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Abstract. Probabilistic Seismic Risk Analysis is widely used in the insurance industry to model the likelihood and severity

of losses to insured portfolios by earthquake events. The available seismological data is often limited, resulting in many un-

certainties and assumptions. The situation is further aggravated by the sometimes poor data quality with regard to insured

portfolios. For example, due to geocoding issues of address information, risk items are often only known to be located within

an administrative geographical zone, but precise coordinates remain unknown to the modeler.5

In the first part of this paper, we analyze spatial seismic hazard and loss rate variation inside administrative geographical

zones in western Indonesia. We find that the variation of hazard can vary strongly not only between different zones, but also

between different return periods for a fixed zone. However, the spatial variation of loss rate displays a similar pattern as the

variation of hazard, without depending on the return period.

We build upon these results in the second part of this paper. In a recent work, we introduced a framework for stochastic10

treatment of portfolio location uncertainty. This results in the necessity to simulate ground motion on a high number of sam-

pled geographical coordinates, which typically dominates the computational effort in Probabilistic Seismic Risk Analysis. We

therefore propose a novel sampling scheme to improve the efficiency of stochastic portfolio location uncertainty treatment.

Depending on risk item properties and measures of spatial loss rate variation, the scheme dynamically adapts the location

sample size individually for insured risk items. We analyze the convergence and variance reduction of the scheme empirically.15

The results show that the scheme can improve the efficiency of the estimation of loss frequency curves, and may thereby help

to spread the treatment and communication of uncertainty in Probabilistic Seismic Risk Analysis.

1 Introduction

Seismic risk analysis is widely used in academia and industry to model the possible consequences of future earthquake events,

but is often associated with poor data quality, resulting in the necessity for many assumptions and a wide range of deep20

uncertainties (Goda and Ren, 2010). The treatment and communication of uncertainties is highly important for informed

decision making and a holistic view of risk (Tesfamariam et al., 2010; Cox, 2012; Bier and Lin, 2013). In the insurance

industry, Probabilistic Seismic Risk Analysis (PSRA) is the means of choice to model the likelihood and severity of losses to
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insured portfolios due to earthquake events. In this context precise exposure locations are often unknown, which can have a

significant impact on scenario loss as well as on loss frequency curves (Bal et al., 2010; Scheingraber and Käser, 2019).

In PSRA, uncertainty is usually taken into account by means of Monte Carlo (MC) simulation (e.g. Pagani et al. 2014;

Tyagunov et al. 2014; Foulser-Piggott et al. 2017). This is a computationally intensive process, because the error convergence

of MC is relatively slow and a high-dimensional loss integral needs to be evaluated with a sufficient sample size. In PSRA,5

the hazard component typically dominates the overall model runtime. As a result, stochastic treatment of portfolio location

uncertainty can be particularly challenging - ground motion needs to be simulated on a large number of sampled risk locations.

On the other hand, a fast model runtime is a key requirement for underwriting purposes in the insurance industry. Methods

or sampling schemes to improve the error convergence of MC simulation are known as variance reduction techniques. MC

simulation is ubiquitous in many areas of science and engineering and a wide variety of sampling schemes exists. Some10

well-known ideas are common random numbers and control variates (Yang and Nelson, 1991), importance-, stratified- and

hypercube sampling, Quasi Monte Carlo Simulation (QMC) using low-discrepancy sequences, as well as adaptive sampling.

The error convergence of different sampling schemes has been investigated for many different types of integrals and application

areas (Hess et al., 2006; dos Santos and Beck, 2015). Some work has already been performed on variance reduction for

PSHA and PSRA in the form of importance sampling, e.g. preferentially sampling the tails of the magnitude and site ground15

motion probability distributions (Jayaram and Baker, 2010; Eads et al., 2013). However, to our knowledge so far no study has

specifically investigated variance reduction for location uncertainty in PSRA in a modern risk assessment framework. Building

on a framework proposed in a recent study, in the present paper we describe a novel variance reduction scheme specifically

designed to increase the computational efficiency of stochastic treatment of portfolio location uncertainty in PSRA.

The remainder of this paper is structured as follows. We outline the most important theoretical background in Section 2.20

Using a seismic risk model of western Indonesia, in Section 3 we explore spatial hazard and loss rate variation inside admin-

istrative zones. Based on this, in Section 4 we propose an adaptive location uncertainty sampling scheme and investigate its

performance using several test cases in Section 5. In Section 6, we give some recommendations on how to apply the results in

practice and conclude with possible future improvements.

2 Background25

2.1 Probabilistic Seismic Hazard and Risk Analysis

PSRA is based on Probabilistic Seismic Hazard Analysis (PSHA; Cornell, 1968; Senior Seismic Hazard Committee, 1997),

which relies on a number of assumptions outlined in the following. In PSHA, the exceedance rate λ of ground motion level y0

at a site r0 is expressed by the hazard integral

λ(y0,r0)[y ≥ y0] =

∫
V

mmax∫
mmin

P [y ≥ y0|m,r,r0] · ν(m,r)dmdr, (1)30
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with ν(m,r)dmdr the seismic rate density which describes the spatio-temporal distribution of seismic activity,P [y ≥ y0|m,r,r0]

the conditional probability of exceeding ground motion y0 at site r0 given a rupture of magnitude m at source location r, and

V the spatial integration volume containing all sources which can cause relevant ground motion at r0. Assuming that the

occurrence of earthquake events is a temporal Poisson process, the probability of at least one exceedance of y0 within time

interval t0 is given by5

P (y0, t0, λ̄)[y ≥ y0] = 1− e−λ̄t0 , (2)

where λ̄ is the mean annual recurrence rate.

