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Abstract. Classical statistical methods for flood frequency estimation assume stationarity in the gauged data. However, recent 

focus on climate change and, within UK hydrology, severe floods in 2009 and 2015 have raised the profile of statistical 

analyses that include trends. 

This paper considers how parameter estimates for the Generalised Logistic distribution (standard for UK annual maximum 

flows) vary through time, using the UK Benchmark Network (UKBN2) to separate the effects of land-use change from climate 10 

change. We focus on the sensitivity of parameter estimates to adding data, through fixed-width moving window and fixed-

start extending window approaches, and on whether parameter trends are more prominent in specific geographical regions. 

Under stationary assumptions, the addition of new data tends to further the convergence of parameters to some “final” value. 

However, addition of a single new data point can vastly change non-stationary parameter estimates. Little spatial correlation 

is seen in the magnitude of trends in peak flow data, potentially due to the spatial clustering of catchments in the UKBN2. In 15 

many places, the ratio between the 50-year and 100-year flood is decreasing, whereas the ratio between the 2-year and 30-year 

flood is increasing, presenting as a “flattening” of the flood frequency curve. 

1 Introduction 

Over the last decade, the United Kingdom has seen several extreme flood events, particularly as a result of significant winter 

storm events in 2009 and 2015-16 (Barker, et al., 2016; Defra, 2016). The 2015-16 storms took place over the Lake District 20 

in north-west England, and during the event record observations of 24-hour and 2-day rainfalls were seen (Marsh, et al., 2016; 

Spencer et al., 2018).  This has added weight to various questions about whether this frequency of extreme events is indicative 

of some change in the nature of the flooding due to changes in rainfall patterns as a result of climate change, or due to land use 

changes and river channel alterations (IPCC, 2014). Within statistical flood frequency estimation, one common assumption is 

that the time series of annual maxima or threshold exceedances (peaks-over-threshold) is stationary: the underlying modelling 25 

distribution is constant in time. However, this may not be wholly appropriate in all cases. Taking this non-stationarity into 

account may be crucial in flood risk management (Reynard, et al., 2017) due to the potential for underestimates of reliability 

of defence structures, or over-spending due to the failure to account for a reduction in flood estimates. Spencer et al. (2018) 

also use up-to-date NRFA data to look into whether the record-breaking events are reason for practitioners to adopt non-

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-107
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 16 April 2019
c© Author(s) 2019. CC BY 4.0 License.



2 

 

stationary assumptions, highlighting historical data and local data as ways to supplement the existing data, being used as 

evidence for trends and to improve associated uncertainties. 

Many authors have tried different approaches to the study of trends and non-stationarity in river flow data and have investigated 

how to apply statistical modelling to the problem. Typically, it is difficult to disentangle the effects of land-use change and 

climate in river flow regimes, due to simultaneous changes in both. Hannaford and Marsh (2006) developed a hydrological 5 

reference network, the UK Benchmark Network (explained below), to analyse changes in river flow in locations without 

anthropogenic influence. Harrigan et al. (2017) used the updated UK Benchmark Network to study high flow and low flow 

trends, looking at 5th and 95th percentiles of daily discharge data. Hall et al. (2014) have investigated flood regime changes on 

a European scale to identify possible generating mechanisms, and the current methods of observing or modelling these changes.  

It can be challenging to make conclusions on long-term trends or the magnitude of long return period floods in the presence 10 

of short record lengths in many locations, so various statistical approaches have been brought forward. O’Brien and Burn 

(2014) use several extreme value distribution parameters to estimate trends in peak flow in Canada, using parameters which 

evolve linearly in time; regionalisation was also implemented using trend direction as a pooling criterion. Prosdocimi et al. 

