oceanic boundary (Bautista et al., 2001), and this zone 262 was further interpreted with a transition zone between a continental and oceanic 263 lithosphere (Taylor and Hayes, 2013). If these numerous fragments are indeed subducting 264 beneath the Philippine sea plate, then they would have to be buoyant enough to resist the 265 subducting process at 20°N with fast subducting of the neighboring portions of the trench 266 that may extending south to 19°N. Such a situation would result a complex stress field in 267 the upper plates that were mirrored by diverse and complicated focal mechanism solutions 268 (Bautista et al., 2001).

269

270 As more marine geophysical data becomes available, there is an increased understanding of 271 the geological structure and potential seismogentic faults (Lin et al., 2009). Detailed 272 analysis of seismic reflection data (i.e. Line 973 in Lin et al., 2009) reveals prominent seismogenic structures in the region, which include frontal décollement beneath the lower-273 slip domain and out-of-sequence thrusts (OOST) in lower- and upper-slope domains (Lin et 274 al., 2009; Zhu et al., 2013). Evidence from the thermal regime of these structures suggests 275 that the megathrust and part of the frontal décollement are seismogenic (Lin et al., 2009). 276 These seismogenic structures are found to be analogous to that observed in the Nankai 277 prism of the Nankai Trough, Japan, posing potentials for generating great earthquakes and 278 279 tsunamis as they did in Nankai (Lin et al., 2009; Yokota et al., 2016).

280

Fan et al. (2016) revealed a low-velocity zone that spans from shallow to deep depths of 282 20-200km beneath the prism, suggesting that the collision develops northward and the 283 subducting process may stop at 22°N. Coincidently, at the similar latitude (21.5°N), Lin et 284 al. (2009) interpret that south of 21.5°N, the subducting is active while north of this latitude the plate convergence is accommodated by intense compressional deformation of
the crust due to the buoyance of the Eurasian plate that resists subduction. Consequently,
in light of the geological evidence noted above, we slightly shorten the northern boundary
of the segment 3 from Li et al. (2016), and we define the region to be between 19°N to
21.7°N as the segment 3 (zone 3) (Figure 3c and f).

290

291 **3. Proposed slip deficit models**

292 Using geodetic surface measurements, a velocity value can be derived and used to 293 constrain the elastic strain accumulation rate between the subduction plate interfaces, the 294 so-called interseismic coupling model (Chlieh et al., 2008; Hsu et al., 2012, 2016; Loveless 295 and Meade. 2010: Megawati et al., 2009). This model reveals strain accumulation within 296 seismic cycles that can potentially be released during great earthquakes, although the final 297 rupture extent is commonly not exactly the same as forecasted by the coupling maps 298 (Konca et al., 2008; Ruiz et al., 2014) and in some cases uncoupled parts of the megathrust 299 may regularly produce tsunamis (Witter et al., 2016). However to move towards an 300 associated tsunami hazard assessment from such potential ruptures, the coupling map, 301 although not perfect, is often the necessary choice (e.g., Power et al., 2012; Megawati et al., 302 2009).

303

304 Using decades-long GPS velocity measurements, Hsu et al. (2016) proposed two coupling 305 models (A and B) that best explain the plate movements and coupling state on the Manila 306 megathrust and other faults on the Luzon island. With this coupling or slip deficit rate 307 estimates and the possible seismic return time period, we can forecast the likely slip 308 distributions that may fail in future earthquakes. For seismic return time period, given the 309 short duration of historical records relative to the return-periods of large-magnitude 310 events of interest, and limitations in our capacity to infer earthquake return-periods from 311 first-principles physics, it is unrealistic to expect to develop a comprehensive 312 understanding of seismic return periods. We thus have to rely on the observations. The 313 modern seismic records for the Manila trench only trace back to ~1900 and provide 314 constraints on the natural frequency of earthquakes with its corresponding magnitude 315 assuming the Gutenberg-Richter (G-R) earthquake relations, and thus often implemented

316 for tsunami hazard assessment (Li et al., 2016; Power et al., 2012). Historical records since 317 the 1560s suggest that there is no recorded earthquake with Mw > 7.6 in the Manila 318 subduction zone, implying that the determined return time period for great earthquake 319 from G-R relation will likely poorly constrained (Hsu et al., 2016). However geological 320 evidence from purported tsunami deposits may provide evidence of tsunamis at four 321 locations in SCS (i.e. Figure 1, Ramos et al., 2017; Sun et al., 2013; Yu et al., 2009; Yang et al., 322 2018). Some studies suggest that a giant tsunami event might have occurred ca.1000-1064 323 AD (Ramos et al., 2017; Tang et al., 2018). With an assumption of a-1000-year return period, the magnitude can reach M_w 9+ from geodetic analysis (Hsu et al., 2016). Here we 324 325 choose to model scenarios, which release 1000 years of accumulated strain, because these 326 represent large, rare and yet plausible events, which are of interest for hazard assessment 327 purposes, and paleo-geological data indicate that large events may occur about 1000 years 328 ago.

329

330 Based on coupling models A and B of Hsu et al. (2016) in which the spatial distribution of 331 slip rate and coupling rate are available, we use a return period of 1000 years to calculate 332 the slip deficit of great earthquakes assuming each event releasing 1000 years of strain accumulation while ignoring possible portion of strain release by smaller events. For the 333 334 predefined zones 1 to zone 3 (see sections 2.1-2.3), different approaches are used. For 335 zones 1 and zone 2 where the coupling ratios and slip rate are relatively better constrained than zone 3, we calculate the slip deficit by multiplying the slip deficit rate at each triangle 336 337 node (Figure 3a, b d and e) with 1000 years. The slip deficit models in zone 1 for models A 338 and B (Figure 3a and d) are similar with the maximum slip>50 meters occurred at ca.20-339 30km seismogenic depth due to the high coupling ratio. For zone 2, the slip model based on 340 A has a compact area and less slip amount as compared with slip model based on B (Figure 3b and e). This is because the extra north Luzon trough fault was introduced in model B. 341 342 resulting in larger spatial extent and higher coupling while equally explaining the GPS 343 velocity measurements (Hsu et al., 2016).

344

345 Due to paucity of observations in zone 3, no coupling ratios were resolved. Geologically this 346 zone is much more complicated than zones 1 and 2 (Lin et al., 2009). Multiple OOSTs are 347 revealed from seismic reflection profiles (Lin et al., 2009; Zhu et al., 2013). Failure of these OOSTs (or called megasplay) faults with high dip angle contributes to generating
devastating waves as evidenced from historic tsunami events in other subduction zones
(Moore et al., 2007; Park et al., 2002). It is, therefore, crucial but difficult to precisely
quantify individual role of the OOSTs and megathrust in tsunami generation.