For PSRA in the insurance industry, MC simulation is commonly used to obtain a set of stochastic ground motion fields Ŷ

and to then compute the probability that a loss level ι0 is exceeded as

P (Ŷ,Θ)[ι≥ ι0] =

ne∑
i=1

∞∫
ι0

fι(ι|Ŷi,Θ)dι, (3)10

where fι(ι|Ŷi,Θ) is the loss probability density function for a portfolio Θ given the ith ground motion field Ŷi. Summing up

the contribution of all ne events yields the total loss exceedance probability. A Probable Maximum Loss (PML) curve, showing

loss against mean return period T (with T = 1/λ̄), can be obtained from the loss exceedance probability curve (Equation 3)

using a first order Taylor approximation of Equation 2:

T =
t0

P (y0, t0,λ)[y ≥ y0]
. (4)15

Here, t0 is the period of interest (time interval), which is 1 year for most reinsurance contracts.

For more details on PSHA and PSRA, we refer to the comprehensive textbook of McGuire (2004).

2.2 Portfolio Location Uncertainty

Perhaps surprisingly, in the insurance industry, portfolios frequently lack precise coordinate-based location information. Ob-20

taining this information is often not possible, e.g. because geocoding engines are not used systematically or can not reliably

obtain coordinates from the policy address of the insured risk. Especially for large treaty portfolios with thousands or millions

of risks, it apparently is simply too much effort for the primary insurer or the insurance broker to obtain and provide this

information. Unfortunately, this is also not uncommon for smaller portfolios consisting only of a few hundred high-value risks.

However, administrative zones, such as postal codes, can easily be obtained from the insurance policy.25

Exposure uncertainty has previously been identified as an important area of research (Crowley, 2014), and we already

introduced a framework for stochastic treatment of location uncertainty in a recent paper (Scheingraber and Käser, 2019). In

our framework, locations of risk items without precise coordinate location information are sampled with replacement from

a weighted irregular grid inside their corresponding administrative zone. The grid weights are used to preferentially sample

locations in areas of assumed high insurance density, e.g. based on population density or on commercial and industrial inventory30

data depending on the type of risk (Dobson et al., 2000). An example of such a weighted grid is shown in Figure 1.
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In MC simulation, the choice of a pseudo-random number generator is of particular importance. In this study we use

MRG32K3a, a combined multiple recursive generator which efficiently generates random number sequences with low memory

requirements and excellent statistical properties (L’Ecuyer, 1999). MRG32K3a supports up to 1.8 · 1019 statistically indepen-

dent substreams. Each substream has a period1 of 7.6 · 1022. These properties make MRG32K3a well suited for a large scale

parallel MC simulation of seismic risk.5

Figure 1. An example of a weighted grid used as an insurance density proxy for the location uncertainty framework. This shows northern

Sumatra. Color indicates population density (residents per km2) as a proxy for insured exposure density. Black markers depict grid points of

the weighted grid. The population data in this plot is based on a free dataset (Gaughan et al., 2015).

1The period of a pseudo-random number generator refers to the minimum length of a generated sequence before the same random numbers are repeated

cyclically.
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2.3 Evaluation of the Proposed Sampling Scheme

2.3.1 Standard Error

Because MC simulation is a stochastic method, there are no strict error bounds for statistics of interest obtained from a sample of

finite size n. The error is therefore usually estimated using the standard deviation of the sampling distribution of the respective

statistic, which is referred to as its standard error (ESE). If the sampling distribution is known (e.g. normal), standard errors can5

often be obtained using a simple closed-form expression (Harding et al., 2014). For the statistics estimated in this study, e.g.

PML at a specific return period, we can however not make a valid distribution assumption when taking location uncertainty

into account. We therefore use repeated simulation to evaluate the performance of the proposed sampling scheme. The standard

error can then be estimated as

ESE(Φ̂R) =

√
Var(Φ̂R), (5)10

where Φ̂R denotes a set of estimations of a statistic obtained fromR repeated simulations and Var(·) the variance operator. The

corresponding relative standard error ERSE can be obtained by dividing ESE by the estimated statistic. To estimate confidence

intervals of standard errors, we use bootstrapping with the bias-corrected accelerated percentile method (Efron, 1979; Efron

and Tibshirani, 1986).