(2014) use a 2-parameter Log-normal distribution to analyse trends in UK peak flow data using time and annual 99th percentile 

of daily rainfall as covariates, to account for the fact that trends may not be linear in chronological time, but may be relative 15 

to changes in precipitation. Kay and Jones (2012) apply isotonic regression to look for monotonic changes in flood frequency 

in Britain. More recently Eastoe (2019) used a random effects model across the UK using peak-over threshold data. Future 

Flows Hydrology is a UK-nationwide probabilistic hydrological projection of trend using deterministic hydrological models 

to compare projections to baseline (1961-1990) high flow and low flow behaviour and to analyse the associated uncertainty 

(Collet et al., 2018).  20 

One problem in the estimation of flood frequency in the presence of non-stationarity is that single significant events can have 

a great effect on estimates of flood magnitude and uncertainty estimates, which is compounded under trends. For example, 

actually observing the “1-in-1000-year” flood in a 40-year monitoring period may lead to overestimation in the upper tails of 

the flood frequency curve. In related work, Kjeldsen and Prosdocimi (2016) found no clear drivers behind the most “surprising” 

events, those much bigger than any in the current record, which overwhelmed defences in the UK. 25 

Here, moving window and extending window methods are used with non-stationary formulations of the Generalised Logistic 

distribution (GLO) to highlight sensitivity in parameter fitting to record length. The aims of the paper are to: 

 Investigate how flood frequency estimations change over time as records are extended 

 Investigate how sensitive the parameters of the GLO are to the most extreme events. 

 Demonstrate examples of issues in consistently describing changes in flood frequency estimates in the UK. 30 

Section 2 will describe the NRFA data being used, the UK Benchmark Network and the Generalised Logistic distribution. 

Section 3 will outline the results of moving window and extending window analyses. In Section 4, results will be discussed, 

an explanation of the findings offered, and possible applications and extensions for this work suggested. 
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2 Data and methodology 

2.1 Data 

This study will focus on data from the National River Flow Archive (NRFA, 2018), and in particular on the UK Benchmark 

Network (UKBN2) (Harrigan et al., 2017). An initial version was set up by Hannaford and Marsh (2006) to provide a collection 

of near-natural catchments within the UK which have natural flow regimes broadly representative of the region, with high-5 

quality hydrometric data. This dataset was updated in 2017 and has been used in the past to analyse trends in high and low 

flows in the UK. The current version has stations with between 21 and 86 years of record, with a mean length of 46 years. On 

average, these stations have 1.5% missing daily data.  

For the present work, a subset of the data (73 stations) is used, consisting of UKBN2 stations that have 30 or more years of 

annual maxima and are considered by the NRFA as “suitable for pooling”; see Fig. 1 for locations. This means that the three 10 

largest recorded AMAX values at a given station are likely to be close to their true value (NRFA, 2018). Due to the requirement 

of UKBN2 that catchments must be free of significant land use change over the period of record, catchments in the south-east 

and midlands of England are fewer in number and typically smaller than catchments located elsewhere. For some portions of 

the current work, the 73 catchments are further divided into those with 40 or more years of annual maxima (67 catchments) 

and 50 or more years of annual maxima (29 catchments). 15 

2.2 Methods 

This paper focuses on how flood frequency estimates change over time as records are extended. To this end, the Generalised 

Logistic Distribution (GLO) is fitted using L-moments (Hosking and Wallis, 1997) to the AMAX series of peak river flow 

based on 15-minute readings for stations in UKBN2. This is done using both stationary parameters and non-stationary 

parameters – values that vary over time – separately. These fitted parameters, along with estimates for the 1-in-30, 1-in-50 and 20 

1-in-100 year floods, are compared spatially and temporally across the UK, applying moving fixed-width windows and 

extending fixed-start windows to the AMAX series. 