352

353 We propose two end-member scenarios, considering different rupture modes in zone 3 354 with two steps. We first calculate the slip deficit from the slip deficit rate of models A and B 355 between 19°N to 20°N. We then consider two end-member scenarios in the region from 356 20°N to 21.7°N. The first-member is the seismogenic events with rupture depths 357 determined from a collection of GCMT solutions of the world megathrust earthquakes 358 (Figure 4). We assume the fault slip pattern follows a Gaussian distribution centered at 25 359 km of the mean depth from the global great earthquakes. We cutoff slip deeper than 50 km 360 as the rock properties at this depth and beyond induce semi-brittle and ductile flow 361 (Hippchen and Hyndman, 2008; Hyndman and Wang, 1993; Wang, 2007). This can capture 362 to first-order the potential slip extent (Figure 3c and f), with a depth-range of slip 363 consistent with observations from global megathrust great earthquakes (e.g., Chlieh et al., 364 2007; Pollitz et al., 2011; Ruiz et al., 2014; Salman et al., 2017; Wei et al., 2012). For the second mode, we consider tsunamigenic events similar to 2011 M_w 9.0 Japan earthquake in 365 366 which the earthquake can rupture all the way to the trench. We estimate the plate 367 convergence rate in the fore-arc in zone 3 is 67 mm/year (Hsu et al., 2009) with a 24.5 mm/year shortening under the 91.5 mm/year plate convergence rate with respect to 368 369 Sunda plate (Hsu et al., 2016; Sella et al., 2002). We assume 67 mm/year convergence was 370 fully accommodated by the megathrust and implement it as the amplitude of the Gaussian distribution, allowing the maximum slip occurring at the trench (Figure 5a and b). For each 371 rupture mode, we have two slip models corresponding to coupling model A and B, and 372 373 assume half of plate convergence rate are accommodated by the megathrust (Figures 5a 374 and b, with 80% coupling ratio shown in Figure 6c and d). For the second-member model, 375 we implement rupture on both the megasplay fault and the megathrust assuming each of 376 them accommodating half of the fore-arc plate convergence and a uniform slip on the splay 377 fault as a simple case (Figure 5c and d). We implement this splay fault only with 378 seismogenic rupture events as we think this case is easier due to splay fault's bottom cut to 379 the megathrust at seismogenic depth (Lin et al., 2009). We consider a 50% coupling ratio

on both the megathrust and splay fault (Figure 5c and d, with 80% coupling shown in
Figure 6a and b). Details about these proposed rupture scenarios are given in the summary
Table S1 in the supplementary file.

383

The geometry of the OOST is derived from Lin et al. (2009) and covers the area from 20°N to ca.22.2°N, as we ignored the bending portions of the OOST in the north and south although they still can rupture with a low probability. The fault is ca.260 km long, ca.16 km wide, and it strikes 345° to the north and dips 50° to the east (Figures 1, 5 and 6).

388 **4**.

Tsunami impacts in SCS

389 4.1 Tsunami simulation set up

390 We use **Co**rnel **M**ulti-grid **Co**upled **T**sunami model (COMCOT) to simulate the 391 hydrodynamic process of the tsunami waves (e.g., Wang et al., 2008; Philip, 1994; Li et al., 392 2018; Li et al., 2016) produced by those proposed earthquake ruptures. The initial surface 393 elevations generated by all the proposed rupture models can be found in Supplementary 394 data. To account for the nonlinear effect in nearshore region, the simulation solves the non-395 linear shallow water equations in spherical coordinates for the entire SCS region with a 396 bottom Manning friction coefficient of 0.013 (Li et al., 2018). We used the 1 arc-minute grid 397 of General Bathymetric Chart of the Oceans (GEBCO) data for the modeling. A uniform grid 398 was used because we don't focus in near- and on-shore processes where high-resolution 399 topographical data and good understanding of the bottom friction effect are required. 400 Synthetic gauges along the 20-m isobaths are specified to record the tsunami waveforms. 401 For the initial tsunami waves, we assume the rupture occurs instantaneously and the 402 vertical seafloor deformation produced by the ruptures is equal to the initial ocean surface 403 deformation (e.g., Li et al., 2016; Li et al., 2018; Liu et al., 2009).

404 **4.2** Maximum tsunami wave height

For all the simulated scenarios, the resulting wave height in the near-source regions mainly depends on the rupture location and earthquake magnitude. While in the relatively farfield, the tsunami wave directivity effects and bathymetry effects also play important roles (Figures 7 and 8). We describe the tsunami impact of each pair of source models from south (zone 1) to north (zone 3). Slip models in zone 1 generate the largest tsunami waves

410 (>10m) in western Luzon (Figure 7a-b). Central Vietnam experiences a similar tsunami 411 height (4-8 m) with the intermediate far-field area, western Palawan, Southeastern China and southern Taiwan could be attacked with up to 5 m tsunami waves (Figure 7a-b). 412 413 Moving to zone 2, the slip models show the significant difference in terms of both 414 magnitude and slip distribution between models A and B (Figure 3b and Figure3e). 415 Consequently, the tsunami impact caused by model B is much larger than the one caused by model A in both near-source (e.g., western Luzon and southern Taiwan) and far-field 416 417 regions (e.g. southeastern China and central Vietnam). Compared with the most affected 418 region by slip models in zone 1, the worst-hit region also moves northward with the 419 rupture location. Similarly, when the earthquakes rupture the megathrust in zone 3, the 420 hardest-hit regions move further to the northern part of the SCS and concentrate in 421 northern Luzon, southern Taiwan and southeastern China (Figure 7e-f). Further, Figure 8 422 shows the diverse tsunami impacts generated by rupture scenarios in zone 3. Not 423 surprisingly, the results suggest rupture models with higher coupling cases (Figure 8a-b) result larger tsunami wave heights in regions located in northeast SCS despite of the 424 425 tsunami generation efficacy of shallow slip earthquakes (Figure 8c-d). One interesting phenomenon worthy of mention is the high tsunami hazard of the southeastern China 426 regardless of the rupture locations. This is likely explained by the combined effect of 427 428 tsunami wave directivity and bathymetry (Figures 7 and Figure 8). Tsunami waves refract 429 significantly in the southern Chinese coast due to the shape and gradient of the continental slope, leaving southeastern China (including coastlines of Guangdong, Hong Kong, and 430 431 Macau) in the direct tsunami path.

432

To summarize, the near-source regions including western Luzon, northern Luzon and southern Taiwan face the greatest tsunami hazard. The second most threatened areas are southeastern China, central Vietnam and western Palawan. Archipelagos inside the SCS including Dongsha, Zhongsha and Xisha also suffer severe tsunami attacks (up to 6-8 m tsunami wave height) when large earthquakes occur in zones 2 and 3. Coastal regions of northern Borneo, eastern Malaysia, eastern Thailand, and southern Cambodia are significantly less affected.

441 **4.3 Tsunami travel time**

442 The tsunami travel time is key information in tsunami evacuation planning. Similar to the 443 other subduction zones, the near-source areas including the coast of Luzon and southern 444 Taiwan suffer the highest tsunami waves with least evacuation time (Figures 7 and 8). We 445 plot the time series of tsunami wave generated by all the source models in selected 446 synthetic gauges near 9 major coastal cities in Figure 9. Depending on the rupture 447 locations, the tsunami arrival time is in minutes or less than half an hour for near-source 448 cities, like Vigan, Kenting and Kaohsiung (Figure 9), posing great challenges to the early 449 warning system and subsequent evacuation process. In other areas tsunami wave travel 450 time is relatively longer for example Vietnam and southeastern China. The arrival time is 451 commonly between 2-3 hours after the earthquake for central Vietnam and 3-4 hours for 452 southern China. For the Archipelagos inside the SCS, the tsunami waves arrive much earlier 453 than they do on the mainland in Vietnam and China, typically ~ 1 hour earlier. The earlier 454 arrival time in archipelagos make them ideal locations for installing tsunami monitoring 455 instruments (e.g. tide gauges or GPS (see Peng et al., 2019)). Such measurements may 456 provide timely constraints on wave height for the evacuations in far-field areas. Detailed 457 inundation maps of the main coastal cities in this region are highly recommended for 458 designing evacuation routes.