2.3.2 Bias and Convergence Plots15

The bias of an estimator θ̂ is defined as

Bias(θ̂n) = Eθ(θ̂n)− θ, (6)

where θ̂n = f(x1,x2, . . . ,xn) is the estimator depending on the n members of the sample and Eθ its expected value. Because

deriving the bias analytically is infeasible for a complex numerical simulation such as performed by our framework, we use

simple MC2 with a large sample size as empirical reference and approximation for θ. In addition we use convergence plots,20

which are a simple yet powerful method to monitor and verify the results (Robert and Casella, 2004). The values estimated

using simple MC and the adaptive variance reduction scheme are plotted against increasing sample size n.

2.3.3 Variance Reduction, Convergence Order and Speedup

To quantify the performance of the proposed scheme at a particular sample size n, we use the following well-known definition

of variance reduction VR:25

VR =
σ2

MC

σ2
LSS

, (7)

where σ2
MC is the variance using simple MC and σ2

LSS the variance using the proposed location sampling scheme (MacKay,

2005; Juneja and Kalra, 2009)
2For simple MC, the strong law of large numbers guarantees an almost certain convergence for n→∞.
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To describe asymptotic error behavior for growing n, we use the big O notation (O; Landau, 1909; Knuth, 1976). For

example, the error convergence order of simple MC is always O(n−0.5) independent of the dimensionality of the integrand

(Papageorgiou, 2003).

To compare the real runtime required by simple MC and the proposed scheme to reach a specific relative standard error level

εRSE, we use the speedup S defined as5

S =
tMC

tLSS
, (8)

where tMC the runtime required by simple MC and tLSS the runtime required by the proposed location sampling scheme.

2.4 Generation of Synthetic Portfolios

In this work, we use synthetic portfolios in western Indonesia modeled after real-world counterparts in terms of spatial distri-

bution of risk items as well as value distribution among risk items.10

2.4.1 Value Distribution

The total sum insured (TSI) is kept constant for all portfolios:

TSI = const. = 1 · 106. (9)

However, the TSI is distributed among a varying number of risk items (portfolio size). For this study, we use portfolio sizes nr

of 1, 10, 20, 50, 100, 1000 and 10000 risk items.15

The value distribution observed in many real residential portfolios can be approximated well by a randomly perturbed flat

value distribution:

VI∗flat,i =
TSI
nr
·Xi, (10)

VIflat,i =
TSI∑nr

i=1 VI∗flat,i
·VI∗flat,i . (11)

VIflat,i (“value insured”) is the value assigned to the ith risk item and nr denotes the number of risk items. Xi is a uniform ran-20

dom number in the interval [1− p,1 + p], where p is a perturbation factor set to 0.2, which is consistent with the characteristics

of many real portfolios. Equation 11 normalizes the nr randomly perturbed insured values to ensure
∑nr
i=1 VIflat,i = TSI.

2.4.2 Geographical Distribution

For each portfolio size, we created a set of 6 portfolios with an increasing fraction of unknown coordinates: 0%, 20%, 40%,

60%, 80%, and 100% of the risk items have unknown coordinates and are only known on the basis of their administrative zone25

(Indonesian provinces, or regencies and cities, see Section 3).

The geographical distribution of the exposure locations follows the weighted irregular grid described in Section 2.2. For each

portfolio size, a portfolio with 0% unknown coordinates is initially created by choosing exposure locations from the irregular
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Table 1. Ground motion models and corresponding weights used by the hazard model for different tectonic region types.

Tectonic Region Type Ground Motion Model Weight

Active Shallow Crust Boore and Atkinson (2008) 1/3

Campbell and Bozorgnia (2008) 1/3

Chiou and Youngs (2008) 1/3

Stable Continental Crust Toro et al. (1997) 1

Subduction Interface Zhao et al. (2006) 2/3

Youngs et al. (1997) 1/3

Subduction Intraslab Atkinson and Boore (2003) 1

grid according to the grid point weights. For the other portfolios with the same number of risk items but a higher fraction of

unknown coordinates, coordinate-based location information is then removed stepwise from the initial portfolio. In each step,

20% of the risk items are randomly selected for the removal of coordinates until all risk items have unknown coordinates.

3 Case Study: Spatial Seismic Hazard Variation in Western Indonesia

3.1 Hazard Model5

For this study, we use a custom seismic risk model based on the South-East Asia hazard model by Petersen et al. (2007) of

the United States Geological Survey (USGS). Site conditions or soil classes are based on topographic slope (Wald and Allen,

2007), but have been refined locally to consider areas of soft soil, such as river beds. The geometry of the Sumatra subduction

zone has been improved over the original USGS model. It is a complex representation of the fault geometry based on the Slab

1.0 model (Hayes et al., 2012), which provides three-dimensional data of the subduction. To generate finite geometry patches10

for individual events on the complex fault, we use a rupture floating mechanism similar to the implementation of OpenQuake

(Pagani et al., 2014), a free and open-source seismic hazard and risk software developed as part of the Global Earthquake

Model initiative (Crowley et al., 2013).

In order to reduce the computational effort of the hazard model, we have simplified the logic tree of the ground motion

model for all tectonic regions types. This allowed to thoroughly analyze the performance of the proposed sampling scheme for15

a larger set of insurance portfolios and sampling scheme parameters, while retaining overall accordance with the hazard of the

original model. Table 1 gives an overview of the selected ground motion models and their weights.