In the UK, the Flood Estimation Handbook (FEH; Robson and Reed, 1999) states that the recommended distribution for the 

AMAX series is the Generalised Logistic distribution (GLO), given by the quantile function describing flow Q (measured in 

m3/s) for return period T (measured in years):  25 

𝑄𝑇 = {
𝜉 +

𝛼

𝜅
(1 − (𝑇 − 1)𝜅)         if  𝜅 ≠ 0 

𝜉 − 𝛼 log(𝑇 − 1)                 if  𝜅 = 0 
              

with location parameter ξ , scale parameter α, and shape parameter κ (Hosking and Wallis, 1997). Note that QMED and ξ are 

similar but subtly different: QMED is the median of the observed series, whereas ξ is the median of an infinite series drawn 

from the same GLO distribution; Fig. 2 shows some examples of GLO flood frequency curves for different values of α and κ. 

Under stationary conditions T is equivalent to the annual exceedance probability (AEP) where 𝐴𝐸𝑃 = 1/𝑇. 30 
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Figure 1: Locations of the 73 stations used in the analysis, highlighting record length and location of associated watershed. 

3 Results 

3.1 Moving window analysis 

To begin with, this study uses a “moving window” analysis, which can be thought of as a “window of recent memory”. 5 

Although it may not be reasonable to assume stationarity over the whole length of a given station’s record, it may be reasonable 

to choose a small window during which there is no statistically significant trend. In particular, the identification of flood rich 

or flood-poor periods, investigated in Europe by Hall et al. (2014), may be a strong application for this method.  

A fixed-width window of 20 years is applied to each record that has more years of AMAX data than the width of the window. 

The window is moved across the record, year-by-year, from the start to the end. At each position, stationary GLO parameters 10 
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are fitted and the value of QMED is computed for only the AMAX data inside the window. This is repeated using a 30-year 

and 40-year window. 

Comparisons between the time-series of parameters for the three different window sizes show that wider windows result in 

more lag (delay in time between the extreme event and an equivalent change in parameters) and attenuation (“smoothing out”) 

of changes to the parameter estimates, as the window is moved. The increased attenuation observed for wider windows is to 5 

be expected, as the largest event in a 20-year window has greater weight in parameter calculation than if it were the largest 

event in a 30 or 40-year window. The increased lag observed for wider windows can be explained as events from further back 

in the time-series taking longer to drop out of the window. However, the width of the window ultimately has little effect on 

the general overall trends observed. For this reason, only the 20-year window will be used in the rest of this paper to best 

highlight differences between the start and end of records. 10 

From a hydrological perspective, a distribution based on an AMAX record in which just one event is much larger than QMED 

(and many smaller) will have strongly negative κ, while a record with several similarly sized events much larger than QMED 

(and few smaller) will result in a strongly positive κ, which could also suggest a possible maximum flow rate at the station.  

Hence, for moving window analyses, the change in the shape parameter over time relates to the introduction and, in some 

cases, later ejection of events either much larger or much smaller than QMED. This can be seen at the end of the example in 15 

Fig. 3, where the extreme event (the largest in the record) creates a great change in the moving window estimate of the shape 

parameter. 

 

 

Figure 2: Example GLO flood frequency curves. (a): varying κ, with α=0.5, ξ=10; (b): varying α with κ=0.5, ξ=10. Plotted on logistic 20 
reduced variate scale. 
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Figure 3: Example of results from fitting stationary parameters on the Ribble at Samlesbury in different time windows.  Parameters 

(a-c) computed under moving windows, extending windows and on the whole record. AMAX series with QMED moving estimate 

(e), and flood frequency curves generated from the moving window analysis and from the whole record (d). Note that the value from 

1972-73 is missing, but this does not affect the analysis. 5 

3.2 Extending window analysis 

An alternative approach to analysing change in flood regime is to adopt an extending window approach, which matches the 

standard practice of recomputing the flood frequency distribution upon acquiring new data. In the present study, the window 

initially includes the first 20 years of the record and is extended year-by-year to eventually cover the whole record. For 

example, a station for which records start in 1901 would be investigated using windows covering the years 1901-1920, 1901-10 

1921, etc., up to 1901-2016. As before, stationary parameters are fitted and the value of QMED computed at each station using 

only the data inside the window. The purpose of using stretching windows is to see how specific events, once included, affect 

the values of the stationary parameters and return periods of large events. 