459

460 **5. Discussion**

461 How and where earthquake rupture will occur on a plate boundary is challenging to 462 forecast (Bilek and Lay, 2018; Satake and Atwater, 2007). A comprehensive understanding 463 of a single megathrust behavior may be impractical since the seismic cycle is typically in 464 the order of hundreds and thousands of years, much longer than instrumental records. 465 Conversely understanding megathrust behaviors over different subduction zones at 466 different time stages of their cycle offers insights into rupture style and characteristics. 467 Previous studies have intensively investigated giant subduction zone earthquakes, gaining 468 useful insights into physical parameters that are related to developing giant ruptures. Such 469 physical parameters include the subducting plate age, rate and buoyance of the slab 470 (Kanamori, 2006; Nishikawa and Ide, 2014; Ruff and Kanamori, 1980, 1983); the forearc 471 structures (Song and Simons, 2003; Wells et al., 2003), upper plate characteristics

472 including plate motion (Schellart and Rawlinson, 2013), trench characteristics of the long-473 term migration (Schellart and Rawlinson, 2013) and sediments thickness (Heuret et al., 474 2012), and the width of seismogenic zones (Hayes et al., 2012; Schellart and Rawlinson, 475 2013). While as the boost of geodetic measurements, the relationship between great 476 ruptures and the convergence rate was challenged (McCaffrey, 1994; Stein and Okal, 2007; 477 Nishikawa and Ide, 14). The maximum moment magnitude of a potential earthquake is 478 often determined from seismic catalogue data, alternatively determined from basic 479 moment conservation principles and catalog data (Rong et al., 2014; Kagan and Jackson, 480 2013). Overall, with current short observation time span as compared with multi-century 481 seismic return period, it is improperly to make the determination on the relationship 482 between these physical parameters and how big or how often a giant earthquake can occur 483 in any subduction zone (McCaffrey, 2008). Clearly, long-term and complete observations 484 within seismic cycles are required for a better understanding of subduction zone rupture behaviors. 485

486

487 Recently a summary study based on global subduction zone observations concludes that 488 mega-seismic events preferentially rupture flat, gently dipping interface (Bletery et al., 489 2016). In the Manila trench, the dip is gentle and progressively increases from north to 490 south (Bautista et al., 2001). In zone 3, the presence of subducting plateau of the 491 continental fragments results in a gently dipping, near flat interface that potentially favors 492 the development of giant earthquakes (Figures 1 and 2). The dipping degree is in a similar 493 rage with those found in other subduction zones, e.g., Japan-Kuril-Kamchatka, Alaska-Aleutians, Sumatra-Java, South American, and Cascadia, which are known to produce M_w > 494 495 9.0 earthquakes (Bletery et al., 2016).

496

Morphological barriers have been found to have a predominant role in controlling rupture propagation and style. The barriers can confine and arrest rupture propagation (Qiu et al., 2016), and act be a persistent fence to stop rupture (Meltzner et al., 2012; Morgan et al., 2017). Faults bends can also hinder rupture overstep at bending points (Wesnousky, 1988, 2006). In the case of the Manila subduction zone, the presence of Scarborough Seamount chain in zone 2 and slab tear in zone 1 indicates that a giant rupture propagation through zones 3 to 1 is less likely, although we do acknowledge that the rupture-across-zone earthquake is possible with very low probability like the 2007 Mw 8.1 ruptured a triple junction (Furlong et al., 2009; Taylor et al., 2008). Dynamic simulations do show possible scenarios that involve multiple portions of the Manila trench rupturing as a single giant earthquake (Yu et al., 2018). However, the details of the slab tear in zone 1 and the seamount chain in zone 2 were smoothed out in the simulation, due to the challenges of the numerical calculation (Yu et al., 2018).

510

511 Regarding the potential source of the geological records, the tsunami simulations suggest 512 the difficulty of creating a scenario which could affect all the four tsunami deposit locations 513 with sufficiently high tsunami waves, especially for the record located in Yongshu island (Yu 514 et al., 2009). Assuming all the four records are indeed tsunami deposits, the spatial 515 distribution demands the whole trench to rupture at once and the southern segment needs to extend further to 13° in order to generate tsunami waves propagation southwest 516 517 direction towards Yongshu. Another alternative explanation could be that the deposits in 518 Yongshu island were generated by large storm event instead of tsunami event.

519

520 In summary, our definition of the rupture zones 1, 2 and 3 are derived by taking into 521 account the bathymetry features of the subduction Eurasian plate, earthquake focal 522 mechanisms distributions, structure controlled TPGA and more than 20-year-long GPS 523 measurements. The refined coupling models (Hsu et al., 2016) offer more detailed images that reflect the likely motions on the plate interface. Combination of the coupling models 524 525 and morphological bounds constrained zone definitions provide more realistic rupture 526 scenarios than planar fault with uniform slip assumed rupture cases. We've seen that finite 527 rupture models of historical earthquakes indicate that slip is heterogeneous, and this is represented by our scenarios. Further detailed tsunami hazard assessment in SCS 528 529 demonstrates that uniform slip models underpredict tsunami hazards as compared to a 530 heterogeneous slip model (Li et al., 2016). Therefore, our refined earthquake rupture scenarios in zones 1 and 2 provide new insights for tsunami hazard assessment in SCS. For 531 532 zone 3, the scarcity of measurements and the presence of complicated geological structures 533 result in a poor understanding of the seismogenic characteristics, although the tsunami-534 genic potential remains high (Lin et al., 2009). The possible ruptures provided in this study 535 can be a first-order approximation of the earthquake scenarios in the region. Subsequent 536 measurements collected in coming years can help us to refine our understanding in this

537 region.

538

539

540 **6. Conclusion**

We have proposed updated earthquake rupture scenarios along the Manila trench based on
new geological, earthquake focal mechanisms information and geodetic observations.
These rupture models enable tsunami assessment in SCS, and subsequent detailed
examination on inundation process for mega-cities along the coastlines of SCS.

545

546 Tsunami simulations based on these rupture scenarios indicate that the coastlines of the 547 SCS region are under a risk of devastating tsunami waves, specifically for western Luzon of 548 Philippine, southern Taiwan, the southeastern China, central Vietnam, and Palawan Island. 549 Besides the near-source region, the southeastern China will also be attacked severely due 550 to the bathymetry focusing effect no matter which portion of the Manila thrust breaks. 551 Southern Taiwan is affected by ruptures in zones 2 and 3, with west Luzon affected by all 552 earthquake scenarios. Central Vietnam and Palawan Island are mostly affected by ruptures 553 in zones 1 and 2. In all cases, the waves sweep these coastlines within ca.3 hours. Our 554 results highlight that it is necessary to conduct further detailed inundation investigations at 555 these severely affected coastal regions, for future preparation on hazard mitigation plans. 556 Our findings also provide useful information that could be used to find possible archived 557 geological recordings of historical tsunami deposits, and call for following paleo-558 sedimentology studies in the SCS basin.

559 Data availability

- 560 The GEBCO data used in this study were downloaded
- from https://www.gebco.net/data_and_products/gridded_bathymetry_data/(Weatherall, 2015)
- in October 2014 and readers can also currently access the data from this link. All data
- 563 needed to evaluate the conclusions in the paper are present in the paper and/or the
- 564 Supplementary Materials. We provide files of initial surface elevations generated by the
- 565 proposed fault models in the Supplementary Materials. Readers can download these files
- 566 for tsunami simulation. Additional data related to this paper can be requested from the
- authors through email.