Figure 2 shows the resulting seismic hazard map for an exceedance probability of 10% in 50 years. Assuming a temporal

Poisson distribution, this probability equals an average return period of 475 years, which is used for most seismic hazard20

maps and by the engineering community for the design of building codes. The depicted area is comprised of the islands
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of Sumatra, Java, and Kalimantan (the Indonesian sector on the island of Borneo). The hazard results of our model are in

general agreement with results obtained using the original USGS South-East Asia model (Petersen et al., 2007) or third-

party implementations such as by the Global Earthquake Model (GEM) initiative evaluated using the OpenQuake engine3.

Slight differences are caused by the inclusion of site conditions, simplified ground motion model logic tree, different source

parameterization, improved subduction geometry representation, and slightly modified seismicity rates based on the latest5

ISC-GEM Global Instrumental Earthquake Catalogue (Storchak et al., 2013) and Global Historical Earthquake Catalogue4.
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Figure 2. Seismic hazard in western Indonesia, as obtained using our hazard model. Color shows the level of Peak Ground Acceleration

(PGA, in ms−2) that is predicated to be exceeded at an average return period of 475 years.

On the island of Sumatra, the effect of the Sumatra fault zone is clearly visible and seismic hazard is strong. The seismic

hazard of Java is highest in the western area of the island, around the city of Jakarta. The hazard levels decrease towards the

3See https://hazardwiki.openquake.org/sea2007_intro for results obtained using OpenQuake.
4See http://www.emidius.eu/GEH/.
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east. On Kalimantan, there are no known or modeled seismic crustal faults. Therefore, only a low level of spatially homogenous

distributed gridded seismicity is used in this area, resulting in low hazard.

The hazard model and results are described in more detail in a recent paper (Scheingraber and Käser, 2019).

3.2 Spatial Seismic Hazard Variation

For this analysis, we compute seismic hazard on a regular grid using a resolution of 0.3°. We investigate the coefficient of5

variation (CV) of hazard inside administrative geographical zones for different levels of resolution, corresponding to provinces

and regencies or cities in Indonesia. The CV is defined as

CV =
σ

µ
, (12)

where σ is the standard deviation and µ the mean.

3.2.1 Dependence on Resolution Level of Geographical Zones10

Figure 3 shows the CV of peak ground acceleration with an exceedance probability of 10% in 50 years per province in

Indonesia. There is a noticeable decrease of the CV from west to east. The subduction modeled by the complex fault and the

Sumatra Fault Zone (SFZ) result in the highest CV on Sumatra (most values 0.2 - 0.3). The CV is also relatively high on Java

(around 0.15). The CV is the lowest in Kalimantan (< 0.1) due to the absence of any known or modeled crustal faults. As only

gridded seismicity is used in this area, the hazard variation is very small. Furthermore, zones with a large extent perpendicular15

to the SFZ show a larger CV than zones with a smaller extent along the direction of the steepest hazard gradient. An example

of this are the provinces of Jambi and Bengkulu in Figure 3. Arguably, location uncertainty is more important in Jambi than in

Bengkulu.

Figure 4 shows the CV per regency or city for the same exceedance probability. Due to the smaller spatial extent of the

administrative zones, the CV is in general lower at this more granular resolution of administrative geographical zones. Another20

observation is that the influence of individual seismo-tectonic features emerges; the CV is higher in the vicinity of modeled

faults. While the Sumatra subduction only has a weak influence, the SFZ has a pronounced effect. Near the SFZ, the CV has

values of about 0.1 - 0.2. Perpendicular to the SFZ, the CV quickly drops below 0.1.

In general, the CV is highest in zones close to modeled faults of shallow depths, as they result in a higher spatial hazard

gradient than compared to areas where hazard is dominated by rather regularly distributed gridded seismicity. A reasonable25

assumption is that location uncertainty can be particularly high in such zones.

3.2.2 Dependence on Return Period

Analysis of the CV across different return periods for individual zones revealed a similar pattern for most administrative zones.

The CV is small for short return periods, and reaches a relatively stable level above a certain return period. An example of

this behavior is shown in Figure 5 for the province of Jambi. However, the CV does not show this pattern in all administrative30
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Figure 3. Coefficient of Variation (CV) of Peak Ground Acceleration (PGA) with an exceedance probability of 10% in 50 years inside

provinces in western Indonesia. Color denotes the CV. Note how the CV is higher in provinces that have a large extent perpendicular to the

Sumatra Fault Zone, such as Jambi (outlined in pink color), than in provinces with a small extent in that direction, such as Bengkulu (outlined

in blue).

zones. For some zones, especially at the level of regencies and cities, we could not determine a range of return periods for

which the CV is roughly constant, as for example in the province of Kalimantan Timur shown in Figure 6.