Trends within extending windows start similarly to those within fixed-width windows, but gain an increasing amount of 

attenuation and lag, as older events never drop out of the window. This attenuation and lag means that the flood frequency 15 

curves developed for extending windows do not vary as much as for fixed-width windows. Use of an extending window can 

therefore mask periods of record during which the distribution of AMAX events can be quite different from the average, or 

mask changes in flow regime. However, extraordinary events do still have noticeable effects on the stationary location and 

shape parameters in particular. 
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3.2.1 Comparison of moving window and extending window analysis 

A typical example of moving window estimates is presented for the Ribble at Samlesbury (NRFA station 71001) in Fig. 3. As 

a number of large events (bigger than QMED) “drop out of memory”, ξ decreases and κ becomes more extreme, moving away 

from zero due to the difference between the smallest and largest events in the window. As the big events in 2000 and 2011 

appear, the location parameter ξ moves back the other way, whereas the large number of similar-sized events in this period 5 

lead to κ moving towards and eventually passing zero, to become positive again. However, a very extreme event in 2015 leads 

to a massive shift in the shape parameter, which becomes more negative again. 

These changes can be clearly seen in the flood frequency curves (Fig. 3(d)), where the curves from the middle period are more 

extreme due to more negative values of κ, but the later curves are more elevated around QMED, where the reduced variate 

log(𝑇 − 1) is close to zero, due to large values of ξ. This suggests that Q100 and Q50 estimates decrease towards the end of the 10 

record, but Q5 and QMED are increasing towards the end of the record. 

 

Figure 4: Spatial distribution of trends in the 30-, 50- and 100-year return period floods across the UK Benchmark Network, 

comparing estimates (percentage increase) from the whole record to estimates just using the first 20 years of record at each station. 

For the extending window analysis, the lengthening record leads to more stable estimates over time. However variation in 15 

estimates can be seen throughout the record, suggesting a lack of convergence to a steady value, particularly in location and 

shape parameters. Single events such as the low value of 1995 have marked effects. The flood frequency curves under the 

extending window analysis (not shown) present a similar evolution in flood frequency to that of the moving window, but the 

curves on the whole show less inter-year variation. The extending window estimate for QMED is still fairly insensitive to the 

extreme events (both large and small) as record lengthens, even less so than from the moving window; QMED is in many cases 20 

chosen over mean annual flood  as a primary descriptive statistic for this insensitivity to single extreme events. 
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3.2.2 Spatial patterns of trends as records lengthen in the UK 

To see the effects of the use of an extending window over the whole of the UK, Fig. 4 demonstrates the difference between 

using the start of the record and the whole record for the 30-, 50- and 100-year return period events, corresponding to the 

3.33%, 2% and 1% AEP events under stationary conditions. Assuming they come from the same distribution, one might expect 

little variation between the two estimates (so the percentage difference plotted is close to zero). However, strong differences 5 

of up to 100% increase have been observed across England at all three return periods. Elsewhere the signal is less clear. 

Common patterns observed at all return periods are mostly down to the fixed expression for QT conditional on the parameter 

values. 

3.3 Non-stationary analysis 

To look at how the stationary estimates compare to the non-stationary, parameters that vary linearly in time (ξ(t),α(t),κ(t)) are 10 

fitted to the entire record at each station using maximum likelihood estimators. 

3.3.1 Non-stationary Generalised Logistic distribution 

To describe the changing distribution of the AMAX series over time, the stationary parameters are replaced by parameters that 

change linearly in time 

𝜉(𝑡) =  𝜉0 +  𝜉1𝑡,        𝛼(𝑡) = 𝛼0 + 𝛼1𝑡,        𝜅(𝑡) =  𝜅0 + 𝜅1𝑡 15 

where 𝑡 is the number of years since the start of the record. In order to fit these linearly varying parameters, maximum 

likelihood estimators (rather than L-moments) are determined on the AMAX series. Much work has been done investigating 

linearly changing location and scale parameters (𝜉, 𝛼) for the Generalised Extreme Value distribution (GEV) distribution 