- 568 **Author contribution:** QQ, LL, YH and YW developed the method of calculating the fault
- 569 parameters. QQ performed the tsunami simulations. QQ and LL prepared the manuscript
- 570 with contributions from all co-authors.
- 571 **Competing interests**
- 572 The authors declare that they have no conflict of interest.
- 573

574 Acknowledgements

575 This study is supported by Guangdong Province Introduced Innovative R&D Team of 576 Geological Processes and Natural Disasters around the South China Sea (2016ZT06N331), 577 National Natural Science Foundation of China (41774049, 41590861). This study is also 578 supported by a Joint project "Probabilistic tsunami hazard assessment in South China Sea 579 region" between National University of Singapore and Shang Hai Jiao Tong University. This 580 project is funded by Singapore National Research Fund and National Natural Science 581 Foundation of China. ADS thanks the support of Scor RE through a donation. This research 582 is also supported by the National Research Foundation Singapore and the Singapore 583 Ministry of Education under the Research Centres of Excellence initiative. We thank Ms 584 Constance T. Chua for the English proofreading.

585

586 **References**

- Avouac, J.-P., Meng, L., Wei, S., Wang, T. and Ampuero, J.-P.: Lower edge of locked Main
- 588 Himalayan Thrust unzipped by the 2015 Gorkha earthquake, Nat. Geosci., 8, 708 [online]
- 589 Available from: https://doi.org/10.1038/ngeo2518, 2015.
- 590 Banerjee, P., Pollitz, F., Nagarajan, B. and Bürgmann, R.: Coseismic Slip Distributions of the
- 591 26 December 2004 Sumatra?Andaman and 28 March 2005 Nias Earthquakes from gps
- 592 Static Offsets, Bull. Seismol. Soc. Am., 97(1A), S86–S102, doi:10.1785/0120050609, 2007.
- 593 Bautista, B. C., Bautista, M. L. P., Oike, K., Wu, F. T. and Punongbayan, R. S.: A new insight on
- the geometry of subducting slabs in Northern Luzon, Philippines, Tectonophysics,
- 595 doi:10.1016/S0040-1951(01)00120-2, 2001.
- 596 Bautista, M. L. P., of Volcanology, P. I. and Seismology: Philippine Tsunamis and Seiches,
- 597 1589 to 2012, Department of Science and Technology, Philippine Institute of Volcanology
- and Seismology. [online] Available from:
- 599 https://books.google.com.sg/books?id=OHibnQAACAAJ, 2012.

- 600 Bell, R., Holden, C., Power, W., Wang, X. and Downes, G.: Hikurangi margin tsunami
- 601 earthquake generated by slow seismic rupture over a subducted seamount, Earth Planet.
- 602 Sci. Lett., 397, 1–9, doi:https://doi.org/10.1016/j.epsl.2014.04.005, 2014.
- Bilek, S. L. and Lay, T.: Subduction zone megathrust earthquakes, Geosphere, 14(4), 1468-
- 604 1500, doi:10.1130/GES01608.1, 2018.
- Bletery, Q., Thomas, A. M., Rempel, A. W., Karlstrom, L., Sladen, A. and De Barros, L.: Mega-
- 606 earthquakes rupture flat megathrusts, Science 80, doi:10.1126/science.aag0482, 2016.
- 607 Chlieh, M., Avouac, J. P., Hjorleifsdottir, V., Song, T. R. A., Ji, C., Sieh, K., Sladen, A., Hebert, H.,
- 608 Prawirodirdjo, L., Bock, Y. and Galetzka, J.: Coseismic slip and afterslip of the great Mw 9.15
- 609 Sumatra-Andaman earthquake of 2004, Bull. Seismol. Soc. Am., 97(1A), S152–S173,
- 610 doi:10.1785/0120050631, 2007.
- 611 Chlieh, M., Avouac, J. P., Sieh, K., Natawidjaja, D. H. and Galetzka, J.: Heterogeneous coupling
- of the Sumatran megathrust constrained by geodetic and paleogeodetic measurements, J.
- 613 Geophys. Res., 113(B5), 1–31, doi:10.1029/2007JB004981, 2008.
- 614 Cifuentes, I. L.: The 1960 Chilean earthquakes, J. Geophys. Res. Solid Earth, 94(B1), 665–
- 615 680, doi:10.1029/JB094iB01p00665, 1989.
- Duan, B.: Dynamic rupture of the 2011 Mw 9.0 Tohoku-Oki earthquake: Roles of a possible
- 617 subducting seamount, J. Geophys. Res. Solid Earth, 117(5), doi:10.1029/2011JB009124,
- 618 2012.
- Fan, J., Zhao, D. and Dong, D.: Subduction of a buoyant plateau at the Manila Trench:
- 620 Tomographic evidence and geodynamic implications, Geochemistry, Geophys. Geosystems,
- 621 doi:10.1002/2015GC006201, 2016.
- 622 Furlong, K. P., Lay, T., and Ammon, C. J.: A Great Earthquake Rupture Across a Rapidly
- 623 Evolving Three-Plate Boundary, Sci, 324, 226, 10.1126/science.1167476, 2009.
- 624 Gao, J., Wu, S., yao, Y., Chen, C., Song, T., Wang, J., Sun, J., Zhang, H., Ma, B. and Yangbing, X.:
- 625 Tectonic deformation and fine structure of the frontal accretionary wedge, northern Manila
- 626 subduction zone, Chinese J. Geophys. Chinese Ed., 61, 2845–2858,
- 627 doi:10.6038/cjg2018L0461, 2018.
- 628 Grezio, A., Babeyko, A., Baptista, M. A., Behrens, J., Costa, A., Davies, G., Geist, E. L., Glimsdal,
- 629 S., González, F. I., Griffin, J., Harbitz, C. B., LeVeque, R. J., Lorito, S., Løvholt, F., Omira, R.,
- 630 Mueller, C., Paris, R., Parsons, T., Polet, J., Power, W., Selva, J., Sørensen, M. B., and Thio, H.
- 631 K.: Probabilistic Tsunami Hazard Analysis: Multiple Sources and Global Applications,