3.3 Loss Rate Variation

The variability of the CV over return periods for certain zones makes it difficult to choose a general return period suitable for

assessing the spatial variation of hazard inside a zone. To avoid the subjectivity introduced by a manual decision process for a5

suitable return period, we use the CV of the loss rate per zone, as it considers all return periods. Figure 7 shows the CV of the

loss rate for Indonesian provinces. The overall pattern agrees with the pattern of the spatial hazard variation in Figure 3, but

the range of values is much higher, from about 0.1 to 0.9.
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Figure 4. Coefficient of Variation (CV) of Peak Ground Acceleration (PGA) with an exceedance probability of 10% in 50 years inside

regencies and cities in western Indonesia. Color denotes the CV. At this geographical resolution the CV is lower than for provinces (see

Figure 3), and the influence of individual seismo-tectonic features, such as the Sumatra fault zone, becomes apparent.

4 A Framework for Adaptive Sampling of Portfolio Location Uncertainty

To increase efficiency, in our framework ground motion is jointly simulated on all unique locations of all sampled location sets.

Since the computation of hazard dominates the overall runtime of PSRA, it is worthwhile to explore possibilities to distribute

the number of locations on which hazard is computed in a smart way among risk items. To this end, we introduce three sampling

criteria to determine the location sample size individually per risk item. A large location sample size is used for risk items for5

which at all three criterions indicate that location uncertainty has a strong influence. If any of the three criteria predicts that

location uncertainty has a lesser effect, a smaller sample size is used. In this way, more computational effort is invested where

it is important and a better estimation of the PML curve associated with a lower variance is obtained for a given number of

used hazard locations. To not add noticeable overhead to the calculation, a key requirement is that all criteria can be evaluated

very efficiently. To keep the computational overhead small, another design goal is that the framework is adaptive in a sense10

that it depends directly on properties of the portfolio and a precalculated hazard variability (see Section 3), but does not require
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Figure 5. Coefficient of variation (CV) of ground motion predicted to be exceeded at various return periods for the Jambi province (see

Figure 3). The CV remains quite stable over a large range of return periods.

on-the-fly integral presampling such as used by some general purpose adaptive variance reduction schemes (Press and Farrar,

1990; Jadach, 2003).

4.1 Risk Location Index Mapping Table

We store an array containing all unique geographical locations on which ground motion is simulated, and another array storing

the sampled location indices per risk item. Table 2 illustrates the concept. Each column of the table corresponds to a location5

set representing a valid realization of location uncertainty for the entire portfolio. To combine unequal sample sizes for risk

items without introducing bias due to overemphasis of a subset of a sample, we restrict the sample size to powers of two. The

full sample can then be repeated in the mapping table.

12



0 100 200 300 400 500 600 700 800 900 1,000
0

0.02

0.04

0.06

0.08

0.1

0.12

Return Period [years]

C
oe

ffi
ci

en
to

fV
ar

ia
tio

n
(C

V
)

Figure 6. Coefficient of variation (CV) of ground motion predicted to be exceeded at various return periods for the Kalimantan Timur

province (see Figure 3). In this case, it is not possible to determine a range of return periods for which the CV remains in a stable range.

Table 2. Risk Location Index Mapping Table. Rows correspond to individual risk items, showing sampled grid point indices. Each column

represents a possible spatial distribution of the portfolio. Risk item 1 has the maximum location sample size of nmax = 4, but risk items 2

and 3 only have a sample size of 2 and 1, respectively.

Risk Item Index Sample Size Sample 1 Sample 2 Sample 3 Sample 4

1 4 43 13 31 51

2 2 23 18 23 18

3 1 51 51 51 51
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Figure 7. Coefficient of variation (CV) of the loss rate inside provinces in western Indonesia. Color denotes the CV.

4.2 Criterion I: Coefficient of Variation of Loss Rate

The first criterion is based on the CV of loss rate within a zone (see Section 3), hereafter denoted by CVz. The values of CVz

can be precomputed for all administrative geographical zones, and therefore the evaluation of this criterion can be implemented

in a very efficient manner.

The number of samples nL due to criterion I is defined piecewise:5

n∗L =


1, if CVz ≤ tl,
nmax−1
tu−tl

·CVz +1, if CVz ∈ (tl, tu),

nmax, if CVz ≥ tu.

(13)

Here, tl and tu are lower and upper threshold values. nmax represents the maximum used sample size. We round n∗L up to

the next higher power of two to obtain the final nL. The criterion is shown in Figure 8 for the example tl = 0.1, tu = 0.4 and

nmax = 16. In our final implementation, tl and tu are chosen adaptively as empirical quantiles of the CV distribution (CV0.4
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for tl and CV0.6 for tu, i.e. the 40% and 60% percentiles) of the loss rate of all administrative zones of a model (see Section 3),

which was found to be a reasonable choice for our test cases with the aid of an extensive parameter study (see Section 5.1).
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Figure 8. Criterion I: Number of samples per zone depending on coefficient of variation. The discrete realization of the criterion (limited to

powers of two) is shown in blue, while the red line represents the theoretical linear behavior.