(Cunderlik and Burn, 2003; Leclerc and Ouarda, 2007; O’Brien and Burn, 2014). The shape parameter is typically left constant 

due to the high level of uncertainty in estimating the shape parameters even on long records (Coles, 2001). However to explore 20 

how these shape parameters might be changing in time and space, a linearly changing value of 𝜅 is also included here. It should 

be noted, however, that since the shape parameter is bounded by -1 and 1, there is a limit to the length of period that the linear 

trend for κ can be considered reasonable. Additionally, due to very different behaviours of the GLO for positive and negative 

values of 𝜅, it is more physically realistic to expect a decay towards zero than a linear trend past zero. 

3.3.2 Non-stationary return periods 25 

The standard definition of the return period of flow Q (𝑇𝑄) is intrinsically linked to the annual exceedance probability (AEP), 

the probability that a flow of given discharge Q is met or exceeded within a given year. For example, the 1-in-100-year event 

has an AEP of 1%. However, when the probability of exceedance changes over time, due to the changing distribution, the 

notion of a return period should be updated similarly. Hu et al. (2017) focus on reliability of engineering structures, related to 
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the probability of failure over the design life of the structure. For example, if the design lifespan is L years, then the survival 

probability of a structure built in year y would be 𝑃𝑠𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = ∏ (1 − 𝑃𝑄(𝑠)
𝑦+𝐿
𝑠=𝑦 ). In this work, the return period must take into 

account the point of reference of interest, similar to the design life of a piece of hydraulic engineering like a dam or bridge. 

Using the definitions from Salas and Obeysekera (2014), the return period of an event with flow exceeding Q, starting from 

year y is given by 5 

𝑇𝑄(𝑦) =  ∑ ∏ (1 − 𝑃𝑄(𝑠))
𝑟

𝑠=𝑦

∞

𝑟=𝑦
 

where PQ(s) is the annual exceedance probability of a flow Q in year s. If the probability of exceedance is the same for each 

year (stationary), this can be simplified to give 

𝑇𝑄 =
1

1 − 𝑃𝑄

 

which matches with the standard conversion from AEP to return period (Hosking and Wallis, 1997).  10 

The non-stationary estimate for the T-year flood, starting from year y, 𝑄𝑇̃(𝑦), is obtained by inverting TQ(y). However, this is 

done numerically due to the intractability of the expressions involved. It should be observed that if PQ(s) decreases sufficiently 

quickly, it is possible for the value of TQ(y) to be infinite. This might be the case where an observed upper bound of flood 

magnitudes decreases over time, such that a value of interest Q* goes from below to above the upper bound (Salas and 

Obeysekera, 2014). In cases like this, a flood of magnitude Q* will never happen again, unless the trend or distribution changes. 15 

3.3.3 Results based on whole record 

Across the 73 study catchments, the different types of trend can be divided according to the direction of movement in the 

median (QMED or ξ increasing or decreasing) and extremes of the flood frequency curve (κ tending towards and away from 

zero). In some cases, a parameter may reverse its direction of travel one or more times as the window is moved from the start 

to the end of the record, resulting in a flood frequency curve with an inconsistent time-dependency. 20 

Fig. 5 shows the size and direction of the parameters ξ1, α1, κ1 fitted to each of the 73 full AMAX records (i.e. the year-on-

year change). The relative changes of location and scale parameters are shown (ξ1/ξ0, α1/α0), while for κ1 the actual value is 

shown. Figure 5 confirms that positive trends in the estimates for the location parameter ξ are more numerous and typically 

larger than negative trends (56 positive vs 17 negative), and shows that the largest positive trends cluster around the England-

Scotland border, where ξ can increase by 1-2% per year. 25 
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Figure 5: Maps of UK Benchmark Network showing relative spatial trends in ξ1/ξ0 (a), α1/α0 (b), and κ1 (c). 