- 632 RvGeo, 55, 1158-1198, 10.1002/2017RG000579, 2017.
- Hayes, G. P., Wald, D. J. and Johnson, R. L.: Slab1.0: A three-dimensional model of global
- 634 subduction zone geometries, J. Geophys. Res. Solid Earth, 117(B1),
- 635 doi:10.1029/2011JB008524, 2012.
- 636 Heuret, A., Conrad, C. P., Funiciello, F., Lallemand, S. and Sandri, L.: Relation between
- 637 subduction megathrust earthquakes, trench sediment thickness and upper plate strain,
- 638 Geophys. Res. Lett., doi:10.1029/2011GL050712, 2012.
- 639 Hippchen, S. and Hyndman, R. D.: Thermal and structural models of the Sumatra
- 640 subduction zone: Implications for the megathrust seismogenic zone, J. Geophys. Res. Solid
- 641 Earth, 113(B12), doi:10.1029/2008JB005698, 2008.
- Hong Nguyen, P., Cong Bui, Q., Ha Vu, P. and The Pham, T.: Scenario-based tsunami hazard
- 643 assessment for the coast of Vietnam from the Manila Trench source, Phys. Earth Planet.
- 644 Inter., doi:10.1016/j.pepi.2014.07.003, 2014.
- 645 Hsu, Y.-J., Yu, S.-B., Simons, M., Kuo, L.-C. and Chen, H.-Y.: Interseismic crustal deformation
- 646 in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and
- 647 earthquake focal mechanisms, Tectonophysics, 479(1), 4–18,
- 648 doi:https://doi.org/10.1016/j.tecto.2008.11.016, 2009.
- Hsu, Y.-J., Yu, S.-B., Song, T.-R. A. and Bacolcol, T.: Plate coupling along the Manila
- 650 subduction zone between Taiwan and northern Luzon, J. Asian Earth Sci., 51, 98–108,
- 651 doi:https://doi.org/10.1016/j.jseaes.2012.01.005, 2012.
- Hsu, Y.-J., Yu, S.-B., Loveless, J. P., Bacolcol, T., Solidum, R., Luis Jr, A., Pelicano, A. and
- 653 Woessner, J.: Interseismic deformation and moment deficit along the Manila subduction
- cone and the Philippine Fault system, J. Geophys. Res. Solid Earth, 121(10), 7639–7665,
- 655 doi:10.1002/2016JB013082, 2016.
- 656 Hyndman, R. D. and Wang, K.: Thermal constraints on the zone of major thrust earthquake
- 657 failure: the Cascadia Subduction Zone, J. Geophys. Res., doi:10.1029/92JB02279, 1993.
- Johnson, J. M. and Satake, K.: Asperity Distribution of the 1952 Great Kamchatka
- 659 Earthquake and its Relation to Future Earthquake Potential in Kamchatka, in Seismogenic
- and Tsunamigenic Processes in Shallow Subduction Zones, edited by J. Sauber and R.
- 661 Dmowska, pp. 541–553, Birkhäuser Basel, Basel., 1999.
- 662 Kagan, Y. Y., and Jackson, D. D.: Tohoku Earthquake: A Surprise?Tohoku Earthquake: A
- 663 Surprise?, Bulletin of the Seismological Society of America, 103, 1181-1194,

664 10.1785/0120120110, 2013.

- 665 Kanamori, H.: Re-examination of the earth's free oxcillations excited by the Kamchatka
- 666 earthquake of November 4, 1952, Phys. Earth Planet. Inter., 11(3), 216–226, 1976.
- 667 Kanamori, H.: Lessons from the 2004 Sumatra-Andaman earthquake, Philos. Trans. R. Soc.
- 668 A Math. Phys. Eng. Sci., 364(1845), 1927–1945, doi:10.1098/rsta.2006.1806, 2006.
- Koketsu, K., Yokota, Y., Nishimura, N., Yagi, Y., Miyazaki, S., Satake, K., Fujii, Y., Miyake, H.,
- 670 Sakai, S., Yamanaka, Y. and Okada, T.: A unified source model for the 2011 Tohoku
- 671 earthquake, Earth Planet. Sci. Lett., 310(3–4), 480–487, doi:10.1016/j.epsl.2011.09.009,
- 672 2011.
- Konca, A. O., Avouac, J.-P., Sladen, A., Meltzner, A. J., Sieh, K., Fang, P., Li, Z., Galetzka, J.,
- 674 Genrich, J., Chlieh, M., Natawidjaja, D. H., Bock, Y., Fielding, E. J., Ji, C. and Helmberger, D. V:
- 675 Partial rupture of a locked patch of the Sumatra megathrust during the 2007 earthquake
- 676 sequence., Nature, 456(7222), 631–5, doi:10.1038/nature07572, 2008.
- 677 Koyama, J., Yoshizawa, K., Yomogida, K. and Tsuzuki, M.: Variability of megathrust
- 678 earthquakes in the world revealed by the 2011 Tohoku-oki Earthquake, Earth, Planets Sp.,
- 679 64(12), 13, doi:10.5047/eps.2012.04.011, 2013.
- Kumagai, H., Pulido, N., Fukuyama, E. and Aoi, S.: Strong localized asperity of the 2011
- Tohoku-Oki earthquake, Japan, Earth, Planets Sp., 64(7), 649–654,
- 682 doi:10.5047/eps.2012.01.004, 2012.
- Lau, A. Y. A., Switzer, A. D., DomineyHowes, D., Aitchison, J. C. and Zong, Y.: Written records
- of historical tsunamis in the northeastern South China Sea-challenges associated with
- developing a new integrated database, Nat. Hazards Earth Syst. Sci., 10, 1793--1806,
- 686 doi:10.5194/nhess-10-1793-2010, 2010.
- Lay, T.: A review of the rupture characteristics of the 2011 Tohoku-oki Mw 9.1 earthquake,
- 688 Tectonophysics, 733, 4–36, doi:https://doi.org/10.1016/j.tecto.2017.09.022, 2018.
- Li, L., Switzer, A. D., Chan, C. H., Wang, Y., Weiss, R. and Qiu, Q.: How heterogeneous
- 690 coseismic slip affects regional probabilistic tsunami hazard assessment: A case study in the
- 691 South China Sea, J. Geophys. Res. Solid Earth, doi:10.1002/2016JB013111, 2016.
- Li, L., Switzer, A. D., Wang, Y., Chan, C.-H., Qiu, Q. and Weiss, R.: A modest 0.5-m rise in sea
- level will double the tsunami hazard in Macau, Sci. Adv., 4(8), doi:10.1126/sciadv.aat1180,
- 694
 2018.
- Lin, A. T., Yao, B., Hsu, S.-K., Liu, C.-S. and Huang, C.-Y.: Tectonic features of the incipient arc-

- 696 continent collision zone of Taiwan: Implications for seismicity, Tectonophysics, 479(1), 28-
- 697 42, doi:https://doi.org/10.1016/j.tecto.2008.11.004, 2009.
- Liu, P. L. F., Wang, X. and Salisbury, A. J.: Tsunami hazard and early warning system in South
- 699 China Sea, J. Asian Earth Sci., doi:10.1016/j.jseaes.2008.12.010, 2009.
- 700 Loveless, J. P. and Meade, B. J.: Geodetic imaging of plate motions, slip rates, and
- 701 partitioning of deformation in Japan, , 115(B2), B02410, doi:10.1029/2008JB006248, 2010.
- To 2 Loveless, J. P. and Meade, B. J.: Spatial correlation of interseismic coupling and coseismic
- rupture extent of the 2011 MW = 9.0 Tohoku-oki earthquake, Geophys. Res. Lett., 38(17),
- 704 doi:10.1029/2011GL048561, 2011.
- 705 Ludwig, W. J.: The Manila Trench and West Luzon Trough—III. Seismic-refraction
- measurements, Deep Sea Res. Oceanogr. Abstr., 17(3), 553–571,
- 707 doi:https://doi.org/10.1016/0011-7471(70)90067-7, 1970.
- 708 McCaffrey, R.: Global frequency of magnitude 9 earthquakes, Geology, 36(3), 263,
- 709 doi:10.1130/G24402A.1, 2008.
- 710 McCaffrey, R.: Global frequency of magnitude 9 earthquakes, Geo, 36, 263-266,
- 711 10.1130/g24402a.1, 2008.
- 712 Megawati, K., Shaw, F., Sieh, K., Huang, Z., Wu, T. R., Lin, Y., Tan, S. K. and Pan, T. C.: Tsunami
- 713 hazard from the subduction megathrust of the South China Sea: Part I. Source
- characterization and the resulting tsunami, J. Asian Earth Sci.,
- 715 doi:10.1016/j.jseaes.2008.11.012, 2009.
- 716 Meltzner, A. J., Sieh, K., Chiang, H.-W., Shen, C.-C., Suwargadi, B. W., Natawidjaja, D. H.,
- 717 Philibosian, B. and Briggs, R. W.: Persistent termini of 2004- and 2005-like ruptures of the
- 718 Sunda megathrust, , 117(B4), B04405, doi:10.1029/2011JB008888, 2012.
- 719 Moore, G. F., Bangs, N. L., Taira, A., Kuramoto, S., Pangborn, E. and Tobin, H. J.: Three-
- 720 Dimensional Splay Fault Geometry and Implications for Tsunami Generation, Science 80,
- 721 318(5853), 1128–1131, doi:10.1126/science.1147195, 2007.
- 722 Moreno, M. S., Bolte, J., Klotz, J. and Melnick, D.: Impact of megathrust geometry on
- inversion of coseismic slip from geodetic data: Application to the 1960 Chile earthquake,
- 724 Geophys. Res. Lett., 36(16), doi:10.1029/2009GL039276, 2009.
- 725 Morgan, P. M., Feng, L., Meltzner, A. J., Lindsey, E. O., Tsang, L. L. H. and Hill, E. M.: Sibling
- earthquakes generated within a persistent rupture barrier on the Sunda megathrust under
- 727 Simeulue Island, Geophys. Res. Lett., 44(5), 2159–2166, doi:10.1002/2016GL071901,