4.3 Criterion II: Number of Risk Items

The second criterion involves two steps. The first step defines a maximum sample size for the entire portfolio depending on the

total number of risk items nr in the portfolio and a threshold tp as5

n†R =

−
nmax−1

log(tp−1) · log(nr− 1) +nmax, if nr < tp,

1, if nr ≥ tp,
(14)
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which is then used to obtain a maximum sample size per zone, depending on the number of risk items in a zone nz and a

threshold tz:

n∗R =

−
n†

R−1

tz−1 · (nz− 1) +n†R, if nz < tz,

1, if nz ≥ tz.
(15)

We round n∗R up to the next higher power of two to obtain the final nR. Figures 9 and 10 illustrate this criterion for tp = 10000,

tz = 100 and nmax = 16. In this study, tp is chosen to be 10000 and tz is set adaptively to equal the number of grid points of5

the weighted location uncertainty sampling grid (see Section 2.2) inside each administrative zone. The design of this criterion

is based on the results of a previous study, in which we systematically investigated the effect of location uncertainty and loss

aggregation due to spatial clustering of risk items for a large range of different portfolios. It was found that location uncertainty

typically has a neglectable effect for very large portfolios and a roughly flat value distribution (Scheingraber and Käser, 2019).

4.4 Criterion III: Value Distribution10

The third criterion depends on the relative insured values of risk items (“sum insured”, SI). Risk items are sorted with respect

to their SI, and the index of their sorted order Ir is used along with a threshold index ti to determine the maximum sample size

per risk item:

n∗V =

−
nmax−1
ti−1 · (Ir−1) +nmax, if Ir < ti,

1, if Ir ≥ ti.
(16)

We round n∗V up to the next higher power of two to obtain the final nV. Figure 11 illustrates this criterion for ti = 6 and15

nmax = 16. In this study, for ti we adaptively set the index of the first risk item which has a SI higher than the mean of all risk

items.

4.5 Combination of Criteria

The final sample size for a specific risk item is then given by the minimum of the three criteria:

n= min{nL,nR,nV}. (17)20

The rationale behind this decision is that any of the criteria can separately predict that a particular risk item has a low impact on

loss uncertainty. For example, if a risk item with an unknown coordinate has a low insured value, it has a relatively low impact

on loss uncertainty even if the variation of hazard or loss rate within the corresponding administrative zone is high, and thus a

small location uncertainty sample size can be used. Vice versa, the impact of location uncertainty is limited if a risk item with

an unknown coordinate has a high insured value but the hazard within the corresponding administrative zone is relatively flat.25

Furthermore, loss uncertainty is also limited if a portfolio contains a very high number of total risk items or the number of risk

items belonging to an administrative zone is high compared to the number of grid points within this zone.

16



1 2 3 4 5 10 20 50 100 1000 10000

1

2

4

8

16

Number of Risks Items in Portfolio (nr)

M
ax

im
um

L
oc

at
io

n
Sa

m
pl

e
Si

ze
(n
† R

)
Maximum Location Sample Size (n†R)

Figure 9. Criterion II.a: Number of samples per zone depending on the number of risk items in the portfolio. Note that we do not round up

to the next higher power of two, since this plot illustrates Equation 14, which is an intermediate step.

5 Results

In this section, the variance reduction and speedup obtained with the proposed adaptive location uncertainty sampling scheme

is analyzed using the western Indonesia hazard model described in Section 3.1 in conjunction with a vulnerability model for

regional building stock composition. To this end, loss frequency curves are computed for the synthetic portfolios described in

Section 2.4 with simple MC as well as the adaptive scheme. The convergence and relative standard errors are evaluated against5

the number of unique hazard locations used for the loss calculation by either approach and the associated required runtime is

compared.
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Figure 10. Criterion II.b: Maximum number of samples per zone depending on the number of risk items in an administrative zone. The

discrete realization of the criterion (limited to powers of two) is shown in blue, while the red line represents the theoretical linear behavior.

5.1 Spatial Variation Parameter Study

We first analyze the performance of the adaptive sampling scheme for different values of the lower (tl) and upper (tu) threshold

parameters for the spatial variation of loss rate in an administrative zone in comparison to simple sampling. In simple MC, all

risk items get the same location uncertainty sample size nmax and there is not restriction to powers of two. For this parameter

study, we use values of nmax = 32, 64, 96, 128, 160, 192, 224, 256 in order to obtain a smooth curve with a high number of5

support points.

For the adaptive variance reduction scheme, the sample size is restricted to powers of two and is determined for each risk

item individually - potentially smaller than the maximum allowed location uncertainty sample size nmax (see Section 4 and

Table 2). Since the sample size varies between risk items, for a meaningful comparison with simple MC it is necessary to use

a measure of the total effort spend for the treatment of location uncertainty of all risk items. We use the total number of unique10
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Figure 11. Criterion III: Number of samples per zone depending on the insured values of the risk items. The discrete realization of the

criterion (limited to powers of two) is shown in blue, while the red line represents the theoretical linear behavior.

hazard locations (nhazard) and the runtime spent for the computation of hazard (thazard). While for simple MC all risk items

get the maximum sample size nmax, the adaptive location sampling scheme reduces the sample size for risk items for which

location uncertainty likely has a smaller influence. This means that the adaptive location sampling scheme results in a smaller

nhazard than simple MC for the same portfolio and nmax. Therefore, in order to obtain a comparable values for nhazard, a larger

maximum sample size nmax has to be employed for the adaptive scheme than for simple MC. Here, we use nmax = 2i with5

i= 5,6, . . . ,8.