For the scale parameter α, there is less spatial consistency in the size and direction of trends, with 42 negative and 31 positive 

values of α1. However, there are no extreme negative trends (α1/α0 < 0.02), while 11 positive trends are greater than 2%, the 

most extreme case, α1/α0 = 0.167, implies that α(t) = α0 + α1t reaches double α0 after approximately six years. The shape 5 

parameter α has the greatest influence over the gradient of the flood frequency curve in the centre of the distribution away 

from the tails, so increased values of α suggests increases in the ratio between magnitudes of more frequent floods (2-year-

flood and 30-year-flood, for example). It should be noted to obtain estimates with the same level of uncertainty, a longer 

AMAX series is required for α1 than for ξ1.  

While the magnitudes of κ1 are well balanced either side of zero, trends towards zero are more numerous than trends away 10 

from zero (56 towards vs 17 away). Smaller values of κ (i.e. closer to zero) have the effect of straightening the flood frequency 

curve (when return periods are plotted as their logistic reduced variate), which in cases with no upper bound (most cases) has 

the effect of reducing the ratios between extreme events (e.g. between the 1% AEP and 3.33% AEP floods for a fixed year).  

Even more so than for the scale parameter, it should be noted that an even longer AMAX series is required for a specific level 

of uncertainty in κ1 than for α1 or ξ1 and that this has been given as a reason in previous studies not to quantify trends in κ 15 

(O’Brien and Burn, 2014). 

For most records, the overall trend is towards an increase in ξ, corresponding to an increase in QMED and other large floods. 

However, most stations show a trend in κ whereby its value moves closer to zero. This trend exists for both κ negative and 

increasing and κ positive and decreasing, and has the effect of “straightening” the flood frequency curve: this reduces the ratio 

between magnitudes of extreme events (e.g. the 1% AEP and 0.1% AEP events for a given year) in cases where κ is negative 20 

and increasing. 
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Figure 6: Example of results from fitting stationary and non-stationary parameters on the Agivey at Whitehill in different time 

windows. (a-c) Stationary parameters computed under moving windows, extending windows, and the whole record, and non-

stationary parameters computed on the whole record. (e) AMAX series with QMED moving estimate. (d) Flood frequency curves 

generated from the moving window analysis and generated from the whole record. 5 

Although non-stationary parameter fitting over the whole record allows trends to be quantified and compared easily, it can 

only register the cumulative total trend even if a trend changes direction several times over the period of record. An example 

of this is demonstrated at Agivey at Whitehill (NRFA station 203028, Fig. 6), where, for a 20-year moving window, κ falls 

from −0.21 to −0.40 before increasing again to −0.28, corresponding to the occurrence of the largest event in 1987, with the 

only other similarly large event in 2008. In contrast, for non-stationary parameter fitting, κ increases linearly by 0.038 per year.  10 

Although the changes are not consistent over time, a flattening of the flood frequency curve can still be observed, along with 

a decrease in Q100 (reduced variate of 4.59) despite a steady value of QMED.  

Non-stationary parameter estimates can highlight issues with using a single value to represent parameters over a changing 

catchment, but can also illustrate that stationary parameter estimates are not necessarily an average of the non-stationary 

parameter estimates. Figure 7 highlights one such example from Gifford Water at Lennoxlove. Under the stationary 15 

distribution, the shape parameter estimate is approximately κ = -0.2, whereas 𝜅(𝑡) ≈ −0.45 + 0.001𝑡 is the non-stationary 

estimate, which is quite different. This can be explained by considering the fixed window at the start of the time series and the 

end of the time series. By recalculating the plotting positions for these windows, the curves using the non-stationary estimates 

for the first and last year of records describe the early and late years well, respectively. On the other hand, the stationary 

estimates fit the whole curve well but not any one section, as the very different behaviours at each end “average” out. 20 
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Figure 7: Flood frequency curves (FFCs) for Gifford Water at Lennoxlove.  i) AMAX plotted for first ten years of record (green 

triangles) and FFC plotted using ξ(t), α(t), κ(t) from first year of record (green line); ii) AMAX plotted for last ten years of record 

(pink triangles) with FFC plotted using ξ(t), α(t), κ(t) from last year of record (pink line); iii) AMAX plotted for whole record (circles). 