- 728 2017.
- 729 Nishikawa, T. and Ide, S.: Earthquake size distribution in subduction zones linked to slab
- 730 buoyancy, Nat. Geosci., 7(12), 904–908, doi:10.1038/ngeo2279, 2014.
- 731 Okal, E. A., Synolakis, C. E. and Kalligeris, N.: Tsunami simulations for regional sources in
- the South China and adjoining seas, Pure Appl. Geophys., 168(6–7), 1153–1173, 2011.
- 733 Paris, R., Switzer, A. D., Belousova, M., Belousov, A., Ontowirjo, B., Whelley, P. L. and
- 734 Ulvrova, M.: Volcanic tsunami: a review of source mechanisms, past events and hazards in
- Southeast Asia (Indonesia, Philippines, Papua New Guinea), Nat. Hazards, 70(1), 447–470,
- 736 doi:10.1007/s11069-013-0822-8, 2014.
- 737 Park, J.-O., Tsuru, T., Kodaira, S., Cummins, P. R. and Kaneda, Y.: Splay Fault Branching Along
- the Nankai Subduction Zone, Science (80-.)., 297(5584), 1157–1160,
- 739 doi:10.1126/science.1074111, 2002.
- 740 Pautot, G. and Rangin, C.: Subduction of the South China Sea axial ridge below Luzon
- 741 (Philippines), Earth Planet. Sci. Lett., 92(1), 57–69, doi:https://doi.org/10.1016/0012-
- 742 821X(89)90020-4, 1989.
- 743 Peng, D., Hill, E. M., Li, L., Switzer, A. D. and Larson, K. M.: Application of GNSS
- interferometric reflectometry for detecting storm surges, GPS Solut., 23(2), 47,
- 745 doi:10.1007/s10291-019-0838-y, 2019.
- 746 Philip, L.-F.: Numerical solutions of three-dimensional run-up on a circular island, Int.
- 747 Symp. waves-physical Numer. Model. Univ. Br. Columbia, Vancouver Canada, 1994 [online]
- Available from: https://ci.nii.ac.jp/naid/10016695852/en/, 1994.
- 749 Plafker, G.: Tectonic Deformation Associated with the 1964 Alaska Earthquake, Science 80,
- 750 148(3678), 1675–1687, doi:10.1126/science.148.3678.1675, 1965.
- Pollitz, F. F., Brooks, B., Tong, X., Bevis, M. G., Foster, J. H., Bürgmann, R., Smalley Jr., R.,
- Vigny, C., Socquet, A., Ruegg, J.-C., Campos, J., Barrientos, S., Parra, H., Soto, J. C. B., Cimbaro,
- 753 S. and Blanco, M.: Coseismic slip distribution of the February 27, 2010 Mw 8.8 Maule, Chile
- 754 earthquake, Geophys. Res. Lett., 38(9), doi:10.1029/2011GL047065, 2011.
- 755 Power, W., Wallace, L., Wang, X. and Reyners, M.: Tsunami Hazard Posed to New Zealand by
- the Kermadec and Southern New Hebrides Subduction Margins: An Assessment Based on
- 757 Plate Boundary Kinematics, Interseismic Coupling, and Historical Seismicity, Pure Appl.
- 758 Geophys., 169(1), 1–36, doi:10.1007/s00024-011-0299-x, 2012.
- 759 Qiu, Q., Hill, E. M., Barbot, S., Hubbard, J., Feng, W., Lindsey, E. O., Feng, L., Dai, K., Samsonov,

- S. V and Tapponnier, P.: The mechanism of partial rupture of a locked megathrust: The role
- 761 of fault morphology, Geology, doi:10.1130/G38178.1, 2016.
- 762 Ramos, N. T., Maxwell, K. V., Tsutsumi, H., Chou, Y. C., Duan, F., Shen, C. C. and Satake, K.:
- 763 Occurrence of 1 ka-old corals on an uplifted reef terrace in west Luzon, Philippines:
- 764 Implications for a prehistoric extreme wave event in the South China Sea region, Geosci.
- 765 Lett., doi:10.1186/s40562-017-0078-3, 2017.
- Rong, Y., Jackson, D. D., Magistrale, H., and Goldfinger, C.: Magnitude Limits of Subduction
- 767 Zone EarthquakesMagnitude Limits of Subduction Zone Earthquakes, Bulletin of the
- 768 Seismological Society of America, 104, 2359-2377, 10.1785/0120130287, 2014.
- Ruff, L. and Kanamori, H.: Seismicity and the subduction process, Phys. Earth Planet. Inter.,
- 770 23(3), 240–252, doi:10.1016/0031-9201(80)90117-X, 1980.
- 771 Ruff, L. and Kanamori, H.: Seismic coupling and uncoupling at subduction zones,
- 772 Tectonophysics, 99(2), 99–117, doi:https://doi.org/10.1016/0040-1951(83)90097-5,
- 773 1983.
- Ruiz, S., Metois, M., Fuenzalida, A., Ruiz, J., Leyton, F., Grandin, R., Vigny, C., Madariaga, R.
- and Campos, J.: Intense foreshocks and a slow slip event preceded the 2014 Iquique Mw 8.1
- 776 earthquake, Sci. , 345(6201), 1165–1169, doi:10.1126/science.1256074, 2014.
- 777 Salman, R., Hill, E. M., Feng, L., Lindsey, E. O., Mele veedu, D., Barbot, S., Banerjee, P.,
- Hermawan, I. and Natawidjaja, D. H.: Piecemeal Rupture of the Mentawai Patch, Sumatra:
- The 2008 Mw7.2 North Pagai Earthquake Sequence, J. Geophys. Res. Solid Earth, (Figure 1),
- 780 1–16, doi:10.1002/2017JB014341, 2017.
- 781 Satake, K. and Atwater, B. F.: Long-Term Perspectives on Giant Earthquakes and Tsunamis
- at Subduction Zones, Annu. Rev. Earth Planet. Sci., 35(1), 349–374,
- 783 doi:10.1146/annurev.earth.35.031306.140302, 2007.
- 784 Schellart, W. P. and Rawlinson, N.: Global correlations between maximum magnitudes of
- subduction zone interface thrust earthquakes and physical parameters of subduction
- 786 zones, Phys. Earth Planet. Inter., doi:10.1016/j.pepi.2013.10.001, 2013.
- 787 Schurr, B., Asch, G., Hainzl, S., Bedford, J., Hoechner, A., Palo, M., Wang, R., Moreno, M.,
- 788 Bartsch, M., Zhang, Y., Oncken, O., Tilmann, F., Dahm, T., Victor, P., Barrientos, S. and Vilotte,
- 789 J.-P.: Gradual unlocking of plate boundary controlled initiation of the 2014 Iquique
- 790 earthquake, Nature, doi:10.1038/nature13681, 2014.
- Sella, G. F., Dixon, T. H. and Mao, A.: REVEL: A model for Recent plate velocities from space
- geodesy, J. Geophys. Res. Solid Earth, 107(B4), ETG 11-1-ETG 11-30,