For each sample size, the spatial variation threshold parameters are varied over the distribution of CV values, picking

quantiles in constant steps of 0.2. The lower threshold tl is varied from CV0.0 to CV0.8, and the upper threshold tu from CV0.2
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Figure 12. Results of a systematic parameter study with the goal of finding good values for the lower threshold (tl) and upper threshold (tu)

parameters of Criterion I of the adaptive location uncertainty sampling scheme (see Section 4), based on the distribution of the Coefficient

of Variation (CV) of loss rate in administrative zones. This shows a logarithmic plot of relative standard error (ERSE) of Probable Maximum

Loss (PML) at a return period of 100 years against the number of used hazard locations (nhazard) for a portfolio of 20 risk items with 100%

unknown coordinates. Color indicates different combinations for the threshold parameters tl and tu. Quantiles of the CV distribution around

tl ∈ [CV0.2;CV0.4] in combination with tu ∈ [CV0.6;CV0.8] work best.

to CV1.0. For each combination of tl and tu, R= 20 repeated simulations were performed for each sample size to estimate the

respective relative standard error ERSE.

In general, for our test cases the scheme works well around tl ∈ [CV0.2;CV0.4] in combination with tu ∈ [CV0.6;CV0.8].

For example, for a portfolio of 20 risk items and 100% unknown coordinates, Figure 12 shows a logarithmic plot of the relative

standard error ERSE of PML at a return period of 100 years against the number of used hazard locations nhazard for some5

combinations of tl and tu. The error curves for all combinations of tl and tu have the same slope as the curve for simple MC

and thus the same convergence order of O(n−0.5). For certain combinations, the error curve is below the curve for simple
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MC, meaning that in these cases the scheme successfully reduces the variance of the estimation and therefore the associated

standard error.

For the final implementation, we used tl = CV0.4 and tu = CV0.6, which performed best in this parameter study.

5.2 Performance of the Final Implementation

We now evaluate the performance of the final implementation of the adaptive scheme, checking if it results in any unwanted5

systematic bias and investigating variance reduction and speedup for the calculation of PML for different portfolios.

5.2.1 Convergence and Bias

Figures 13 and 14 show convergence plots of PML at 100 years return period against the number of used hazard locations

nhazard for portfolios with nr = 10 and nr = 100 risk items, respectively. The left plots depict the results for portfolios with 60%

unknown coordinates, the right plots the results for portfolios with 100% unknown coordinates. Simple sampling is shown10

in blue, the adaptive scheme in red. For all portfolios, the sample size n was varied as n= 2i with i= 3,4, . . . ,9. For each

sample size and both sampling schemes R= 20 repeated simulations are shown as semi-transparent circles, with solid lines

highlighting one individual repetition.

The results show that empirically the adaptive scheme converges to the same result as simple MC for our test cases, meaning

that the scheme does not result in any systematic bias. It is also apparent that for a given number of used hazard locations15

nhazard, the relative PML values obtained with the adaptive scheme scatter less than those estimated with simple MC.

5.2.2 Variance Reduction and Speedup

For the same portfolios as analyzed in the previous section, Figure 15 shows logarithmic plots of the relative standard error

ERSE obtained fromR= 20 repeated simulations against the number of used hazard locations nhazard. Vertical bars depict upper

95% confidence intervals estimated using bootstrapping with 1000 resamples. Simple MC is again shown in blue, the variance20

reduction sampling scheme in red. While the observed error convergence order of the adaptive scheme remains the same as for

simple MC (i.e. O(n−0.5), compare Section 5.1), the error curves are below those for simple MC for all portfolios.

The variance reduction quotient (VR, the ratio of the variances of the estimations obtained using simple MC and the adaptive

scheme, see Equation 7) varies between portfolios with different number of risk items and fractions of unknown coordinates,

but generally increases with growing nhazard. For example, for the portfolio with 10 risk items and 60% unknown coordinates,25

VR is about 6.2 at nhazard = 102 and increases to 13.2 at nhazard = 103. For the portfolio with 10 risk items and 100% unknown

coordinates, VR≈ 1.8 at nhazard = 102 and 2.2 at nhazard = 103. For the portfolios with 100 risk items, the situation is similar.

For 60% unknown coordinates, VR≈ 2.4 at nhazard = 103 and 3.7 at nhazard = 104. For 100% unknown coordinates, VR≈ 1.7

at nhazard = 103 and 3.0 at nhazard = 104.

30
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Figure 13. Convergence plots showing relative Probable Maximum Loss (PML) at a return period of 100 years against the number of used

hazard locations nhazard for portfolios of nr = 10 risk items with 60% (left plot) and 100% (right plot) unknown coordinates using simple MC

(shown in blue) as well as the adaptive scheme (shown in red). Semi-transparent circles depict R= 20 repeated simulations for each sample

size, solid lines highlight one repetition. The transparently shaded background shows the entire range for each sampling scheme. The plots

show that the adaptive scheme scatters less and converges faster to the same result as simple sampling.