Each set of AMAX points plotted using separately calculated plotting positions. 5 

Although this work does not attempt to attribute causes to the trends in UK Peak Flow data, it is of interest to see whether any 

standard covariates correlate strongly with the trends observed. Figure 8 shows relative change in ξ (ξ1/ξ0), relative change in 

α (α1/α0) and absolute change in κ (κ1) against catchment centroid easting, catchment centroid northing, average annual rainfall 

during 1961-1990 (SAAR) and catchment area. This reveals few strong relationships between trends in any GLO parameter 

and either catchment location, size or yearly rainfall. The most obvious thing observed is that there are no strong trends in α 10 

for catchments larger than around 700 km2 or for the most northerly catchments in the UK. In practical terms, this means that 

the gradient of the centre of the flood frequency curve is relatively unchanging over time for catchments in Scotland and the 

larger catchments elsewhere in the UK. 

3.4 Non-stationary extending window analysis 

One can also investigate the sensitivity of non-stationary parameters to new data. Starting with the record up to 2000, the non-15 

stationary parameters were refitted for each station after adding one new year at a time. In general, ξ0 and ξ1 changed in opposite 

directions due to the fact that QMED derived from the whole record (which roughly associates to the average of ξ(t) over the 

record) varies slowly, but the addition of an extreme point often changes the slope of the linear fit, so ξ0 has to change 

conversely to compensate. This is less marked in α(t). In cases where there is low variability in AMAX, the values of κ1, α1 

and ξ1 vary slowly, but in many cases these parameters vary erratically. 20 
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Figure 8: Scatterplots plotting catchment descriptors against relative trends in non-stationary parameters. 

Nat. Hazards Earth Syst. Sci. Discuss., https://doi.org/10.5194/nhess-2019-107
Manuscript under review for journal Nat. Hazards Earth Syst. Sci.
Discussion started: 16 April 2019
c© Author(s) 2019. CC BY 4.0 License.



14 

 

 

Figure 9: (a-c) Non-stationary parameters using fixed-start extending windows on the Warleggan at Trengoffe showing change due 

to addition of single data points, ξ1, α1 and κ1 plotted. (d) AMAX series highlighting period of extending windows. 

Figure 9 shows an example where the presence of an extreme event massively changes the trend parameters. The event in 

2010, which far exceeds any previous event, has a very large effect on κ1 and α1, causing both to become significantly more 5 

negative. Compare this to the relatively smooth variation before 2006 which could be linked to the very consistent values of 

AMAX close to QMED in 2000-2006, which would lead to an increase in κ(t) and drop in α(t), and push ξ1 closer to zero. It 

should be noted, though, that this example is extremely clear, most stations showed these kinds of effects but with much more 

variability. 

3.5 Changes in flood return periods 10 

Finally the 30-year and 50-year floods are compared for each of the stations with records extending up to at least 2015, under 

stationary and non-stationary estimates. The value of Q30 and Q50 are computed from the stationary parameter estimates. Then, 

using the non-stationary parameter estimates, the annual probabilities of exceedance PQ(y) are computed, assuming that the 

fitted non-stationary parameters remain valid for the 50 years following the start of the record at the station (66 stations satisfied 

this). These are used to find the return period function TQ as in Section 3.3.2. 𝑄30̃(𝑦0) and 𝑄50̃(𝑦0), with y0 equal to the start 15 

of each station’s record, are then computed by inverting the function. Note that, for numerical tractability, the sum was 

truncated once the value of summands became less than 0.01. The values obtained were tested and seen to be fairly insensitive 

to the exact threshold for truncation, as long as it was sufficiently small (much less than 1). 
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Figure 10: Percentage change of long-return period flood magnitudes ((
𝑸𝑻̃

𝑸𝑻
− 𝟏) × 𝟏𝟎𝟎%)  computed under assumptions of 

stationarity (QT) and non-stationary probability of exceedance (𝑸𝑻̃). Shown for the 30-year event (a) and 50-year event (b). 