- 793 doi:10.1029/2000JB000033, 2002.
- Singh, S. C., Hananto, N., Mukti, M., Robinson, D. P., Das, S., Chauhan, A., Carton, H., Gratacos,
- 795 B., Midnet, S., Djajadihardja, Y. and Harjono, H.: Aseismic zone and earthquake
- segmentation associated with a deep subducted seamount in Sumatra, Nat. Geosci., 4(5),
- 797 308–311 [online] Available from: http://www.nature.com/doifinder/10.1038/ngeo1119
- 798 (Accessed 30 August 2011), 2011.
- Song, T. R. A. and Simons, M.: Large trench-parallel gravity variations predict seismogenic
- 800 behavior in subduction zones, Science 80, doi:10.1126/science.1085557, 2003.
- 801 Stein, S., and Okal, E. A.: Ultralong Period Seismic Study of the December 2004 Indian Ocean
- 802 Earthquake and Implications for Regional Tectonics and the Subduction Process, Bulletin of
- 803 the Seismological Society of America, 97, S279-S295, 10.1785/0120050617, 2007.
- 804 Stevens, V. L. and Avouac, J.: Interseismic Coupling on the Main Himalayan Thrust, Geophys.
- 805 Res. Lett., n/a-n/a, doi:10.1002/2015GL064845, 2015.
- 806 Sun, L., Zhou, X., Huang, W., Liu, X., Yan, H., Xie, Z., Wu, Z., Zhao, S., Shao, D. and Yang, W.:
- Preliminary evidence for a 1000-year-old tsunami in the South China Sea, Sci. Rep., 3, 1655,
 doi:10.1038/srep01655, 2013.
- 809 Suppe, J.: Tectonics of arc-continent collision on both sides of the South China Sea: Taiwan
- and Mindoro, Acta Geol. Taiwanica, (26), 1–18, 1988.
- 811 Taylor, F. W., Briggs, R. W., Frohlich, C., Brown, A., Hornbach, M., Papabatu, A. K., Meltzner,
- A. J., and Billy, D.: Rupture across arc segment and plate boundaries in the 1 April 2007
- 813 Solomons earthquake, Nature Geoscience, 1, 253, 10.1038/ngeo159
- 814 https://www.nature.com/articles/ngeo159#supplementary-information, 2008.
- 815 Taylor, B. and Hayes, D. E.: The Tectonic Evolution of the South China Basin, in The Tectonic
- and Geologic Evolution of Southeast Asian Seas and Islands, pp. 89–104, American
- 817 Geophysical Union (AGU)., 2013.
- 818 Terry, J. P., Winspear, N., Goff, J. and Tan, P. H. H.: Past and potential tsunami sources in the
- 819 South China Sea: A brief synthesis, Earth-Science Rev., 167, 47–61,
- 820 doi:https://doi.org/10.1016/j.earscirev.2017.02.007, 2017.
- 821 Vigny, C., Simons, W. J. F., Abu, S., Bamphenyu, R., Satirapod, C., Choosakul, N., Subarya, C.,
- 822 Socquet, a, Omar, K., Abidin, H. Z. and Ambrosius, B. a C.: Insight into the 2004 Sumatra-
- 823 Andaman earthquake from GPS measurements in southeast Asia., Nature, 436(7048), 201-
- 824 6, doi:10.1038/nature03937, 2005.

- 825 Vigny, C., Socquet, A., Peyrat, S., Ruegg, J.-C., Métois, M., Madariaga, R., Morvan, S., Lancieri,
- 826 M., Lacassin, R., Campos, J., Carrizo, D., Bejar-Pizarro, M., Barrientos, S., Armijo, R., Aranda,
- 827 C., Valderas-Bermejo, M.-C., Ortega, I., Bondoux, F., Baize, S., Lyon-Caen, H., Pavez, A., Vilotte,
- J. P., Bevis, M., Brooks, B., Smalley, R., Parra, H., Baez, J.-C., Blanco, M., Cimbaro, S. and
- 829 Kendrick, E.: The 2010 Mw 8.8 Maule Megathrust Earthquake of Central Chile, Monitored
- by GPS, Science 80, 332(6036), 1417–1421, doi:10.1126/science.1204132, 2011.
- 831 Wang, K.: Elastic and viscoelastic models of crustal deformation in subduction earthquake
- cycles, Seism. Zo. subduction thrust faults, 540–575, 2007.
- 833 Wang, K. and Bilek, S. L.: Do subducting seamounts generate or stop large earthquakes?,
- 834 Geology, 39(9), 819–822, doi:10.1130/G31856.1, 2011.
- 835 Wang, X., Liu, P. L.-F. and Orfila, A.: NUMERICAL SIMULATIONS OF TSUNAMI RUNUP ONTO
- 836 A THREE-DIMENSIONAL BEACH WITH SHALLOW WATER EQUATIONS, in Advanced
- Numerical Models for Simulating Tsunami Waves and Runup, pp. 249–253., 2008.
- 838 Wei, S., Graves, R., Helmberger, D., Avouac, J.-P. and Jiang, J.: Sources of shaking and flooding
- during the Tohoku-Oki earthquake: A mixture of rupture styles, Earth Planet. Sci. Lett.,
- 840 333–334, 91–100, doi:http://dx.doi.org/10.1016/j.epsl.2012.04.006, 2012.
- 841 Wells, R. E., Blakely, R. J., Sugiyama, Y., Scholl, D. W. and Dinterman, P. A.: Basin-centered
- 842 asperities in great subduction zone earthquakes: A link between slip, subsidence, and
- subduction erosion?, J. Geophys. Res. Solid Earth, 108(B10), doi:10.1029/2002JB002072,
- 844 2003.
- 845 Wesnousky, S. G.: Seismological and structural evolution of strike-slip faults, Nature,
- 846 335(6188), 340–343 [online] Available from: http://dx.doi.org/10.1038/335340a0, 1988.
- 847 Wesnousky, S. G.: Predicting the endpoints of earthquake ruptures, Nature, 444(7117),
- 848 358–360 [online] Available from: http://dx.doi.org/10.1038/nature05275, 2006.
- 849 Witter, R. C., Carver, G. A., Briggs, R. W., Gelfenbaum, G., Koehler, R. D., La Selle, S., Bender, A.
- M., Engelhart, S. E., Hemphill-Haley, E., and Hill, T. D.: Unusually large tsunamis frequent a
- 851 currently creeping part of the Aleutian megathrust, GeoRL, 43, 76-84,
- 852 10.1002/2015GL066083, 2016.
- 853 Wu, J., Suppe, J., Lu, R. and Kanda, R.: Philippine Sea and East Asian plate tectonics since 52
- Ma constrained by new subducted slab reconstruction methods, J. Geophys. Res. Solid
- 855 Earth, 121(6), 4670–4741, doi:10.1002/2016JB012923, 2016.
- 856 Wu, T.-R. and Huang, H.-C.: Modeling tsunami hazards from Manila trench to Taiwan, J.