The obtained variance reduction partially leads to a speedup of the computational runtime to reach a specific relative standard

error level εRSE. Table 3 shows the speedup S of the scheme to reach relative standard error levels of εRSE = 10−4 and εRSE =

10−5 for the same portfolios. Depending on the portfolio, the scheme achieves a speedup between 8% and 35% to reach

εRSE = 10−4, and between between 6% and 37% to reach εRSE = 10−5. Note that we obtained these speedup values using a

highly optimized seismic hazard and risk analysis framework. We suspect that the scheme can result in a significantly higher5

speedup for less optimized code, especially if the hazard simulation is not vectorized but contains a loop over locations.
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Figure 14. Convergence plots showing relative Probable Maximum Loss (PML) at a return period of 100 years against the number of used

hazard locations nhazard for portfolios of nr = 100 risk items with 60% (left plot) and 100% (right plot) unknown coordinates using simple

MC (shown in blue) as well as the adaptive scheme (shown in red). Semi-transparent circles depict R= 20 repeated simulations for each

sample size, solid lines highlight one repetition. The transparently shaded background shows the entire range for each sampling scheme. The

plots show that the adaptive scheme scatters less and converges faster to the same result as simple sampling.

6 Conclusions

Seismic risk assessment is associated with a large range of deep uncertainties. For example, the exact location of risks is often

unknown due to geocoding issues of address information. In order to provide a holistic view of risk and to be able to com-

municate the effect of uncertainty effectively to decision makers, all model uncertainties need to be treated. Therefore, in this

paper we propose a novel adaptive sampling strategy to efficiently treat this location uncertainty using a seismic hazard and5

risk model for western Indonesia. The adaptive scheme considers three criteria to decide how often an unknown risk coordinate

has to be sampled within a known administrative zone: (1) the loss rate variation within the zone, (2) the number of risks within

the zone, and (3) the individual value of the risk. As the variation of hazard can vary quite strong not only between different

administrative geographical zones, but also between different return periods, we use the spatial variation of loss rate which
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Figure 15. Logarithmic plot of relative standard errors ERSE of Probable Maximum Loss (PML) at a return period of 100 years against the

total number of used hazard locations nhazard for different portfolios with nr = 10 (left plots) and nr = 100 (right plots) risk items and 60%

(upper plots) and 100% (lower plots) unknown coordinates. Simple MC is shown in blue, the adaptive variance reduction scheme in red.

All ERSE have been obtained from R= 20 repeated simulations, vertical error bars depict upper 95% confidence intervals estimated using

bootstrapping with 1000 resamples.
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Table 3. Mean runtime speedup and standard errors (S±ESE) of the hazard computation achieved by the adaptive location uncertainty

sampling scheme in comparison to simple sampling to obtain relative standard error levels of εRSE = 10−4 and εRSE = 10−5, estimated from

R= 20 repeated simulations. Depending on the portfolio and εRSE, the mean speedup ranges from 6% to 37%.

Speedup (S)

Portfolio εRSE = 10−4 εRSE = 10−5

10 risk items, 60% unknown coordinates 1.24± 0.09 1.14± 0.04

10 risk items, 100% unknown coordinates 1.35± 0.06 1.37± 0.09

100 risk items, 60% unknown coordinates 1.08± 0.04 1.06± 0.03

100 risk items, 100% unknown coordinates 1.09± 0.03 1.08± 0.02

displays a similar pattern as the variation of hazard, but is independent of the return period. Furthermore, the total number of

risks in the corresponding administrative zone, as well as the value (importance) of the risk with respect to the entire portfolio

are considered by the adaptive scheme.

We investigated the performance of the scheme for a large range of sample sizes using different synthetic portfolios of dif-5

ferent levels of unknown risk locations. We have found that the scheme successfully reduces the expected error, i.e. it reaches

the same error levels as simple Monte Carlo with less samples of potential risk locations. This results in lower memory require-

ments and a moderate but appreciable runtime speedup to reach a desired level of reliability when computing loss frequency

curves - a critical measure of risk in the insurance industry. The scheme helps to obtain a holistic view of risk including the

associated uncertainties, and could also be applied to other natural perils, such as probabilistic wind and flood models. This10

should help to avoid blind trust in probabilistic risk assessment.

While the proposed scheme already successfully reduces the variance of loss frequency curve estimations, future improve-

ments in the treatment of uncertainty in PSRA are conceivable and necessary. The effect of modeling assumptions and the

often poor data quality needs to be investigated further. The computation might become yet more efficient by the application of15

variance reduction techniques to other uncertainties, for example in the ground motion and vulnerability models. Moreover, it

would be essential to investigate the relative importance of location uncertainty in comparison to these other uncertainty types.

Code and data availability. The hazard model used for this work is based on the publicly available United States Geological Survey (USGS)

South-East Asia seismic hazard model by Petersen et al. (2007), as described in Section 3.1. The seismic risk model and analysis software

used for this work is proprietary and not publicly available.20
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