Figure 10 shows the ratios of 𝑄30̃(𝑦0)/𝑄30 and 𝑄50̃(𝑦0)/𝑄50. Note that if these changes are greater than zero, then this suggests 

that the event under non-stationary assumptions is larger. In general, we see a quite mixed signal for the 30-year event, 5 

suggesting that many of these estimates are quite similar under stationary and non-stationary assumptions. However, for the 

50-year event we see a more consistent increase in magnitude compared to estimates made under stationary assumptions at the 

start of the period of record. This is likely due to the continued increase in location and scale parameters over time (compare 

to Fig. 5), causing an ever increasing discrepancy between the stationary and non-stationary probabilities of exceedance. As 

in Fig. 5, the biggest changes are on the England-Scotland border. Due to the limitations of the linear expressions used for the 10 

non-stationary parameters, it was not possible to estimate the non-stationary 100-year flood at many of the locations in the 

UKBN2. More flexible expressions for the parameters, κ(t) in particular, may improve this. 
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4 Conclusions 

In this paper, the updated UK Benchmark Network has been used as a near-natural set of example stations to investigate how 

the inclusion of new data affects flood frequency estimates under both stationary and non-stationary assumptions. The change 

in median behaviour by the addition of larger and smaller events was reaffirmed, but the big changes in the shape parameter κ 

due to the influence of extreme events, leading to much steeper flood frequency curves in the upper tail, have also been 5 

presented. In addition to observation of new data, this could reaffirm the notions of “in living memory” as unreliable since, as 

small events are forgotten, the relative sizes of the more recent floods may be distorted.  The fixed-width moving window 

analysis can be seen as a proxy for this. 

To put this in context in the UK, Fig. 5 suggests flood frequency curves are flattening, suggesting that the most extreme floods 

may not necessarily be getting bigger, but that the more likely floods, such as the 20% AEP period flood, may be getting larger, 10 

a similar conclusion to that of Hirsch and Archfield (2015). In some locations such as Southern Scotland, patterns suggest a 

reduction in QMED and short-return period floods. The effect of adding data to the AMAX series in the context of non-

stationary estimates was also investigated. It showed that the addition of single events was enough to have a marked difference 

in the non-stationary parameter estimates, which in turn can have a big impact on the estimates of, for example, Q50 and Q100. 

This, along with the fact that the empirical plotting positions of very extreme events may massively over-estimate their 15 

frequency, means that a single large event should be considered within the framework of the underlying hydrological processes. 

Finally, the concept of the return period was discussed, with the non-stationary return period using a time-varying probability 

of exceedance based on non-stationary parameter estimates of the Generalised Logistic distribution. 

This study has shown that the difference between using return periods based on stationary distributions and non-stationary 

distributions can be significant, such that the “70-year design life” of a structure built 30 years ago may be inaccurate to the 20 

point of being unfit for purpose. However, as discussed above, the introduction of new data can vastly change estimates if the 

new data are extreme. In this case, one needs to examine new data and its effect on current estimates to determine whether the 

change is reasonable. If several new data points are obtained which suggest a different model, then the new data can be more 

reasonably included. On the other hand, the fact still remains that, as seen above, increased volumes of data allow for reduced 

uncertainty and hence one should not exclude old data without good reason. 25 

In the future, the use of fixed-width moving windows would be very valuable in the study of flood-rich/flood-poor period 

quantification in river flow data. If these periods can be elucidated, it would be of interest to examine the underlying 

hydrological mechanisms. On a shorter timescale, the moving window approach could offer some insight into seasonality 

modelling in flood frequency estimation. 
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