- Asian Earth Sci., 36(1), 21–28, doi:10.1016/j.jseaes.2008.12.006, 2009.
- Xie, X., Chen, C., Li, L., Wu, S., Yuen, D. A. and Wang, D.: Tsunami hazard assessment for atoll
- 859 islands inside the South China Sea: A case study of the Xisha Archipelago, Phys. Earth
- 860 Planet. Inter., 290, 20–35, doi:https://doi.org/10.1016/j.pepi.2019.03.003, 2019.
- 861 Yang, W., Sun, L., Yang, Z., Gao, S., Gao, Y., Shao, D., Mei, Y., Zang, J., Wang, Y. and Xie, Z.:
- 862 Nan'ao, an archaeological site of Song dynasty destroyed by tsunami, Chinese Sci. Bull.,
- 863 64(1), 107–120, 2018.
- 864 Yokota, Y., Ishikawa, T., Watanabe, S., Tashiro, T. and Asada, A.: Seafloor geodetic
- 865 constraints on interplate coupling of the Nankai Trough megathrust zone, Nature,
- 866 534(7607), doi:10.1038/nature17632, 2016.
- 867 Yu, H., Liu, Y., Yang, H. and Ning, J.: Modeling earthquake sequences along the Manila

868 subduction zone: Effects of three-dimensional fault geometry, Tectonophysics, 733, 73–84,

- 869 doi:https://doi.org/10.1016/j.tecto.2018.01.025, 2018.
- 870 Yu, K.-F., Zhao, J.-X., Shi, Q. and Meng, Q.-S.: Reconstruction of storm/tsunami records over
- the last 4000 years using transported coral blocks and lagoon sediments in the southern
- 872 South China Sea, Quat. Int., 195(1), 128–137,
- 873 doi:https://doi.org/10.1016/j.quaint.2008.05.004, 2009.
- 874 Zhu, J., Sun, Z., Kopp, H., Qiu, X., Xu, H., Li, S. and Zhan, W.: Segmentation of the Manila
- 875 subduction system from migrated multichannel seismics and wedge taper analysis, Mar.
- 876 Geophys. Res., doi:10.1007/s11001-013-9175-7, 2013.

877

- Tsunami catalog (Vu and Xuyen, 2008)
- Major city

- Volcanic tsunami (Paris et al., 2014)
- Locations of geological record \star

881 882 Figure 1. Tectonic setting and historical tsunami catalogs in the South China Sea region. Colored circles indicate published tsunami catalogs and are labeled in the legend. Red 883 884 triangles represent historical tsunamis related to volcanic activities. Red barbed curves 885 show the megathrusts in this region. Geological tsunami records are marked with red stars 886 (Ramos et al., 2017; Sun et al., 2013; Yang et al., 2018; Yu et al., 2009). The megacities are labeled in the legend and the seafloor subducting features are highlighted in the map. The 887

historical earthquakes with $M_w > 6.5$ in Philippines are labeled. The likely tsunami events

reported in the mega-cities are also labeled in the map. The two dashed lines represent the

890 possible trace of the subducted Scarborough seamounts underneath the overriding plate as

imaged from tomography study (Wu et al., 2016). The rupture zones are denoted by thecolor-shaded curves.

893

894 895

899

Figure 2. Seismicity ($M_w > 4.5$) in the Manila subduction zone between 1900 and 2018. This data set is downloaded from USGS catalog. Color represents the depth and size scales the seismic moment magnitude indicated in the legend.

902 Figure 3. Proposed rupture slip models based on coupling models from Hsu et al. (2016) 903 assuming a 1000-year seismic return time period. (a) and (b) show the slip models from 904 coupling model A (Hsu et al., 2016) in zone 1 and 2, respectively. (c) shows a proposed 905 hybrid model based on coupling model A (19 °N to 20 °N) and a Gaussian shape of slip 906 distribution (20 °N to 21.7 °N) with 50% coupling ratio in zone 3. (d), (e) and (f) represent 907 the same slip models with (a), (b) and (c) but based on coupling model B (Hsu et al., 2016). 908 CM refers to coupling model. Coupling models A and B are from Hsu et al. (2016) that are 909 shown in the inset map. White arrows show the possible slip directions during earthquake. 910 Vectors in the coupling maps show the slip deficit direction that is accumulated for future 911 release in earthquakes. The estimated seismic moment of each model are labeled in each 912 subplot with rigidity 30 GPa. The slip magnitude and coupling ratio are shown by its 913 corresponding color scales.

914 915

Figure 4. Depth distribution of the seismicity in the Manila subduction zone between 1970
and 2018. This data set is downloaded from GCMT catalog. Colors represent the seismic

moment magnitude. The giant 2004 Sumatra and 2011 Japan earthquakes are highlighted
 in the map.

922 Figure 5. Proposed slip models in zone 3. (a) and (b) show shallow rupture type of slip 923 models (e.g., Tokoku-Oki) based on coupling models A and B (Hsu et al., 2016), 924 respectively. (c) and (d) represent megathrust (Figure 3. c and f) rupture together with the 925 out-of-sequence megasplay type of slip models, respectively. We assume 50% coupling for the megathrust and the megasplay faults. CM refers to coupling model shown in the inset 926 map. White arrows show the possible slip directions during earthquakes. Vectors in the 927 928 coupling maps show the slip deficit direction that is accumulated for future release in 929 earthquakes.

931 932 Figure 6. (a) Seismogenic megathrust rupture together with mega-splay rupture scenario 933 with 80% coupling ratio on each of them from model A of Hsu et al. (2016). (b) same with 934 (a) but from model B of Hsu et al. (2016). (c) Shallow rupture (e.g., Tohoku-Oki rupture) the same as Figure 3.a but with 80% coupling ratio on the megathrust. (d) Shallow rupture 935 936 (e.g., Tohoku-Oki rupture) same as Figure 3.b but with 80% coupling ratio on the megathrust. A 1000-year seismic return period was assumed in the slip calculation. 937

941 Figure 7. Modeled maximum tsunami wave heights and arrival time contours in SCS. (a), 942 (c) and (e) show the maximum tsunami wave heights generated from rupture zones 1, 2 943 and 3 based on slip models calculated from coupling model A (Hsu et al., 2016), 944 respectively. (b), (d) and (f) show the same maximum tsunami wave heights but with slip 945 models calculated from coupling model B (Hsu et al., 2016). In zone 3, we show Gaussian slip distribution with 50% coupling ratio scenario with other example scenarios shown in 946 947 Figure 8. The solid black contours show hourly tsunami arrival time with half an hour 948 increment (dashed contours). The colored dots show the subsampled location at 20-m 949 water depth, with color showing the maximum wave heights.

- **Figure 8.** Maximum tsunami wave heights from different rupture characteristics in zone 3
- 952 with hybrid coupling models. (a), (c) and (e) show the maximum tsunami wave heights
- based on coupling model A (Hsu et al., 2016). (b), (d) and (f) show the same maximum
- tsunami wave heights but with slip models based on coupling model B (Hsu et al., 2016).

